Merge pull request #113 from czurnieden/develop
Added Fips 186.4 compliance, an additional strong Lucas-Selfridge (for BPSW) and a Frobenius (Paul Underwood) test, both optional. With documentation.
This commit is contained in:
commit
f9eec4350e
55
bn_mp_get_bit.c
Normal file
55
bn_mp_get_bit.c
Normal file
@ -0,0 +1,55 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_BIT_C
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*/
|
||||
|
||||
/* Checks the bit at position b and returns MP_YES
|
||||
if the bit is 1, MP_NO if it is 0 and MP_VAL
|
||||
in case of error */
|
||||
int mp_get_bit(const mp_int *a, int b)
|
||||
{
|
||||
int limb;
|
||||
mp_digit bit, isset;
|
||||
|
||||
if (b < 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
limb = b / DIGIT_BIT;
|
||||
|
||||
/*
|
||||
* Zero is a special value with the member "used" set to zero.
|
||||
* Needs to be tested before the check for the upper boundary
|
||||
* otherwise (limb >= a->used) would be true for a = 0
|
||||
*/
|
||||
|
||||
if (mp_iszero(a)) {
|
||||
return MP_NO;
|
||||
}
|
||||
|
||||
if (limb >= a->used) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
bit = (mp_digit)(1) << (b % DIGIT_BIT);
|
||||
|
||||
isset = a->dp[limb] & bit;
|
||||
return (isset != 0) ? MP_YES : MP_NO;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -14,16 +14,10 @@
|
||||
*/
|
||||
|
||||
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
|
||||
* HAC pp. 73 Algorithm 2.149
|
||||
* HAC is wrong here, as the special case of (0 | 1) is not
|
||||
* handled correctly.
|
||||
* Kept for legacy reasons, please use mp_kronecker() instead
|
||||
*/
|
||||
int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
|
||||
{
|
||||
mp_int a1, p1;
|
||||
int k, s, r, res;
|
||||
mp_digit residue;
|
||||
|
||||
/* if a < 0 return MP_VAL */
|
||||
if (mp_isneg(a) == MP_YES) {
|
||||
return MP_VAL;
|
||||
@ -34,81 +28,7 @@ int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* step 1. handle case of a == 0 */
|
||||
if (mp_iszero(a) == MP_YES) {
|
||||
/* special case of a == 0 and n == 1 */
|
||||
if (mp_cmp_d(n, 1uL) == MP_EQ) {
|
||||
*c = 1;
|
||||
} else {
|
||||
*c = 0;
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* step 2. if a == 1, return 1 */
|
||||
if (mp_cmp_d(a, 1uL) == MP_EQ) {
|
||||
*c = 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* default */
|
||||
s = 0;
|
||||
|
||||
/* step 3. write a = a1 * 2**k */
|
||||
if ((res = mp_init_copy(&a1, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init(&p1)) != MP_OKAY) {
|
||||
goto LBL_A1;
|
||||
}
|
||||
|
||||
/* divide out larger power of two */
|
||||
k = mp_cnt_lsb(&a1);
|
||||
if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
|
||||
goto LBL_P1;
|
||||
}
|
||||
|
||||
/* step 4. if e is even set s=1 */
|
||||
if (((unsigned)k & 1u) == 0u) {
|
||||
s = 1;
|
||||
} else {
|
||||
/* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
|
||||
residue = n->dp[0] & 7u;
|
||||
|
||||
if ((residue == 1u) || (residue == 7u)) {
|
||||
s = 1;
|
||||
} else if ((residue == 3u) || (residue == 5u)) {
|
||||
s = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
|
||||
if (((n->dp[0] & 3u) == 3u) && ((a1.dp[0] & 3u) == 3u)) {
|
||||
s = -s;
|
||||
}
|
||||
|
||||
/* if a1 == 1 we're done */
|
||||
if (mp_cmp_d(&a1, 1uL) == MP_EQ) {
|
||||
*c = s;
|
||||
} else {
|
||||
/* n1 = n mod a1 */
|
||||
if ((res = mp_mod(n, &a1, &p1)) != MP_OKAY) {
|
||||
goto LBL_P1;
|
||||
}
|
||||
if ((res = mp_jacobi(&p1, &a1, &r)) != MP_OKAY) {
|
||||
goto LBL_P1;
|
||||
}
|
||||
*c = s * r;
|
||||
}
|
||||
|
||||
/* done */
|
||||
res = MP_OKAY;
|
||||
LBL_P1:
|
||||
mp_clear(&p1);
|
||||
LBL_A1:
|
||||
mp_clear(&a1);
|
||||
return res;
|
||||
