constify remaining functions
This commit is contained in:
parent
eca200d7cf
commit
f674018a41
@ -21,7 +21,7 @@
|
||||
* Based on slow invmod except this is optimized for the case where b is
|
||||
* odd as per HAC Note 14.64 on pp. 610
|
||||
*/
|
||||
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c)
|
||||
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int x, y, u, v, B, D;
|
||||
int res, neg;
|
||||
|
@ -23,7 +23,7 @@
|
||||
*
|
||||
* Based on Algorithm 14.32 on pp.601 of HAC.
|
||||
*/
|
||||
int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
|
||||
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
|
||||
{
|
||||
int ix, res, olduse;
|
||||
mp_word W[MP_WARRAY];
|
||||
|
@ -31,7 +31,7 @@
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*
|
||||
*/
|
||||
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
|
||||
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
|
@ -24,7 +24,7 @@
|
||||
*
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*/
|
||||
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
|
||||
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
|
@ -25,7 +25,7 @@
|
||||
After that loop you do the squares and add them in.
|
||||
*/
|
||||
|
||||
int fast_s_mp_sqr(mp_int *a, mp_int *b)
|
||||
int fast_s_mp_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY], *tmpx;
|
||||
|
@ -19,7 +19,7 @@
|
||||
*
|
||||
* Simple function copies the input and fixes the sign to positive
|
||||
*/
|
||||
int mp_abs(mp_int *a, mp_int *b)
|
||||
int mp_abs(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* high level addition (handles signs) */
|
||||
int mp_add(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_add(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int sa, sb, res;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* single digit addition */
|
||||
int mp_add_d(mp_int *a, mp_digit b, mp_int *c)
|
||||
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
int res, ix, oldused;
|
||||
mp_digit *tmpa, *tmpc, mu;
|
||||
@ -30,14 +30,15 @@ int mp_add_d(mp_int *a, mp_digit b, mp_int *c)
|
||||
|
||||
/* if a is negative and |a| >= b, call c = |a| - b */
|
||||
if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
|
||||
mp_int a_ = *a;
|
||||
/* temporarily fix sign of a */
|
||||
a->sign = MP_ZPOS;
|
||||
a_.sign = MP_ZPOS;
|
||||
|
||||
/* c = |a| - b */
|
||||
res = mp_sub_d(a, b, c);
|
||||
res = mp_sub_d(&a_, b, c);
|
||||
|
||||
/* fix sign */
|
||||
a->sign = c->sign = MP_NEG;
|
||||
c->sign = MP_NEG;
|
||||
|
||||
/* clamp */
|
||||
mp_clamp(c);
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* d = a + b (mod c) */
|
||||
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
|
||||
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int t;
|
||||
|
@ -16,10 +16,11 @@
|
||||
*/
|
||||
|
||||
/* AND two ints together */
|
||||
int mp_and(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_and(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res, ix, px;
|
||||
mp_int t, *x;
|
||||
mp_int t;
|
||||
const mp_int *x;
|
||||
|
||||
if (a->used > b->used) {
|
||||
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
|
||||
|
@ -18,7 +18,7 @@
|
||||
#ifdef BN_MP_DIV_SMALL
|
||||
|
||||
/* slower bit-bang division... also smaller */
|
||||
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
|
||||
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
|
||||
{
|
||||
mp_int ta, tb, tq, q;
|
||||
int res, n, n2;
|
||||
@ -100,7 +100,7 @@ LBL_ERR:
|
||||
* The overall algorithm is as described as
|
||||
* 14.20 from HAC but fixed to treat these cases.
