constify remaining functions

This commit is contained in:
nijtmans 2017-09-20 16:59:43 +02:00
parent eca200d7cf
commit f674018a41
84 changed files with 189 additions and 187 deletions

View File

@ -21,7 +21,7 @@
* Based on slow invmod except this is optimized for the case where b is
* odd as per HAC Note 14.64 on pp. 610
*/
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c)
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int x, y, u, v, B, D;
int res, neg;

View File

@ -23,7 +23,7 @@
*
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];

View File

@ -31,7 +31,7 @@
* Based on Algorithm 14.12 on pp.595 of HAC.
*
*/
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];

View File

@ -24,7 +24,7 @@
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*/
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];

View File

@ -25,7 +25,7 @@
After that loop you do the squares and add them in.
*/
int fast_s_mp_sqr(mp_int *a, mp_int *b)
int fast_s_mp_sqr(const mp_int *a, mp_int *b)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY], *tmpx;

View File

@ -19,7 +19,7 @@
*
* Simple function copies the input and fixes the sign to positive
*/
int mp_abs(mp_int *a, mp_int *b)
int mp_abs(const mp_int *a, mp_int *b)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* high level addition (handles signs) */
int mp_add(mp_int *a, mp_int *b, mp_int *c)
int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
int sa, sb, res;

View File

@ -16,7 +16,7 @@
*/
/* single digit addition */
int mp_add_d(mp_int *a, mp_digit b, mp_int *c)
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
{
int res, ix, oldused;
mp_digit *tmpa, *tmpc, mu;
@ -30,14 +30,15 @@ int mp_add_d(mp_int *a, mp_digit b, mp_int *c)
/* if a is negative and |a| >= b, call c = |a| - b */
if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
mp_int a_ = *a;
/* temporarily fix sign of a */
a->sign = MP_ZPOS;
a_.sign = MP_ZPOS;
/* c = |a| - b */
res = mp_sub_d(a, b, c);
res = mp_sub_d(&a_, b, c);
/* fix sign */
a->sign = c->sign = MP_NEG;
c->sign = MP_NEG;
/* clamp */
mp_clamp(c);

View File

@ -16,7 +16,7 @@
*/
/* d = a + b (mod c) */
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
int res;
mp_int t;

View File

@ -16,10 +16,11 @@
*/
/* AND two ints together */
int mp_and(mp_int *a, mp_int *b, mp_int *c)
int mp_and(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, ix, px;
mp_int t, *x;
mp_int t;
const mp_int *x;
if (a->used > b->used) {
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {

View File

@ -18,7 +18,7 @@
#ifdef BN_MP_DIV_SMALL
/* slower bit-bang division... also smaller */
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int ta, tb, tq, q;
int res, n, n2;
@ -100,7 +100,7 @@ LBL_ERR:
* The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
{
mp_int q, x, y, t1, t2;
int res, n, t, i, norm, neg;

View File

@ -16,7 +16,7 @@
*/
/* b = a/2 */
int mp_div_2(mp_int *a, mp_int *b)
int mp_div_2(const mp_int *a, mp_int *b)
{
int x, res, oldused;

View File

@ -16,7 +16,7 @@
*/
/* divide by three (based on routine from MPI and the GMP manual) */
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d)
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
{
mp_int q;
mp_word w, t;

View File

@ -34,7 +34,7 @@ static int s_is_power_of_two(mp_digit b, int *p)
}
/* single digit division (based on routine from MPI) */
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
{
mp_int q;
mp_word w;

View File

@ -16,7 +16,7 @@
*/
/* determines if a number is a valid DR modulus */
int mp_dr_is_modulus(mp_int *a)
int mp_dr_is_modulus(const mp_int *a)
{
int ix;

View File

@ -29,7 +29,7 @@
*
* Input x must be in the range 0 <= x <= (n-1)**2
*/
int mp_dr_reduce(mp_int *x, mp_int *n, mp_digit k)
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
{
int err, i, m;
mp_word r;

View File

@ -16,7 +16,7 @@
*/
/* determines the setup value */
void mp_dr_setup(mp_int *a, mp_digit *d)
void mp_dr_setup(const mp_int *a, mp_digit *d)
{
/* the casts are required if DIGIT_BIT is one less than
* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]

View File

@ -16,7 +16,7 @@
*/
/* wrapper function for mp_expt_d_ex() */
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c)
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
{
return mp_expt_d_ex(a, b, c, 0);
}