return mp_kronecker(a,n,c);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
145
bn_mp_kronecker.c
Normal file
145
bn_mp_kronecker.c
Normal file
@ -0,0 +1,145 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_KRONECKER_C
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*/
|
||||
|
||||
/*
|
||||
Kronecker symbol (a|p)
|
||||
Straightforward implementation of algorithm 1.4.10 in
|
||||
Henri Cohen: "A Course in Computational Algebraic Number Theory"
|
||||
|
||||
@book{cohen2013course,
|
||||
title={A course in computational algebraic number theory},
|
||||
author={Cohen, Henri},
|
||||
volume={138},
|
||||
year={2013},
|
||||
publisher={Springer Science \& Business Media}
|
||||
}
|
||||
*/
|
||||
int mp_kronecker(const mp_int *a, const mp_int *p, int *c)
|
||||
{
|
||||
mp_int a1, p1, r;
|
||||
|
||||
int e = MP_OKAY;
|
||||
int v, k;
|
||||
|
||||
const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};
|
||||
|
||||
if (mp_iszero(p)) {
|
||||
if (a->used == 1 && a->dp[0] == 1) {
|
||||
*c = 1;
|
||||
return e;
|
||||
} else {
|
||||
*c = 0;
|
||||
return e;
|
||||
}
|
||||
}
|
||||
|
||||
if (mp_iseven(a) && mp_iseven(p)) {
|
||||
*c = 0;
|
||||
return e;
|
||||
}
|
||||
|
||||
if ((e = mp_init_copy(&a1, a)) != MP_OKAY) {
|
||||
return e;
|
||||
}
|
||||
if ((e = mp_init_copy(&p1, p)) != MP_OKAY) {
|
||||
goto LBL_KRON_0;
|
||||
}
|
||||
|
||||
v = mp_cnt_lsb(&p1);
|
||||
if ((e = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
|
||||
goto LBL_KRON_1;
|
||||
}
|
||||
|
||||
if ((v & 0x1) == 0) {
|
||||
k = 1;
|
||||
} else {
|
||||
k = table[a->dp[0] & 7];
|
||||
}
|
||||
|
||||
if (p1.sign == MP_NEG) {
|
||||
p1.sign = MP_ZPOS;
|
||||
if (a1.sign == MP_NEG) {
|
||||
k = -k;
|
||||
}
|
||||
}
|
||||
|
||||
if ((e = mp_init(&r)) != MP_OKAY) {
|
||||
goto LBL_KRON_1;
|
||||
}
|
||||
|
||||
for (;;) {
|
||||
if (mp_iszero(&a1)) {
|
||||
if (mp_cmp_d(&p1, 1) == MP_EQ) {
|
||||
*c = k;
|
||||
goto LBL_KRON;
|
||||
} else {
|
||||
*c = 0;
|
||||
goto LBL_KRON;
|
||||
}
|
||||
}
|
||||
|
||||
v = mp_cnt_lsb(&a1);
|
||||
if ((e = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
|
||||
if ((v & 0x1) == 1) {
|
||||
k = k * table[p1.dp[0] & 7];
|
||||
}
|
||||
|
||||
if (a1.sign == MP_NEG) {
|
||||
/*
|
||||
* Compute k = (-1)^((a1)*(p1-1)/4) * k
|
||||
* a1.dp[0] + 1 cannot overflow because the MSB
|
||||
* of the type mp_digit is not set by definition
|
||||
*/
|
||||
if ((a1.dp[0] + 1) & p1.dp[0] & 2u) {
|
||||
k = -k;
|
||||
}
|
||||
} else {
|
||||
/* compute k = (-1)^((a1-1)*(p1-1)/4) * k */
|
||||
if (a1.dp[0] & p1.dp[0] & 2u) {
|
||||
k = -k;
|
||||
}
|
||||
}
|
||||
|
||||
if ((e = mp_copy(&a1,&r)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
r.sign = MP_ZPOS;
|
||||
if ((e = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
if ((e = mp_copy(&r, &p1)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
}
|
||||
|
||||
LBL_KRON:
|
||||
mp_clear(&r);
|
||||
LBL_KRON_1:
|
||||
mp_clear(&p1);
|
||||
LBL_KRON_0:
|
||||
mp_clear(&a1);
|
||||
|
||||
return e;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
198
bn_mp_prime_frobenius_underwood.c
Normal file
198
bn_mp_prime_frobenius_underwood.c
Normal file
@ -0,0 +1,198 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
|
||||
*/
|
||||
#ifndef LTM_USE_FIPS_ONLY
|
||||
|
||||
#ifdef MP_8BIT
|
||||
/*
|
||||
* floor of positive solution of
|
||||
* (2^16)-1 = (a+4)*(2*a+5)
|
||||
* TODO: Both values are smaller than N^(1/4), would have to use a bigint
|
||||
* for a instead but any a biger than about 120 are already so rare that
|
||||
* it is possible to ignore them and still get enough pseudoprimes.
|
||||
* But it is still a restriction of the set of available pseudoprimes
|
||||
* which makes this implementation less secure if used stand-alone.