|
||||
*/
|
||||
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
|
||||
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
|
||||
{
|
||||
mp_int q, x, y, t1, t2;
|
||||
int res, n, t, i, norm, neg;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* b = a/2 */
|
||||
int mp_div_2(mp_int *a, mp_int *b)
|
||||
int mp_div_2(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int x, res, oldused;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* divide by three (based on routine from MPI and the GMP manual) */
|
||||
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d)
|
||||
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
|
||||
{
|
||||
mp_int q;
|
||||
mp_word w, t;
|
||||
|
@ -34,7 +34,7 @@ static int s_is_power_of_two(mp_digit b, int *p)
|
||||
}
|
||||
|
||||
/* single digit division (based on routine from MPI) */
|
||||
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
|
||||
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
|
||||
{
|
||||
mp_int q;
|
||||
mp_word w;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* determines if a number is a valid DR modulus */
|
||||
int mp_dr_is_modulus(mp_int *a)
|
||||
int mp_dr_is_modulus(const mp_int *a)
|
||||
{
|
||||
int ix;
|
||||
|
||||
|
@ -29,7 +29,7 @@
|
||||
*
|
||||
* Input x must be in the range 0 <= x <= (n-1)**2
|
||||
*/
|
||||
int mp_dr_reduce(mp_int *x, mp_int *n, mp_digit k)
|
||||
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
|
||||
{
|
||||
int err, i, m;
|
||||
mp_word r;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
void mp_dr_setup(mp_int *a, mp_digit *d)
|
||||
void mp_dr_setup(const mp_int *a, mp_digit *d)
|
||||
{
|
||||
/* the casts are required if DIGIT_BIT is one less than
|
||||
* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* wrapper function for mp_expt_d_ex() */
|
||||
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c)
|
||||
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
return mp_expt_d_ex(a, b, c, 0);
|
||||
}
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* calculate c = a**b using a square-multiply algorithm */
|
||||
int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
{
|
||||
int res;
|
||||
unsigned int x;
|
||||
|
@ -21,7 +21,7 @@
|
||||
* embedded in the normal function but that wasted alot of stack space
|
||||
* for nothing (since 99% of the time the Montgomery code would be called)
|
||||
*/
|
||||
int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
|
||||
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
|
||||
{
|
||||
int dr;
|
||||
|
||||
|
@ -29,7 +29,7 @@
|
||||
# define TAB_SIZE 256
|
||||
#endif
|
||||
|
||||
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
|
||||
int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res;
|
||||
mp_digit buf, mp;
|
||||
@ -39,7 +39,7 @@ int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
|
||||
* one of many reduction algorithms without modding the guts of
|
||||
* the code with if statements everywhere.
|
||||
*/
|
||||
int (*redux)(mp_int *,mp_int *,mp_digit);
|
||||
int (*redux)(mp_int *,const mp_int *,mp_digit);
|
||||
|
||||
/* find window size */
|
||||
x = mp_count_bits(X);
|
||||
|
@ -18,7 +18,7 @@
|
||||
/* Extended euclidean algorithm of (a, b) produces
|
||||
a*u1 + b*u2 = u3
|
||||
*/
|
||||
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
|
||||
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
|
||||
{
|
||||
mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
|
||||
int err;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
#ifndef LTM_NO_FILE
|
||||
int mp_fwrite(mp_int *a, int radix, FILE *stream)
|
||||
int mp_fwrite(const mp_int *a, int radix, FILE *stream)
|
||||
{
|
||||
char *buf;
|
||||
int err, len, x;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* Greatest Common Divisor using the binary method */
|
||||
int mp_gcd(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int u, v;
|
||||
int k, u_lsb, v_lsb, res;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* get the lower 32-bits of an mp_int */
|
||||
unsigned long mp_get_int(mp_int *a)
|
||||
unsigned long mp_get_int(const mp_int *a)
|
||||
{
|
||||
int i;
|
||||
mp_min_u32 res;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* get the lower unsigned long of an mp_int, platform dependent */
|
||||
unsigned long mp_get_long(mp_int *a)
|
||||
unsigned long mp_get_long(const mp_int *a)
|
||||
{
|
||||
int i;
|
||||
unsigned long res;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* get the lower unsigned long long of an mp_int, platform dependent */
|
||||
unsigned long long mp_get_long_long(mp_int *a)
|
||||
unsigned long long mp_get_long_long(const mp_int *a)
|
||||
{
|
||||
int i;
|
||||
unsigned long long res;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* hac 14.61, pp608 */
|
||||
int mp_invmod(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
/* b cannot be negative */
|
||||
if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* hac 14.61, pp608 */
|
||||
int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int x, y, u, v, A, B, C, D;
|
||||
int res;
|
||||
|
@ -38,7 +38,7 @@ static const char rem_105[105] = {
|
||||
};
|
||||
|
||||
/* Store non-zero to ret if arg is square, and zero if not */
|
||||
int mp_is_square(mp_int *arg, int *ret)
|
||||
int mp_is_square(const mp_int *arg, int *ret)
|
||||
{
|
||||
int res;
|
||||
mp_digit c;
|
||||
|
@ -20,7 +20,7 @@
|
||||
* HAC is wrong here, as the special case of (0 | 1) is not
|
||||
* handled correctly.