View File

@ -16,7 +16,7 @@
*/
/* calculate c = a**b using a square-multiply algorithm */
int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
int res;
unsigned int x;

View File

@ -21,7 +21,7 @@
* embedded in the normal function but that wasted alot of stack space
* for nothing (since 99% of the time the Montgomery code would be called)
*/
int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
{
int dr;

View File

@ -29,7 +29,7 @@
# define TAB_SIZE 256
#endif
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
mp_int M[TAB_SIZE], res;
mp_digit buf, mp;
@ -39,7 +39,7 @@ int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
* one of many reduction algorithms without modding the guts of
* the code with if statements everywhere.
*/
int (*redux)(mp_int *,mp_int *,mp_digit);
int (*redux)(mp_int *,const mp_int *,mp_digit);
/* find window size */
x = mp_count_bits(X);

View File

@ -18,7 +18,7 @@
/* Extended euclidean algorithm of (a, b) produces
a*u1 + b*u2 = u3
*/
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
{
mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
int err;

View File

@ -16,7 +16,7 @@
*/
#ifndef LTM_NO_FILE
int mp_fwrite(mp_int *a, int radix, FILE *stream)
int mp_fwrite(const mp_int *a, int radix, FILE *stream)
{
char *buf;
int err, len, x;

View File

@ -16,7 +16,7 @@
*/
/* Greatest Common Divisor using the binary method */
int mp_gcd(mp_int *a, mp_int *b, mp_int *c)
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int u, v;
int k, u_lsb, v_lsb, res;

View File

@ -16,7 +16,7 @@
*/
/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(mp_int *a)
unsigned long mp_get_int(const mp_int *a)
{
int i;
mp_min_u32 res;

View File

@ -16,7 +16,7 @@
*/
/* get the lower unsigned long of an mp_int, platform dependent */
unsigned long mp_get_long(mp_int *a)
unsigned long mp_get_long(const mp_int *a)
{
int i;
unsigned long res;

View File

@ -16,7 +16,7 @@
*/
/* get the lower unsigned long long of an mp_int, platform dependent */
unsigned long long mp_get_long_long(mp_int *a)
unsigned long long mp_get_long_long(const mp_int *a)
{
int i;
unsigned long long res;

View File

@ -16,7 +16,7 @@
*/
/* hac 14.61, pp608 */
int mp_invmod(mp_int *a, mp_int *b, mp_int *c)
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
{
/* b cannot be negative */
if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {

View File

@ -16,7 +16,7 @@
*/
/* hac 14.61, pp608 */
int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c)
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int x, y, u, v, A, B, C, D;
int res;

View File

@ -38,7 +38,7 @@ static const char rem_105[105] = {
};
/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(mp_int *arg, int *ret)
int mp_is_square(const mp_int *arg, int *ret)
{
int res;
mp_digit c;

View File

@ -20,7 +20,7 @@
* HAC is wrong here, as the special case of (0 | 1) is not
* handled correctly.
*/
int mp_jacobi(mp_int *a, mp_int *n, int *c)
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
{
mp_int a1, p1;
int k, s, r, res;

View File

@ -44,7 +44,7 @@
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
int B, err;

View File

@ -22,7 +22,7 @@
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int mp_karatsuba_sqr(mp_int *a, mp_int *b)
int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;

View File

@ -16,7 +16,7 @@
*/
/* computes least common multiple as |a*b|/(a, b) */
int mp_lcm(mp_int *a, mp_int *b, mp_int *c)
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
{
int res;
mp_int t1, t2;

View File

@ -16,7 +16,7 @@
*/
/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
int mp_mod(mp_int *a, mp_int *b, mp_int *c)
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int t;
int res;

View File

@ -15,7 +15,7 @@
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c)
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
{
return mp_div_d(a, b, NULL, c);
}

View File

@ -21,7 +21,7 @@
* The method is slightly modified to shift B unconditionally upto just under
* the leading bit of b. This saves alot of multiple precision shifting.
*/
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b)
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
{
int x, bits, res;

View File

@ -16,7 +16,7 @@
*/
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
int ix, res, digs;
mp_digit mu;

View File

@ -16,7 +16,7 @@
*/
/* setups the montgomery reduction stuff */
int mp_montgomery_setup(mp_int *n, mp_digit *rho)
int mp_montgomery_setup(const mp_int *n, mp_digit *rho)
{
mp_digit x, b;