|
||||
*/
|
||||
#define LTM_FROBENIUS_UNDERWOOD_A 177
|
||||
#else
|
||||
#define LTM_FROBENIUS_UNDERWOOD_A 32764
|
||||
#endif
|
||||
int mp_prime_frobenius_underwood(const mp_int *N, int *result)
|
||||
{
|
||||
mp_int T1z,T2z,Np1z,sz,tz;
|
||||
|
||||
int a, ap2, length, i, j, isset;
|
||||
int e = MP_OKAY;
|
||||
|
||||
*result = MP_NO;
|
||||
|
||||
if ((e = mp_init_multi(&T1z,&T2z,&Np1z,&sz,&tz, NULL)) != MP_OKAY) {
|
||||
return e;
|
||||
}
|
||||
|
||||
for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
|
||||
/* TODO: That's ugly! No, really, it is! */
|
||||
if (a==2||a==4||a==7||a==8||a==10||a==14||a==18||a==23||a==26||a==28) {
|
||||
continue;
|
||||
}
|
||||
/* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */
|
||||
if ((e = mp_set_long(&T1z,(unsigned long)a)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if ((e = mp_sqr(&T1z,&T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if ((e = mp_sub_d(&T1z,4,&T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if (j == -1) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (j == 0) {
|
||||
/* composite */
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
}
|
||||
/* Tell it a composite and set return value accordingly */
|
||||
if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
|
||||
e = MP_ITER;
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
/* Composite if N and (a+4)*(2*a+5) are not coprime */
|
||||
if ((e = mp_set_long(&T1z, (unsigned long)((a+4)*(2*a+5)))) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if ((e = mp_gcd(N,&T1z,&T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
if (!(T1z.used == 1 && T1z.dp[0] == 1u)) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
ap2 = a + 2;
|
||||
if ((e = mp_add_d(N,1u,&Np1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
mp_set(&sz,1u);
|
||||
mp_set(&tz,2u);
|
||||
length = mp_count_bits(&Np1z);
|
||||
|
||||
for (i = length - 2; i >= 0; i--) {
|
||||
/*
|
||||
* temp = (sz*(a*sz+2*tz))%N;
|
||||
* tz = ((tz-sz)*(tz+sz))%N;
|
||||
* sz = temp;
|
||||
*/
|
||||
if ((e = mp_mul_2(&tz,&T2z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
/* a = 0 at about 50% of the cases (non-square and odd input) */
|
||||
if (a != 0) {
|
||||
if ((e = mp_mul_d(&sz,(mp_digit)a,&T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_add(&T1z,&T2z,&T2z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((isset = mp_get_bit(&Np1z,i)) == MP_VAL) {
|
||||
e = isset;
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if (isset == MP_YES) {
|
||||
/*
|
||||
* temp = (a+2) * sz + tz
|
||||
* tz = 2 * tz - sz
|
||||
* sz = temp
|
||||
*/
|
||||
if (a == 0) {
|
||||
if ((e = mp_mul_2(&sz,&T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
} else {
|
||||
if ((e = mp_mul_d(&sz, (mp_digit) ap2, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
}
|
||||
if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
mp_exch(&sz,&T1z);
|
||||
}
|
||||
}
|
||||
|
||||
if ((e = mp_set_long(&T1z, (unsigned long)(2 * a + 5))) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&T1z,N,&T1z)) != MP_OKAY) {
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
if (mp_iszero(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
|
||||
*result = MP_YES;
|
||||
goto LBL_FU_ERR;
|
||||
}
|
||||
|
||||
LBL_FU_ERR:
|
||||
mp_clear_multi(&tz,&sz,&Np1z,&T2z,&T1z, NULL);
|
||||
return e;
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -13,33 +13,69 @@
|
||||
* guarantee it works.