|
||||
*/
|
||||
int mp_jacobi(mp_int *a, mp_int *n, int *c)
|
||||
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
|
||||
{
|
||||
mp_int a1, p1;
|
||||
int k, s, r, res;
|
||||
|
@ -44,7 +44,7 @@
|
||||
* Generally though the overhead of this method doesn't pay off
|
||||
* until a certain size (N ~ 80) is reached.
|
||||
*/
|
||||
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
||||
int B, err;
|
||||
|
@ -22,7 +22,7 @@
|
||||
* is essentially the same algorithm but merely
|
||||
* tuned to perform recursive squarings.
|
||||
*/
|
||||
int mp_karatsuba_sqr(mp_int *a, mp_int *b)
|
||||
int mp_karatsuba_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_int x0, x1, t1, t2, x0x0, x1x1;
|
||||
int B, err;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* computes least common multiple as |a*b|/(a, b) */
|
||||
int mp_lcm(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res;
|
||||
mp_int t1, t2;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
|
||||
int mp_mod(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int t;
|
||||
int res;
|
||||
|
@ -15,7 +15,7 @@
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c)
|
||||
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
|
||||
{
|
||||
return mp_div_d(a, b, NULL, c);
|
||||
}
|
||||
|
@ -21,7 +21,7 @@
|
||||
* The method is slightly modified to shift B unconditionally upto just under
|
||||
* the leading bit of b. This saves alot of multiple precision shifting.
|
||||
*/
|
||||
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b)
|
||||
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
|
||||
{
|
||||
int x, bits, res;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
|
||||
int mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho)
|
||||
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
|
||||
{
|
||||
int ix, res, digs;
|
||||
mp_digit mu;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* setups the montgomery reduction stuff */
|
||||
int mp_montgomery_setup(mp_int *n, mp_digit *rho)
|
||||
int mp_montgomery_setup(const mp_int *n, mp_digit *rho)
|
||||
{
|
||||
mp_digit x, b;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* high level multiplication (handles sign) */
|
||||
int mp_mul(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res, neg;
|
||||
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* b = a*2 */
|
||||
int mp_mul_2(mp_int *a, mp_int *b)
|
||||
int mp_mul_2(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int x, res, oldused;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* multiply by a digit */
|
||||
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c)
|
||||
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
mp_digit u, *tmpa, *tmpc;
|
||||
mp_word r;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* d = a * b (mod c) */
|
||||
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
|
||||
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int t;
|
||||
|
@ -18,7 +18,7 @@
|
||||
/* wrapper function for mp_n_root_ex()
|
||||
* computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
|
||||
*/
|
||||
int mp_n_root(mp_int *a, mp_digit b, mp_int *c)
|
||||
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
return mp_n_root_ex(a, b, c, 0);
|
||||
}
|
||||
|
@ -25,10 +25,10 @@
|
||||
* each step involves a fair bit. This is not meant to
|
||||
* find huge roots [square and cube, etc].
|
||||
*/
|
||||
int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
{
|
||||
mp_int t1, t2, t3;
|
||||
int res, neg;
|
||||
mp_int t1, t2, t3, a_;
|
||||
int res;
|
||||
|
||||
/* input must be positive if b is even */
|
||||
if (((b & 1) == 0) && (a->sign == MP_NEG)) {
|
||||
@ -48,8 +48,8 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
}
|
||||
|
||||
/* if a is negative fudge the sign but keep track */
|
||||
neg = a->sign;
|
||||
a->sign = MP_ZPOS;
|
||||
a_ = *a;
|
||||
a_.sign = MP_ZPOS;
|
||||
|
||||
/* t2 = 2 */
|
||||
mp_set(&t2, 2);
|
||||
@ -74,7 +74,7 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
}
|
||||
|
||||
/* t2 = t1**b - a */
|
||||
if ((res = mp_sub(&t2, a, &t2)) != MP_OKAY) {
|
||||
if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
@ -100,7 +100,7 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
if (mp_cmp(&t2, a) == MP_GT) {
|
||||
if (mp_cmp(&t2, &a_) == MP_GT) {
|
||||
if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
@ -109,14 +109,11 @@ int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
}
|
||||
}
|
||||
|
||||
/* reset the sign of a first */
|
||||
a->sign = neg;
|
||||
|
||||
/* set the result */
|
||||
mp_exch(&t1, c);
|
||||
|
||||
/* set the sign of the result */
|
||||
c->sign = neg;
|
||||
c->sign = a->sign;
|
||||
|
||||
res = MP_OKAY;
|
||||
|
||||
|
@ -16,10 +16,11 @@
|
||||
*/
|
||||
|
||||
/* OR two ints together */
|
||||
int mp_or(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_or(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res, ix, px;
|
||||
mp_int t, *x;
|
||||
mp_int t;
|
||||
const mp_int *x;
|
||||
|
||||
if (a->used > b->used) {
|
||||
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
|
||||
|
@ -23,7 +23,7 @@
|
||||
*
|
||||
* Sets result to 1 if the congruence holds, or zero otherwise.