View File

@ -16,7 +16,7 @@
*/
/* high level multiplication (handles sign) */
int mp_mul(mp_int *a, mp_int *b, mp_int *c)
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, neg;
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;

View File

@ -16,7 +16,7 @@
*/
/* b = a*2 */
int mp_mul_2(mp_int *a, mp_int *b)
int mp_mul_2(const mp_int *a, mp_int *b)
{
int x, res, oldused;

View File

@ -16,7 +16,7 @@
*/
/* multiply by a digit */
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c)
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c)
{
mp_digit u, *tmpa, *tmpc;
mp_word r;

View File

@ -16,7 +16,7 @@
*/
/* d = a * b (mod c) */
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
int res;
mp_int t;

View File

@ -18,7 +18,7 @@
/* wrapper function for mp_n_root_ex()
* computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
*/
int mp_n_root(mp_int *a, mp_digit b, mp_int *c)
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
{
return mp_n_root_ex(a, b, c, 0);
}

View File

@ -25,10 +25,10 @@
* each step involves a fair bit. This is not meant to
* find huge roots [square and cube, etc].
*/
int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
mp_int t1, t2, t3;
int res, neg;
mp_int t1, t2, t3, a_;
int res;
/* input must be positive if b is even */
if (((b & 1) == 0) && (a->sign == MP_NEG)) {
@ -48,8 +48,8 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
}
/* if a is negative fudge the sign but keep track */
neg = a->sign;
a->sign = MP_ZPOS;
a_ = *a;
a_.sign = MP_ZPOS;
/* t2 = 2 */
mp_set(&t2, 2);
@ -74,7 +74,7 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
}
/* t2 = t1**b - a */
if ((res = mp_sub(&t2, a, &t2)) != MP_OKAY) {
if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
goto LBL_T3;
}
@ -100,7 +100,7 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
goto LBL_T3;
}
if (mp_cmp(&t2, a) == MP_GT) {
if (mp_cmp(&t2, &a_) == MP_GT) {
if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) {
goto LBL_T3;
}
@ -109,14 +109,11 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
}
}
/* reset the sign of a first */
a->sign = neg;
/* set the result */
mp_exch(&t1, c);
/* set the sign of the result */
c->sign = neg;
c->sign = a->sign;
res = MP_OKAY;

View File

@ -16,10 +16,11 @@
*/
/* OR two ints together */
int mp_or(mp_int *a, mp_int *b, mp_int *c)
int mp_or(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, ix, px;
mp_int t, *x;
mp_int t;
const mp_int *x;
if (a->used > b->used) {
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {

View File

@ -23,7 +23,7 @@
*
* Sets result to 1 if the congruence holds, or zero otherwise.
*/
int mp_prime_fermat(mp_int *a, mp_int *b, int *result)
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result)
{
mp_int t;
int err;

View File

@ -20,7 +20,7 @@
*
* sets result to 0 if not, 1 if yes
*/
int mp_prime_is_divisible(mp_int *a, int *result)
int mp_prime_is_divisible(const mp_int *a, int *result)
{
int err, ix;
mp_digit res;

View File

@ -22,7 +22,7 @@
*
* Sets result to 1 if probably prime, 0 otherwise
*/
int mp_prime_is_prime(mp_int *a, int t, int *result)
int mp_prime_is_prime(const mp_int *a, int t, int *result)
{
mp_int b;
int ix, err, res;

View File

@ -22,7 +22,7 @@
* Randomly the chance of error is no more than 1/4 and often
* very much lower.
*/
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result)
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
{
mp_int n1, y, r;
int s, j, err;

View File

@ -19,7 +19,7 @@
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
int mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
int mp_reduce(mp_int *x, const mp_int *m, mp_int *mu)
{
mp_int q;
int res, um = m->used;

View File

@ -16,7 +16,7 @@
*/
/* reduces a modulo n where n is of the form 2**p - d */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
{
mp_int q;
int p, res;

View File

@ -19,7 +19,7 @@
This differs from reduce_2k since "d" can be larger
than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
int mp_reduce_2k_l(mp_int *a, const mp_int *n, mp_int *d)
{
mp_int q;
int p, res;

View File

@ -16,7 +16,7 @@
*/
/* determines the setup value */
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
{
int res, p;
mp_int tmp;

View File

@ -16,7 +16,7 @@
*/
/* determines the setup value */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d)
{
int res;
mp_int tmp;

View File

@ -16,7 +16,7 @@
*/
/* determines if mp_reduce_2k can be used */
int mp_reduce_is_2k(mp_int *a)
int mp_reduce_is_2k(const mp_int *a)
{
int ix, iy, iw;
mp_digit iz;