|
||||
*/
|
||||
|
||||
/* performs a variable number of rounds of Miller-Rabin
|
||||
*
|
||||
* Probability of error after t rounds is no more than
|
||||
/* portable integer log of two with small footprint */
|
||||
static unsigned int s_floor_ilog2(int value)
|
||||
{
|
||||
unsigned int r = 0;
|
||||
while ((value >>= 1) != 0) {
|
||||
r++;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
*
|
||||
* Sets result to 1 if probably prime, 0 otherwise
|
||||
*/
|
||||
int mp_prime_is_prime(const mp_int *a, int t, int *result)
|
||||
{
|
||||
mp_int b;
|
||||
int ix, err, res;
|
||||
int ix, err, res, p_max = 0, size_a, len;
|
||||
unsigned int fips_rand, mask;
|
||||
|
||||
/* default to no */
|
||||
*result = MP_NO;
|
||||
|
||||
/* valid value of t? */
|
||||
if ((t <= 0) || (t > PRIME_SIZE)) {
|
||||
if (t > PRIME_SIZE) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* Some shortcuts */
|
||||
/* N > 3 */
|
||||
if (a->used == 1) {
|
||||
if (a->dp[0] == 0 || a->dp[0] == 1) {
|
||||
*result = 0;
|
||||
return MP_OKAY;
|
||||
}
|
||||
if (a->dp[0] == 2) {
|
||||
*result = 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
|
||||
/* N must be odd */
|
||||
if (mp_iseven(a) == MP_YES) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* N is not a perfect square: floor(sqrt(N))^2 != N */
|
||||
if ((err = mp_is_square(a, &res)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if (res != 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* is the input equal to one of the primes in the table? */
|
||||
for (ix = 0; ix < PRIME_SIZE; ix++) {
|
||||
if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
|
||||
*result = 1;
|
||||
*result = MP_YES;
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
#ifdef MP_8BIT
|
||||
/* The search in the loop above was exhaustive in this case */
|
||||
if (a->used == 1 && PRIME_SIZE >= 31) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* first perform trial division */
|
||||
if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) {
|
||||
@ -51,22 +87,269 @@ int mp_prime_is_prime(const mp_int *a, int t, int *result)
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* now perform the miller-rabin rounds */
|
||||
if ((err = mp_init(&b)) != MP_OKAY) {
|
||||
/*
|
||||
Run the Miller-Rabin test with base 2 for the BPSW test.
|
||||
*/
|
||||
if ((err = mp_init_set(&b,2)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
for (ix = 0; ix < t; ix++) {
|
||||
/* set the prime */
|
||||
mp_set(&b, ltm_prime_tab[ix]);
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
/*
|
||||
Rumours have it that Mathematica does a second M-R test with base 3.
|
||||
Other rumours have it that their strong L-S test is slightly different.
|
||||
It does not hurt, though, beside a bit of extra runtime.
|
||||
*/
|
||||
b.dp[0]++;
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
/*
|
||||
* Both, the Frobenius-Underwood test and the the Lucas-Selfridge test are quite
|
||||
* slow so if speed is an issue, define LTM_USE_FIPS_ONLY to use M-R tests with
|
||||
* bases 2, 3 and t random bases.
|
||||
*/
|
||||
#ifndef LTM_USE_FIPS_ONLY
|
||||
if (t >= 0) {
|
||||
/*
|
||||
* Use a Frobenius-Underwood test instead of the Lucas-Selfridge test for
|
||||
* MP_8BIT (It is unknown if the Lucas-Selfridge test works with 16-bit
|
||||
* integers but the necesssary analysis is on the todo-list).
|
||||
*/
|
||||
#if defined (MP_8BIT) || defined (LTM_USE_FROBENIUS_TEST)
|
||||
err = mp_prime_frobenius_underwood(a, &res);
|
||||
if (err != MP_OKAY && err != MP_ITER) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
#else
|
||||
if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
/* run at least one Miller-Rabin test with a random base */
|
||||
if (t == 0) {
|
||||
t = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
abs(t) extra rounds of M-R to extend the range of primes it can find if t < 0.
|
||||
Only recommended if the input range is known to be < 3317044064679887385961981
|
||||
|
||||
It uses the bases for a deterministic M-R test if input < 3317044064679887385961981
|
||||
The caller has to check the size.
|
||||
|
||||
Not for cryptographic use because with known bases strong M-R pseudoprimes can
|
||||
be constructed. Use at least one M-R test with a random base (t >= 1).
|
||||
|
||||
The 1119 bit large number
|
||||
|
||||
80383745745363949125707961434194210813883768828755814583748891752229742737653\
|
||||
33652186502336163960045457915042023603208766569966760987284043965408232928738\
|
||||
79185086916685732826776177102938969773947016708230428687109997439976544144845\
|
||||
34115587245063340927902227529622941498423068816854043264575340183297861112989\
|
||||
60644845216191652872597534901
|
||||
|
||||
has been constructed by F. Arnault (F. Arnault, "Rabin-Miller primality test:
|
||||
composite numbers which pass it.", Mathematics of Computation, 1995, 64. Jg.,
|
||||
Nr. 209, S. 355-361), is a semiprime with the two factors
|
||||
|
||||
40095821663949960541830645208454685300518816604113250877450620473800321707011\
|
||||
96242716223191597219733582163165085358166969145233813917169287527980445796800\
|
||||
452592031836601
|
||||
|
||||
20047910831974980270915322604227342650259408302056625438725310236900160853505\
|
||||
98121358111595798609866791081582542679083484572616906958584643763990222898400\
|
||||
226296015918301
|
||||
|
||||
and it is a strong pseudoprime to all forty-six prime M-R bases up to 200
|
||||
|
||||
It does not fail the strong Bailley-PSP test as implemented here, it is just
|
||||
given as an example, if not the reason to use the BPSW-test instead of M-R-tests
|
||||
with a sequence of primes 2...n.