|
||||
*/
|
||||
int mp_prime_fermat(mp_int *a, mp_int *b, int *result)
|
||||
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result)
|
||||
{
|
||||
mp_int t;
|
||||
int err;
|
||||
|
@ -20,7 +20,7 @@
|
||||
*
|
||||
* sets result to 0 if not, 1 if yes
|
||||
*/
|
||||
int mp_prime_is_divisible(mp_int *a, int *result)
|
||||
int mp_prime_is_divisible(const mp_int *a, int *result)
|
||||
{
|
||||
int err, ix;
|
||||
mp_digit res;
|
||||
|
@ -22,7 +22,7 @@
|
||||
*
|
||||
* Sets result to 1 if probably prime, 0 otherwise
|
||||
*/
|
||||
int mp_prime_is_prime(mp_int *a, int t, int *result)
|
||||
int mp_prime_is_prime(const mp_int *a, int t, int *result)
|
||||
{
|
||||
mp_int b;
|
||||
int ix, err, res;
|
||||
|
@ -22,7 +22,7 @@
|
||||
* Randomly the chance of error is no more than 1/4 and often
|
||||
* very much lower.
|
||||
*/
|
||||
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result)
|
||||
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result)
|
||||
{
|
||||
mp_int n1, y, r;
|
||||
int s, j, err;
|
||||
|
@ -19,7 +19,7 @@
|
||||
* precomputed via mp_reduce_setup.
|
||||
* From HAC pp.604 Algorithm 14.42
|
||||
*/
|
||||
int mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
|
||||
int mp_reduce(mp_int *x, const mp_int *m, mp_int *mu)
|
||||
{
|
||||
mp_int q;
|
||||
int res, um = m->used;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* reduces a modulo n where n is of the form 2**p - d */
|
||||
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
|
||||
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
|
@ -19,7 +19,7 @@
|
||||
This differs from reduce_2k since "d" can be larger
|
||||
than a single digit.
|
||||
*/
|
||||
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
|
||||
int mp_reduce_2k_l(mp_int *a, const mp_int *n, mp_int *d)
|
||||
{
|
||||
mp_int q;
|
||||
int p, res;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
|
||||
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d)
|
||||
{
|
||||
int res, p;
|
||||
mp_int tmp;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* determines the setup value */
|
||||
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
|
||||
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int tmp;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* determines if mp_reduce_2k can be used */
|
||||
int mp_reduce_is_2k(mp_int *a)
|
||||
int mp_reduce_is_2k(const mp_int *a)
|
||||
{
|
||||
int ix, iy, iw;
|
||||
mp_digit iz;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* determines if reduce_2k_l can be used */
|
||||
int mp_reduce_is_2k_l(mp_int *a)
|
||||
int mp_reduce_is_2k_l(const mp_int *a)
|
||||
{
|
||||
int ix, iy;
|
||||
|
||||
|
@ -18,7 +18,7 @@
|
||||
/* pre-calculate the value required for Barrett reduction
|
||||
* For a given modulus "b" it calulates the value required in "a"
|
||||
*/
|
||||
int mp_reduce_setup(mp_int *a, mp_int *b)
|
||||
int mp_reduce_setup(mp_int *a, const mp_int *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* get the size for an signed equivalent */
|
||||
int mp_signed_bin_size(mp_int *a)
|
||||
int mp_signed_bin_size(const mp_int *a)
|
||||
{
|
||||
return 1 + mp_unsigned_bin_size(a);
|
||||
}
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* computes b = a*a */
|
||||
int mp_sqr(mp_int *a, mp_int *b)
|
||||
int mp_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* c = a * a (mod b) */
|
||||
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res;
|
||||
mp_int t;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* this function is less generic than mp_n_root, simpler and faster */
|
||||
int mp_sqrt(mp_int *arg, mp_int *ret)
|
||||
int mp_sqrt(const mp_int *arg, mp_int *ret)
|
||||
{
|
||||
int res;
|
||||
mp_int t1, t2;
|
||||
|
@ -15,7 +15,7 @@
|
||||
*
|
||||
*/
|
||||
|
||||
int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
|
||||
int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
|
||||
{
|
||||
int res, legendre;
|
||||
mp_int t1, C, Q, S, Z, M, T, R, two;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* high level subtraction (handles signs) */
|
||||
int mp_sub(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int sa, sb, res;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* single digit subtraction */
|
||||
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