View File

@ -16,7 +16,7 @@
*/
/* determines if reduce_2k_l can be used */
int mp_reduce_is_2k_l(mp_int *a)
int mp_reduce_is_2k_l(const mp_int *a)
{
int ix, iy;

View File

@ -18,7 +18,7 @@
/* pre-calculate the value required for Barrett reduction
* For a given modulus "b" it calulates the value required in "a"
*/
int mp_reduce_setup(mp_int *a, mp_int *b)
int mp_reduce_setup(mp_int *a, const mp_int *b)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* get the size for an signed equivalent */
int mp_signed_bin_size(mp_int *a)
int mp_signed_bin_size(const mp_int *a)
{
return 1 + mp_unsigned_bin_size(a);
}

View File

@ -16,7 +16,7 @@
*/
/* computes b = a*a */
int mp_sqr(mp_int *a, mp_int *b)
int mp_sqr(const mp_int *a, mp_int *b)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* c = a * a (mod b) */
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c)
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c)
{
int res;
mp_int t;

View File

@ -16,7 +16,7 @@
*/
/* this function is less generic than mp_n_root, simpler and faster */
int mp_sqrt(mp_int *arg, mp_int *ret)
int mp_sqrt(const mp_int *arg, mp_int *ret)
{
int res;
mp_int t1, t2;

View File

@ -15,7 +15,7 @@
*
*/
int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
{
int res, legendre;
mp_int t1, C, Q, S, Z, M, T, R, two;

View File

@ -16,7 +16,7 @@
*/
/* high level subtraction (handles signs) */
int mp_sub(mp_int *a, mp_int *b, mp_int *c)
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
{
int sa, sb, res;

View File

@ -16,7 +16,7 @@
*/
/* single digit subtraction */
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c)
{
mp_digit *tmpa, *tmpc, mu;
int res, ix, oldused;
@ -32,9 +32,10 @@ int mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
* addition [with fudged signs]
*/
if (a->sign == MP_NEG) {
a->sign = MP_ZPOS;
res = mp_add_d(a, b, c);
a->sign = c->sign = MP_NEG;
mp_int a_ = *a;
a_.sign = MP_ZPOS;
res = mp_add_d(&a_, b, c);
c->sign = MP_NEG;
/* clamp */
mp_clamp(c);

View File

@ -16,7 +16,7 @@
*/
/* d = a - b (mod c) */
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
{
int res;
mp_int t;

View File

@ -16,7 +16,7 @@
*/
/* store in signed [big endian] format */
int mp_to_signed_bin(mp_int *a, unsigned char *b)
int mp_to_signed_bin(const mp_int *a, unsigned char *b)
{
int res;

View File

@ -16,7 +16,7 @@
*/
/* store in signed [big endian] format */
int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
return MP_VAL;

View File

@ -16,7 +16,7 @@
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin(mp_int *a, unsigned char *b)
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
{
int x, res;
mp_int t;

View File

@ -16,7 +16,7 @@
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
return MP_VAL;

View File

@ -22,7 +22,7 @@
* only particularly useful on VERY large inputs
* (we're talking 1000s of digits here...).
*/
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
int res, B;

View File

@ -16,7 +16,7 @@
*/
/* squaring using Toom-Cook 3-way algorithm */
int mp_toom_sqr(mp_int *a, mp_int *b)
int mp_toom_sqr(const mp_int *a, mp_int *b)
{
mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
int res, B;

View File

@ -16,7 +16,7 @@
*/
/* stores a bignum as a ASCII string in a given radix (2..64) */
int mp_toradix(mp_int *a, char *str, int radix)
int mp_toradix(const mp_int *a, char *str, int radix)
{
int res, digs;
mp_int t;

View File

@ -19,7 +19,7 @@
*
* Stores upto maxlen-1 chars and always a NULL byte
*/
int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen)
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
{
int res, digs;
mp_int t;

View File

@ -16,7 +16,7 @@
*/
/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size(mp_int *a)
int mp_unsigned_bin_size(const mp_int *a)
{
int size = mp_count_bits(a);
return (size / 8) + (((size & 7) != 0) ? 1 : 0);

View File

@ -16,10 +16,11 @@
*/
/* XOR two ints together */
int mp_xor(mp_int *a, mp_int *b, mp_int *c)
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c)
{
int res, ix, px;
mp_int t, *x;
mp_int t;
const mp_int *x;
if (a->used > b->used) {
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {

View File

@ -16,9 +16,9 @@
*/
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
int s_mp_add(mp_int *a, mp_int *b, mp_int *c)
int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_int *x;
const mp_int *x;
int olduse, res, min, max;
/* find sizes, we let |a| <= |b| which means we have to sort

View File

@ -20,12 +20,12 @@
# define TAB_SIZE 256
#endif
int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
mp_int M[TAB_SIZE], res, mu;
mp_digit buf;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
int (*redux)(mp_int *,mp_int *,mp_int *);
int (*redux)(mp_int *,const mp_int *,mp_int *);
/* find window size */
x = mp_count_bits(X);

View File

@ -19,7 +19,7 @@
* HAC pp. 595, Algorithm 14.12 Modified so you can control how
* many digits of output are created.
*/
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;

View File

@ -18,7 +18,7 @@
/* multiplies |a| * |b| and does not compute the lower digs digits
* [meant to get the higher part of the product]
*/
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
mp_int t;
int res, pa, pb, ix, iy;

View File

@ -16,7 +16,7 @@
*/
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
int s_mp_sqr(mp_int *a, mp_int *b)
int s_mp_sqr(const mp_int *a, mp_int *b)
{
mp_int t;
int res, ix, iy, pa;

View File

@ -16,7 +16,7 @@
*/
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c)
int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
{
int olduse, res, min, max;