|
||||
|
||||
*/
|
||||
if (t < 0) {
|
||||
t = -t;
|
||||
/*
|
||||
Sorenson, Jonathan; Webster, Jonathan (2015).
|
||||
"Strong Pseudoprimes to Twelve Prime Bases".
|
||||
*/
|
||||
/* 0x437ae92817f9fc85b7e5 = 318665857834031151167461 */
|
||||
if ((err = mp_read_radix(&b, "437ae92817f9fc85b7e5", 16)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
|
||||
if (res == MP_NO) {
|
||||
if (mp_cmp(a,&b) == MP_LT) {
|
||||
p_max = 12;
|
||||
} else {
|
||||
/* 0x2be6951adc5b22410a5fd = 3317044064679887385961981 */
|
||||
if ((err = mp_read_radix(&b, "2be6951adc5b22410a5fd", 16)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
|
||||
if (mp_cmp(a,&b) == MP_LT) {
|
||||
p_max = 13;
|
||||
} else {
|
||||
err = MP_VAL;
|
||||
goto LBL_B;
|
||||
}
|
||||
}
|
||||
|
||||
/* for compatibility with the current API (well, compatible within a sign's width) */
|
||||
if (p_max < t) {
|
||||
p_max = t;
|
||||
}
|
||||
|
||||
if (p_max > PRIME_SIZE) {
|
||||
err = MP_VAL;
|
||||
goto LBL_B;
|
||||
}
|
||||
/* we did bases 2 and 3 already, skip them */
|
||||
for (ix = 2; ix < p_max; ix++) {
|
||||
mp_set(&b,ltm_prime_tab[ix]);
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
Do "t" M-R tests with random bases between 3 and "a".
|
||||
See Fips 186.4 p. 126ff
|
||||
*/
|
||||
else if (t > 0) {
|
||||
/*
|
||||
* The mp_digit's have a defined bit-size but the size of the
|
||||
* array a.dp is a simple 'int' and this library can not assume full
|
||||
* compliance to the current C-standard (ISO/IEC 9899:2011) because
|
||||
* it gets used for small embeded processors, too. Some of those MCUs
|
||||
* have compilers that one cannot call standard compliant by any means.
|
||||
* Hence the ugly type-fiddling in the following code.
|
||||
*/
|
||||
size_a = mp_count_bits(a);
|
||||
mask = (1u << s_floor_ilog2(size_a)) - 1u;
|
||||
/*
|
||||
Assuming the General Rieman hypothesis (never thought to write that in a
|
||||
comment) the upper bound can be lowered to 2*(log a)^2.
|
||||
E. Bach, "Explicit bounds for primality testing and related problems,"
|
||||
Math. Comp. 55 (1990), 355-380.
|
||||
|
||||
size_a = (size_a/10) * 7;
|
||||
len = 2 * (size_a * size_a);
|
||||
|
||||
E.g.: a number of size 2^2048 would be reduced to the upper limit
|
||||
|
||||
floor(2048/10)*7 = 1428
|
||||
2 * 1428^2 = 4078368
|
||||
|
||||
(would have been ~4030331.9962 with floats and natural log instead)
|
||||
That number is smaller than 2^28, the default bit-size of mp_digit.
|
||||
*/
|
||||
|
||||
/*
|
||||
How many tests, you might ask? Dana Jacobsen of Math::Prime::Util fame
|
||||
does exactly 1. In words: one. Look at the end of _GMP_is_prime() in
|
||||
Math-Prime-Util-GMP-0.50/primality.c if you do not believe it.
|
||||
|
||||
The function mp_rand() goes to some length to use a cryptographically
|
||||
good PRNG. That also means that the chance to always get the same base
|
||||
in the loop is non-zero, although very low.
|
||||
If the BPSW test and/or the addtional Frobenious test have been
|
||||
performed instead of just the Miller-Rabin test with the bases 2 and 3,
|
||||
a single extra test should suffice, so such a very unlikely event
|
||||
will not do much harm.
|
||||
|
||||
To preemptivly answer the dangling question: no, a witness does not
|
||||
need to be prime.
|
||||
*/
|
||||
for (ix = 0; ix < t; ix++) {
|
||||
/* mp_rand() guarantees the first digit to be non-zero */
|
||||
if ((err = mp_rand(&b, 1)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
/*
|
||||
* Reduce digit before casting because mp_digit might be bigger than
|
||||
* an unsigned int and "mask" on the other side is most probably not.
|
||||
*/
|
||||
fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask);
|
||||
#ifdef MP_8BIT
|
||||
/*
|
||||
* One 8-bit digit is too small, so concatenate two if the size of
|
||||
* unsigned int allows for it.