|
||||
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
mp_digit *tmpa, *tmpc, mu;
|
||||
int res, ix, oldused;
|
||||
@ -32,9 +32,10 @@ int mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
|
||||
* addition [with fudged signs]
|
||||
*/
|
||||
if (a->sign == MP_NEG) {
|
||||
a->sign = MP_ZPOS;
|
||||
res = mp_add_d(a, b, c);
|
||||
a->sign = c->sign = MP_NEG;
|
||||
mp_int a_ = *a;
|
||||
a_.sign = MP_ZPOS;
|
||||
res = mp_add_d(&a_, b, c);
|
||||
c->sign = MP_NEG;
|
||||
|
||||
/* clamp */
|
||||
mp_clamp(c);
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* d = a - b (mod c) */
|
||||
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
|
||||
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int t;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* store in signed [big endian] format */
|
||||
int mp_to_signed_bin(mp_int *a, unsigned char *b)
|
||||
int mp_to_signed_bin(const mp_int *a, unsigned char *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* store in signed [big endian] format */
|
||||
int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
|
||||
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
|
||||
return MP_VAL;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* store in unsigned [big endian] format */
|
||||
int mp_to_unsigned_bin(mp_int *a, unsigned char *b)
|
||||
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
|
||||
{
|
||||
int x, res;
|
||||
mp_int t;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* store in unsigned [big endian] format */
|
||||
int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen)
|
||||
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
|
||||
return MP_VAL;
|
||||
|
@ -22,7 +22,7 @@
|
||||
* only particularly useful on VERY large inputs
|
||||
* (we're talking 1000s of digits here...).
|
||||
*/
|
||||
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
|
||||
int res, B;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* squaring using Toom-Cook 3-way algorithm */
|
||||
int mp_toom_sqr(mp_int *a, mp_int *b)
|
||||
int mp_toom_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
|
||||
int res, B;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* stores a bignum as a ASCII string in a given radix (2..64) */
|
||||
int mp_toradix(mp_int *a, char *str, int radix)
|
||||
int mp_toradix(const mp_int *a, char *str, int radix)
|
||||
{
|
||||
int res, digs;
|
||||
mp_int t;
|
||||
|
@ -19,7 +19,7 @@
|
||||
*
|
||||
* Stores upto maxlen-1 chars and always a NULL byte
|
||||
*/
|
||||
int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen)
|
||||
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
|
||||
{
|
||||
int res, digs;
|
||||
mp_int t;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* get the size for an unsigned equivalent */
|
||||
int mp_unsigned_bin_size(mp_int *a)
|
||||
int mp_unsigned_bin_size(const mp_int *a)
|
||||
{
|
||||
int size = mp_count_bits(a);
|
||||
return (size / 8) + (((size & 7) != 0) ? 1 : 0);
|
||||
|
@ -16,10 +16,11 @@
|
||||
*/
|
||||
|
||||
/* XOR two ints together */
|
||||
int mp_xor(mp_int *a, mp_int *b, mp_int *c)
|
||||
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res, ix, px;
|
||||
mp_int t, *x;
|
||||
mp_int t;
|
||||
const mp_int *x;
|
||||
|
||||
if (a->used > b->used) {
|
||||
if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
|
||||
|
@ -16,9 +16,9 @@
|
||||
*/
|
||||
|
||||
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
|
||||
int s_mp_add(mp_int *a, mp_int *b, mp_int *c)
|
||||
int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int *x;
|
||||
const mp_int *x;
|
||||
int olduse, res, min, max;
|
||||
|
||||
/* find sizes, we let |a| <= |b| which means we have to sort
|
||||
|
@ -20,12 +20,12 @@
|
||||
# define TAB_SIZE 256
|
||||
#endif
|
||||
|
||||
int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode)
|
||||
int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res, mu;
|
||||
mp_digit buf;
|
||||
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
||||
int (*redux)(mp_int *,mp_int *,mp_int *);
|
||||
int (*redux)(mp_int *,const mp_int *,mp_int *);
|
||||
|
||||
/* find window size */
|
||||
x = mp_count_bits(X);
|
||||
|
@ -19,7 +19,7 @@
|
||||
* HAC pp. 595, Algorithm 14.12 Modified so you can control how
|
||||
* many digits of output are created.