130
tommath.h
View File

@ -223,13 +223,13 @@ int mp_set_long(mp_int *a, unsigned long b);
int mp_set_long_long(mp_int *a, unsigned long long b);
/* get a 32-bit value */
unsigned long mp_get_int(mp_int *a);
unsigned long mp_get_int(const mp_int *a);
/* get a platform dependent unsigned long value */
unsigned long mp_get_long(mp_int *a);
unsigned long mp_get_long(const mp_int *a);
/* get a platform dependent unsigned long long value */
unsigned long long mp_get_long_long(mp_int *a);
unsigned long long mp_get_long_long(const mp_int *a);
/* initialize and set a digit */
int mp_init_set(mp_int *a, mp_digit b);
@ -264,13 +264,13 @@ int mp_lshd(mp_int *a, int b);
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
/* b = a/2 */
int mp_div_2(mp_int *a, mp_int *b);
int mp_div_2(const mp_int *a, mp_int *b);
/* c = a * 2**b, implemented as c = a << b */
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
/* b = a*2 */
int mp_mul_2(mp_int *a, mp_int *b);
int mp_mul_2(const mp_int *a, mp_int *b);
/* c = a mod 2**b */
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
@ -288,13 +288,13 @@ int mp_rand(mp_int *a, int digits);
/* ---> binary operations <--- */
/* c = a XOR b */
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a OR b */
int mp_or(mp_int *a, mp_int *b, mp_int *c);
int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a AND b */
int mp_and(mp_int *a, mp_int *b, mp_int *c);
int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
/* ---> Basic arithmetic <--- */
@ -302,7 +302,7 @@ int mp_and(mp_int *a, mp_int *b, mp_int *c);
int mp_neg(const mp_int *a, mp_int *b);
/* b = |a| */
int mp_abs(mp_int *a, mp_int *b);
int mp_abs(const mp_int *a, mp_int *b);
/* compare a to b */
int mp_cmp(const mp_int *a, const mp_int *b);
@ -311,22 +311,22 @@ int mp_cmp(const mp_int *a, const mp_int *b);
int mp_cmp_mag(const mp_int *a, const mp_int *b);
/* c = a + b */
int mp_add(mp_int *a, mp_int *b, mp_int *c);
int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a - b */
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a * b */
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
/* b = a*a */
int mp_sqr(mp_int *a, mp_int *b);
int mp_sqr(const mp_int *a, mp_int *b);
/* a/b => cb + d == a */
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
/* c = a mod b, 0 <= c < b */
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
/* ---> single digit functions <--- */
@ -334,122 +334,122 @@ int mp_mod(mp_int *a, mp_int *b, mp_int *c);
int mp_cmp_d(const mp_int *a, mp_digit b);
/* c = a + b */
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
/* c = a - b */
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
/* c = a * b */
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
/* a/b => cb + d == a */
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
/* a/3 => 3c + d == a */
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
/* c = a**b */
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* c = a mod b, 0 <= c < b */
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
/* ---> number theory <--- */
/* d = a + b (mod c) */
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a - b (mod c) */
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a * b (mod c) */
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* c = a * a (mod b) */
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = 1/a (mod b) */
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = (a, b) */
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
/* produces value such that U1*a + U2*b = U3 */
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* special sqrt algo */
int mp_sqrt(mp_int *arg, mp_int *ret);
int mp_sqrt(const mp_int *arg, mp_int *ret);
/* special sqrt (mod prime) */
int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret);
int mp_sqrtmod_prime(const mp_int *arg, const mp_int *prime, mp_int *ret);
/* is number a square? */
int mp_is_square(mp_int *arg, int *ret);
int mp_is_square(const mp_int *arg, int *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
int mp_jacobi(mp_int *a, mp_int *n, int *c);
int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
/* used to setup the Barrett reduction for a given modulus b */
int mp_reduce_setup(mp_int *a, mp_int *b);
int mp_reduce_setup(mp_int *a, const mp_int *b);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
*/
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
int mp_reduce(mp_int *a, const mp_int *b, mp_int *c);
/* setups the montgomery reduction */
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
/* computes x/R == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
/* returns 1 if a is a valid DR modulus */
int mp_dr_is_modulus(mp_int *a);
int mp_dr_is_modulus(const mp_int *a);
/* sets the value of "d" required for mp_dr_reduce */
void mp_dr_setup(mp_int *a, mp_digit *d);
void mp_dr_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo b using the Diminished Radix method */
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
int mp_dr_reduce(mp_int *a, const mp_int *b, mp_digit mp);
/* returns true if a can be reduced with mp_reduce_2k */
int mp_reduce_is_2k(mp_int *a);
int mp_reduce_is_2k(const mp_int *a);
/* determines k value for 2k reduction */
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
/* returns true if a can be reduced with mp_reduce_2k_l */
int mp_reduce_is_2k_l(mp_int *a);
int mp_reduce_is_2k_l(const mp_int *a);
/* determines k value for 2k reduction */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
int mp_reduce_2k_l(mp_int *a, const mp_int *n, mp_int *d);
/* d = a**b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
int mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* ---> Primes <--- */
@ -464,17 +464,17 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
extern const mp_digit ltm_prime_tab[PRIME_SIZE];
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
int mp_prime_is_divisible(mp_int *a, int *result);
int mp_prime_is_divisible(const mp_int *a, int *result);
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
@ -488,7 +488,7 @@ int mp_prime_rabin_miller_trials(int size);
*
* Sets result to 1 if probably prime, 0 otherwise
*/
int mp_prime_is_prime(mp_int *a, int t, int *result);
int mp_prime_is_prime(const mp_int *a, int t, int *result);
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
@ -526,24 +526,24 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
/* ---> radix conversion <--- */
int mp_count_bits(const mp_int *a);
int mp_unsigned_bin_size(mp_int *a);
int mp_unsigned_bin_size(const mp_int *a);
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
int mp_signed_bin_size(mp_int *a);
int mp_signed_bin_size(const mp_int *a);
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);
int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
int mp_to_signed_bin(const mp_int *a, unsigned char *b);
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
int mp_read_radix(mp_int *a, const char *str, int radix);
int mp_toradix(mp_int *a, char *str, int radix);
int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen);
int mp_toradix(const mp_int *a, char *str, int radix);
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
int mp_radix_size(const mp_int *a, int radix, int *size);
#ifndef LTM_NO_FILE
int mp_fread(mp_int *a, int radix, FILE *stream);
int mp_fwrite(mp_int *a, int radix, FILE *stream);
int mp_fwrite(const mp_int *a, int radix, FILE *stream);
#endif
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))

View File

@ -55,24 +55,24 @@ extern void XFREE(void *p);
#endif
/* lowlevel functions, do not call! */
int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c);
int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
int fast_s_mp_sqr(mp_int *a, mp_int *b);
int s_mp_sqr(mp_int *a, mp_int *b);
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
int mp_toom_sqr(mp_int *a, mp_int *b);
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c);
int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho);
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode);
int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode);
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
int fast_s_mp_sqr(const mp_int *a, mp_int *b);
int s_mp_sqr(const mp_int *a, mp_int *b);
int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c);
int mp_karatsuba_sqr(const mp_int *a, mp_int *b);
int mp_toom_sqr(const mp_int *a, mp_int *b);
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c);
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
void bn_reverse(unsigned char *s, int len);
extern const char *mp_s_rmap;