|
||||
*/
|
||||
if ((sizeof(unsigned int) * CHAR_BIT)/2 >= (sizeof(mp_digit) * CHAR_BIT)) {
|
||||
if ((err = mp_rand(&b, 1)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
fips_rand <<= sizeof(mp_digit) * CHAR_BIT;
|
||||
fips_rand |= (unsigned int) b.dp[0];
|
||||
fips_rand &= mask;
|
||||
}
|
||||
#endif
|
||||
/* Ceil, because small numbers have a right to live, too, */
|
||||
len = (int)((fips_rand + DIGIT_BIT) / DIGIT_BIT);
|
||||
/* Unlikely. */
|
||||
if (len < 0) {
|
||||
ix--;
|
||||
continue;
|
||||
}
|
||||
/*
|
||||
* As mentioned above, one 8-bit digit is too small and
|
||||
* although it can only happen in the unlikely case that
|
||||
* an "unsigned int" is smaller than 16 bit a simple test
|
||||
* is cheap and the correction even cheaper.
|
||||
*/
|
||||
#ifdef MP_8BIT
|
||||
/* All "a" < 2^8 have been caught before */
|
||||
if (len == 1) {
|
||||
len++;
|
||||
}
|
||||
#endif
|
||||
if ((err = mp_rand(&b, len)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
/*
|
||||
* That number might got too big and the witness has to be
|
||||
* smaller than or equal to "a"
|
||||
*/
|
||||
len = mp_count_bits(&b);
|
||||
if (len > size_a) {
|
||||
len = len - size_a;
|
||||
mp_div_2d(&b, len, &b, NULL);
|
||||
}
|
||||
|
||||
/* Although the chance for b <= 3 is miniscule, try again. */
|
||||
if (mp_cmp_d(&b,3) != MP_GT) {
|
||||
ix--;
|
||||
continue;
|
||||
}
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
goto LBL_B;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* passed the test */
|
||||
@ -75,6 +358,7 @@ LBL_B:
|
||||
mp_clear(&b);
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
|
@ -24,11 +24,6 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
|
||||
mp_digit res_tab[PRIME_SIZE], step, kstep;
|
||||
mp_int b;
|
||||
|
||||
/* ensure t is valid */
|
||||
if ((t <= 0) || (t > PRIME_SIZE)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* force positive */
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
@ -141,17 +136,9 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
|
||||
continue;
|
||||
}
|
||||
|
||||
/* is this prime? */
|
||||
for (x = 0; x < t; x++) {
|
||||
mp_set(&b, ltm_prime_tab[x]);
|
||||
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if (res == MP_NO) {
|
||||
break;
|
||||
}
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if (res == MP_YES) {
|
||||
break;
|
||||
}
|
||||
|
@ -17,17 +17,24 @@
|
||||
static const struct {
|
||||
int k, t;
|
||||
} sizes[] = {
|
||||
{ 128, 28 },
|
||||
{ 80, -1 }, /* Use deterministic algorithm for size <= 80 bits */
|
||||
{ 81, 39 },
|
||||
{ 96, 37 },
|
||||
{ 128, 32 },
|
||||
{ 160, 27 },
|
||||
{ 192, 21 },
|
||||
{ 256, 16 },
|
||||
{ 384, 10 },
|
||||
{ 512, 7 },
|
||||
{ 640, 6 },
|
||||
{ 768, 5 },
|
||||
{ 896, 4 },
|
||||
{ 1024, 4 }
|
||||
{ 1024, 4 },
|
||||
{ 2048, 2 },
|
||||
{ 4096, 1 },
|
||||
};
|
||||
|
||||
/* returns # of RM trials required for a given bit size */
|
||||
/* returns # of RM trials required for a given bit size and max. error of 2^(-96)*/
|
||||
int mp_prime_rabin_miller_trials(int size)
|
||||
{
|
||||
int x;
|
||||
|
413
bn_mp_prime_strong_lucas_selfridge.c
Normal file
413
bn_mp_prime_strong_lucas_selfridge.c
Normal file
@ -0,0 +1,413 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
|
||||
*/
|
||||
#ifndef LTM_USE_FIPS_ONLY
|
||||
|
||||
/*
|
||||
* 8-bit is just too small. You can try the Frobenius test
|
||||
* but that frobenius test can fail, too, for the same reason.
|
||||
*/
|
||||
#ifndef MP_8BIT
|
||||
|
||||
/*
|
||||
* multiply bigint a with int d and put the result in c
|
||||
* Like mp_mul_d() but with a signed long as the small input
|
||||
*/
|
||||
static int s_mp_mul_si(const mp_int *a, long d, mp_int *c)
|
||||
{
|
||||
mp_int t;
|
||||
int err, neg = 0;
|
||||
|
||||
if ((err = mp_init(&t)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if (d < 0) {
|
||||
neg = 1;
|
||||
d = -d;
|
||||
}
|
||||
|
||||
/*
|
||||
* mp_digit might be smaller than a long, which excludes
|
||||
* the use of mp_mul_d() here.