|
||||
*/
|
||||
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
|
||||
int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
|
||||
{
|
||||
mp_int t;
|
||||
int res, pa, pb, ix, iy;
|
||||
|
@ -18,7 +18,7 @@
|
||||
/* multiplies |a| * |b| and does not compute the lower digs digits
|
||||
* [meant to get the higher part of the product]
|
||||
*/
|
||||
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
|
||||
int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
|
||||
{
|
||||
mp_int t;
|
||||
int res, pa, pb, ix, iy;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
|
||||
int s_mp_sqr(mp_int *a, mp_int *b)
|
||||
int s_mp_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_int t;
|
||||
int res, ix, iy, pa;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*/
|
||||
|
||||
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
|
||||
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c)
|
||||
int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int olduse, res, min, max;
|
||||
|
||||
|
130
tommath.h
130
tommath.h
@ -223,13 +223,13 @@ int mp_set_long(mp_int *a, unsigned long b);
|
||||
int mp_set_long_long(mp_int *a, unsigned long long b);
|
||||
|
||||
/* get a 32-bit value */
|
||||
unsigned long mp_get_int(mp_int *a);
|
||||
unsigned long mp_get_int(const mp_int *a);
|
||||
|
||||
/* get a platform dependent unsigned long value */
|
||||
unsigned long mp_get_long(mp_int *a);
|
||||
unsigned long mp_get_long(const mp_int *a);
|
||||
|
||||
/* get a platform dependent unsigned long long value */
|
||||
unsigned long long mp_get_long_long(mp_int *a);
|
||||
unsigned long long mp_get_long_long(const mp_int *a);
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set(mp_int *a, mp_digit b);
|
||||
@ -264,13 +264,13 @@ int mp_lshd(mp_int *a, int b);
|
||||
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
|
||||
|
||||
/* b = a/2 */
|
||||
int mp_div_2(mp_int *a, mp_int *b);
|
||||
int mp_div_2(const mp_int *a, mp_int *b);
|
||||
|
||||
/* c = a * 2**b, implemented as c = a << b */
|
||||
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
|
||||
|
||||
/* b = a*2 */
|
||||
int mp_mul_2(mp_int *a, mp_int *b);
|
||||
int mp_mul_2(const mp_int *a, mp_int *b);
|
||||
|
||||
/* c = a mod 2**b */
|
||||
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
|
||||
@ -288,13 +288,13 @@ int mp_rand(mp_int *a, int digits);
|
||||
|
||||
/* ---> binary operations <--- */
|
||||
/* c = a XOR b */
|
||||
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* c = a OR b */
|
||||
int mp_or(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* c = a AND b */
|
||||
int mp_and(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* ---> Basic arithmetic <--- */
|
||||
|
||||
@ -302,7 +302,7 @@ int mp_and(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_neg(const mp_int *a, mp_int *b);
|
||||
|
||||
/* b = |a| */
|
||||
int mp_abs(mp_int *a, mp_int *b);
|
||||
int mp_abs(const mp_int *a, mp_int *b);
|
||||
|
||||
/* compare a to b */
|
||||
int mp_cmp(const mp_int *a, const mp_int *b);
|
||||
@ -311,22 +311,22 @@ int mp_cmp(const mp_int *a, const mp_int *b);
|
||||
int mp_cmp_mag(const mp_int *a, const mp_int *b);
|
||||
|
||||
/* c = a + b */
|
||||
int mp_add(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* c = a - b */
|
||||
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* c = a * b */
|
||||
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* b = a*a */
|
||||
int mp_sqr(mp_int *a, mp_int *b);
|
||||
int mp_sqr(const mp_int *a, mp_int *b);
|
||||
|
||||
/* a/b => cb + d == a */
|
||||
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
||||
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
|
||||
|
||||
/* c = a mod b, 0 <= c < b */
|
||||
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* ---> single digit functions <--- */
|
||||
|
||||
@ -334,122 +334,122 @@ int mp_mod(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_cmp_d(const mp_int *a, mp_digit b);
|
||||
|
||||
/* c = a + b */
|
||||
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
|
||||
|
||||
/* c = a - b */
|
||||
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
|
||||
|
||||
/* c = a * b */
|
||||
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
|
||||
|
||||
/* a/b => cb + d == a */
|
||||
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
|
||||
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
|
||||
|
||||
/* a/3 => 3c + d == a */
|
||||
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
|
||||
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
|
||||
|
||||
/* c = a**b */
|
||||
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
|
||||
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
|
||||
|
||||
/* c = a mod b, 0 <= c < b */
|
||||
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
|
||||
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
|
||||
|
||||
/* ---> number theory <--- */
|
||||
|
||||
/* d = a + b (mod c) */
|
||||
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
||||
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
|
||||
|
||||
/* d = a - b (mod c) */
|
||||
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
||||
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
|
||||
|
||||
/* d = a * b (mod c) */
|
||||
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
||||
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
|
||||
|
||||
/* c = a * a (mod b) */
|
||||
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* c = 1/a (mod b) */
|
||||
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* c = (a, b) */
|
||||
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* produces value such that U1*a + U2*b = U3 */
|
||||
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
|
||||
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
|
||||
|
||||
/* c = [a, b] or (a*b)/(a, b) */
|
||||
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* finds one of the b'th root of a, such that |c|**b <= |a|
|
||||
*
|
||||
* returns error if a < 0 and b is even
|
||||
*/
|
||||
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
|
||||
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
|
||||
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
|
||||
|
||||
/* special sqrt algo */
|
||||
int mp_sqrt(mp_int *arg, mp_int *ret);
|
||||
int mp_sqrt(const mp_int *arg, mp_int *ret);
|
||||
|
||||
/* special sqrt (mod prime) */
|
||||
int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret);
|
||||
int mp_sqrtmod_prime(const mp_int *arg, const mp_int *prime, mp_int *ret);
|
||||
|
||||
/* is number a square? */
|
||||
int mp_is_square(mp_int *arg, int *ret);
|
||||
int mp_is_square(const mp_int *arg, int *ret);
|
||||
|
||||
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
|
||||
int mp_jacobi(mp_int *a, mp_int *n, int *c);
|
||||
int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
|
||||
|
||||
/* used to setup the Barrett reduction for a given modulus b */
|
||||
int mp_reduce_setup(mp_int *a, mp_int *b);
|
||||
int mp_reduce_setup(mp_int *a, const mp_int *b);
|
||||
|
||||
/* Barrett Reduction, computes a (mod b) with a precomputed value c
|
||||
*
|
||||
* Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
|
||||
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
|
||||
*/
|
||||
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_reduce(mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* setups the montgomery reduction */
|
||||
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
|
||||
int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
|
||||
|
||||
/* computes a = B**n mod b without division or multiplication useful for
|
||||
* normalizing numbers in a Montgomery system.
|
||||
*/
|
||||
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
|
||||
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
|
||||
|
||||
/* computes x/R == x (mod N) via Montgomery Reduction */
|
||||
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
|
||||
int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
|
||||
|
||||
/* returns 1 if a is a valid DR modulus */
|
||||
int mp_dr_is_modulus(mp_int *a);
|
||||
int mp_dr_is_modulus(const mp_int *a);
|
||||
|
||||
/* sets the value of "d" required for mp_dr_reduce */
|
||||
void mp_dr_setup(mp_int *a, mp_digit *d);
|
||||
void mp_dr_setup(const mp_int *a, mp_digit *d);
|
||||
|
||||
/* reduces a modulo b using the Diminished Radix method */
|
||||
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
|
||||
int mp_dr_reduce(mp_int *a, const mp_int *b, mp_digit mp);
|
||||
|
||||
/* returns true if a can be reduced with mp_reduce_2k */
|
||||
int mp_reduce_is_2k(mp_int *a);
|
||||
int mp_reduce_is_2k(const mp_int *a);
|
||||
|
||||
/* determines k value for 2k reduction */
|
||||
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
|
||||
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
|
||||
|
||||
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
|
||||
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
|
||||
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
|
||||
|
||||
/* returns true if a can be reduced with mp_reduce_2k_l */
|
||||
int mp_reduce_is_2k_l(mp_int *a);
|
||||
int mp_reduce_is_2k_l(const mp_int *a);
|
||||
|
||||
/* determines k value for 2k reduction */
|
||||
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
|
||||
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
|
||||
|
||||
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
|
||||
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
|
||||
int mp_reduce_2k_l(mp_int *a, const mp_int *n, mp_int *d);
|
||||
|
||||
/* d = a**b (mod c) */
|
||||
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
||||
int mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
|
||||
|
||||
/* ---> Primes <--- */
|
||||
|
||||
@ -464,17 +464,17 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
||||
extern const mp_digit ltm_prime_tab[PRIME_SIZE];
|
||||
|
||||
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
|
||||
int mp_prime_is_divisible(mp_int *a, int *result);
|
||||
int mp_prime_is_divisible(const mp_int *a, int *result);
|
||||
|
||||
/* performs one Fermat test of "a" using base "b".