|
||||
*/
|
||||
if ((err = mp_set_long(&t, (unsigned long) d)) != MP_OKAY) {
|
||||
goto LBL_MPMULSI_ERR;
|
||||
}
|
||||
if ((err = mp_mul(a, &t, c)) != MP_OKAY) {
|
||||
goto LBL_MPMULSI_ERR;
|
||||
}
|
||||
if (neg == 1) {
|
||||
c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG;
|
||||
}
|
||||
LBL_MPMULSI_ERR:
|
||||
mp_clear(&t);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
Strong Lucas-Selfridge test.
|
||||
returns MP_YES if it is a strong L-S prime, MP_NO if it is composite
|
||||
|
||||
Code ported from Thomas Ray Nicely's implementation of the BPSW test
|
||||
at http://www.trnicely.net/misc/bpsw.html
|
||||
|
||||
Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
|
||||
Released into the public domain by the author, who disclaims any legal
|
||||
liability arising from its use
|
||||
|
||||
The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
|
||||
Additional comments marked "CZ" (without the quotes) are by the code-portist.
|
||||
|
||||
(If that name sounds familiar, he is the guy who found the fdiv bug in the
|
||||
Pentium (P5x, I think) Intel processor)
|
||||
*/
|
||||
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
|
||||
{
|
||||
/* CZ TODO: choose better variable names! */
|
||||
mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
|
||||
/* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */
|
||||
int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
|
||||
int e = MP_OKAY;
|
||||
int isset;
|
||||
|
||||
*result = MP_NO;
|
||||
|
||||
/*
|
||||
Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
|
||||
such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
|
||||
indicates that, if N is not a perfect square, D will "nearly
|
||||
always" be "small." Just in case, an overflow trap for D is
|
||||
included.
|
||||
*/
|
||||
|
||||
if ((e = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
|
||||
NULL)) != MP_OKAY) {
|
||||
return e;
|
||||
}
|
||||
|
||||
D = 5;
|
||||
sign = 1;
|
||||
|
||||
for (;;) {
|
||||
Ds = sign * D;
|
||||
sign = -sign;
|
||||
if ((e = mp_set_long(&Dz,(unsigned long) D)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* if 1 < GCD < N then N is composite with factor "D", and
|
||||
Jacobi(D,N) is technically undefined (but often returned
|
||||
as zero). */
|
||||
if ((mp_cmp_d(&gcd,1u) == MP_GT) && (mp_cmp(&gcd,a) == MP_LT)) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (Ds < 0) {
|
||||
Dz.sign = MP_NEG;
|
||||
}
|
||||
if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
|
||||
if (J == -1) {
|
||||
break;
|
||||
}
|
||||
D += 2;
|
||||
|
||||
if (D > INT_MAX - 2) {
|
||||
e = MP_VAL;
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
P = 1; /* Selfridge's choice */
|
||||
Q = (1 - Ds) / 4; /* Required so D = P*P - 4*Q */
|
||||
|
||||
/* NOTE: The conditions (a) N does not divide Q, and
|
||||
(b) D is square-free or not a perfect square, are included by
|
||||
some authors; e.g., "Prime numbers and computer methods for
|
||||
factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
|
||||
p. 130. For this particular application of Lucas sequences,
|
||||
these conditions were found to be immaterial. */
|
||||
|
||||
/* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
|
||||
odd positive integer d and positive integer s for which
|
||||
N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
|
||||
The strong Lucas-Selfridge test then returns N as a strong
|
||||
Lucas probable prime (slprp) if any of the following
|
||||
conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
|
||||
V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
|
||||
(all equalities mod N). Thus d is the highest index of U that
|
||||
must be computed (since V_2m is independent of U), compared
|
||||
to U_{N+1} for the standard Lucas-Selfridge test; and no
|
||||
index of V beyond (N+1)/2 is required, just as in the
|
||||
standard Lucas-Selfridge test. However, the quantity Q^d must
|
||||
be computed for use (if necessary) in the latter stages of
|
||||
the test. The result is that the strong Lucas-Selfridge test
|
||||
has a running time only slightly greater (order of 10 %) than
|
||||
that of the standard Lucas-Selfridge test, while producing
|
||||
only (roughly) 30 % as many pseudoprimes (and every strong
|
||||
Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
|
||||
the evidence indicates that the strong Lucas-Selfridge test is
|
||||
more effective than the standard Lucas-Selfridge test, and a
|
||||
Baillie-PSW test based on the strong Lucas-Selfridge test
|
||||
should be more reliable. */
|
||||
|
||||
if ((e = mp_add_d(a,1u,&Np1)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
s = mp_cnt_lsb(&Np1);
|
||||
|
||||
/* CZ
|
||||
* This should round towards zero because
|
||||
* Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
|
||||
* and mp_div_2d() is equivalent. Additionally:
|
||||
* dividing an even number by two does not produce
|
||||
* any leftovers.