|
||||
* Sets result to 0 if composite or 1 if probable prime
|
||||
*/
|
||||
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
|
||||
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
|
||||
|
||||
/* performs one Miller-Rabin test of "a" using base "b".
|
||||
* Sets result to 0 if composite or 1 if probable prime
|
||||
*/
|
||||
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
|
||||
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
|
||||
|
||||
/* This gives [for a given bit size] the number of trials required
|
||||
* such that Miller-Rabin gives a prob of failure lower than 2^-96
|
||||
@ -488,7 +488,7 @@ int mp_prime_rabin_miller_trials(int size);
|
||||
*
|
||||
* Sets result to 1 if probably prime, 0 otherwise
|
||||
*/
|
||||
int mp_prime_is_prime(mp_int *a, int t, int *result);
|
||||
int mp_prime_is_prime(const mp_int *a, int t, int *result);
|
||||
|
||||
/* finds the next prime after the number "a" using "t" trials
|
||||
* of Miller-Rabin.
|
||||
@ -526,24 +526,24 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
|
||||
/* ---> radix conversion <--- */
|
||||
int mp_count_bits(const mp_int *a);
|
||||
|
||||
int mp_unsigned_bin_size(mp_int *a);
|
||||
int mp_unsigned_bin_size(const mp_int *a);
|
||||
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
|
||||
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
|
||||
int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
|
||||
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
|
||||
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
|
||||
|
||||
int mp_signed_bin_size(mp_int *a);
|
||||
int mp_signed_bin_size(const mp_int *a);
|
||||
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
|
||||
int mp_to_signed_bin(mp_int *a, unsigned char *b);
|
||||
int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
|
||||
int mp_to_signed_bin(const mp_int *a, unsigned char *b);
|
||||
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
|
||||
|
||||
int mp_read_radix(mp_int *a, const char *str, int radix);
|
||||
int mp_toradix(mp_int *a, char *str, int radix);
|
||||
int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen);
|
||||
int mp_toradix(const mp_int *a, char *str, int radix);
|
||||
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
|
||||
int mp_radix_size(const mp_int *a, int radix, int *size);
|
||||
|
||||
#ifndef LTM_NO_FILE
|
||||
int mp_fread(mp_int *a, int radix, FILE *stream);
|
||||
int mp_fwrite(mp_int *a, int radix, FILE *stream);
|
||||
int mp_fwrite(const mp_int *a, int radix, FILE *stream);
|
||||
#endif
|
||||
|
||||
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
|
||||
|
@ -55,24 +55,24 @@ extern void XFREE(void *p);
|
||||
#endif
|
||||
|
||||
/* lowlevel functions, do not call! */
|
||||
int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
|
||||
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
|
||||
int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
|
||||
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
||||
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
||||
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
||||
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
||||
int fast_s_mp_sqr(mp_int *a, mp_int *b);
|
||||
int s_mp_sqr(mp_int *a, mp_int *b);
|
||||
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
|
||||
int mp_toom_sqr(mp_int *a, mp_int *b);
|
||||
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
|
||||
int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c);
|
||||
int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho);
|
||||
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode);
|
||||
int s_mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode);
|
||||
int fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
|
||||
int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
|
||||
int fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
|
||||
int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
|
||||
int fast_s_mp_sqr(const mp_int *a, mp_int *b);
|
||||
int s_mp_sqr(const mp_int *a, mp_int *b);
|
||||
int mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
int mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
int mp_karatsuba_sqr(const mp_int *a, mp_int *b);
|
||||
int mp_toom_sqr(const mp_int *a, mp_int *b);
|
||||
int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
int mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
int fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
|
||||
int mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
|
||||
int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
|
||||
void bn_reverse(unsigned char *s, int len);
|
||||
|
||||
extern const char *mp_s_rmap;
|
||||
|
Loading…
Reference in New Issue
Block a user