|
||||
*/
|
||||
if ((e = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* We must now compute U_d and V_d. Since d is odd, the accumulated
|
||||
values U and V are initialized to U_1 and V_1 (if the target
|
||||
index were even, U and V would be initialized instead to U_0=0
|
||||
and V_0=2). The values of U_2m and V_2m are also initialized to
|
||||
U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
|
||||
U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
|
||||
(1, 2, 3, ...) of t are on (the zero bit having been accounted
|
||||
for in the initialization of U and V), these values are then
|
||||
combined with the previous totals for U and V, using the
|
||||
composition formulas for addition of indices. */
|
||||
|
||||
mp_set(&Uz, 1u); /* U=U_1 */
|
||||
mp_set(&Vz, (mp_digit)P); /* V=V_1 */
|
||||
mp_set(&U2mz, 1u); /* U_1 */
|
||||
mp_set(&V2mz, (mp_digit)P); /* V_1 */
|
||||
|
||||
if (Q < 0) {
|
||||
Q = -Q;
|
||||
if ((e = mp_set_long(&Qmz, (unsigned long) Q)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Initializes calculation of Q^d */
|
||||
if ((e = mp_set_long(&Qkdz, (unsigned long) Q)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
Qmz.sign = MP_NEG;
|
||||
Q2mz.sign = MP_NEG;
|
||||
Qkdz.sign = MP_NEG;
|
||||
Q = -Q;
|
||||
} else {
|
||||
if ((e = mp_set_long(&Qmz, (unsigned long) Q)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Initializes calculation of Q^d */
|
||||
if ((e = mp_set_long(&Qkdz, (unsigned long) Q)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
Nbits = mp_count_bits(&Dz);
|
||||
for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
|
||||
/* Formulas for doubling of indices (carried out mod N). Note that
|
||||
* the indices denoted as "2m" are actually powers of 2, specifically
|
||||
* 2^(ul-1) beginning each loop and 2^ul ending each loop.
|
||||
*
|
||||
* U_2m = U_m*V_m
|
||||
* V_2m = V_m*V_m - 2*Q^m
|
||||
*/
|
||||
|
||||
if ((e = mp_mul(&U2mz,&V2mz,&U2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&U2mz,a,&U2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_sqr(&V2mz,&V2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_sub(&V2mz,&Q2mz,&V2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&V2mz,a,&V2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Must calculate powers of Q for use in V_2m, also for Q^d later */
|
||||
if ((e = mp_sqr(&Qmz,&Qmz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* prevents overflow */ /* CZ still necessary without a fixed prealloc'd mem.? */
|
||||
if ((e = mp_mod(&Qmz,a,&Qmz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&Qmz,&Q2mz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
|
||||
if ((isset = mp_get_bit(&Dz,u)) == MP_VAL) {
|
||||
e = isset;
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (isset == MP_YES) {
|
||||
/* Formulas for addition of indices (carried out mod N);
|
||||
*
|
||||
* U_(m+n) = (U_m*V_n + U_n*V_m)/2
|
||||
* V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
|
||||
*
|
||||
* Be careful with division by 2 (mod N)!
|
||||
*/
|
||||
|
||||
if ((e = mp_mul(&U2mz,&Vz,&T1z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul(&Uz,&V2mz,&T2z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul(&V2mz,&Vz,&T3z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul(&U2mz,&Uz,&T4z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = s_mp_mul_si(&T4z,(long)Ds,&T4z)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_add(&T1z,&T2z,&Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (mp_isodd(&Uz)) {
|
||||
if ((e = mp_add(&Uz,a,&Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
/* CZ
|
||||
* This should round towards negative infinity because
|
||||
* Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
|
||||
* But mp_div_2() does not do so, it is truncating instead.
|
||||
*/
|
||||
if ((e = mp_div_2(&Uz,&Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((Uz.sign == MP_NEG) && mp_isodd(&Uz)) {
|
||||
if ((e = mp_sub_d(&Uz,1u,&Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
if ((e = mp_add(&T3z,&T4z,&Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (mp_isodd(&Vz)) {
|
||||
if ((e = mp_add(&Vz,a,&Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
if ((e = mp_div_2(&Vz,&Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (Vz.sign == MP_NEG && mp_isodd(&Vz)) {
|
||||
if ((e = mp_sub_d(&Vz,1,&Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
if ((e = mp_mod(&Uz,a,&Uz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&Vz,a,&Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Calculating Q^d for later use */
|
||||
if ((e = mp_mul(&Qkdz,&Qmz,&Qkdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&Qkdz,a,&Qkdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
|
||||
strong Lucas pseudoprime. */
|
||||
if (mp_iszero(&Uz) || mp_iszero(&Vz)) {
|
||||
*result = MP_YES;
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
|
||||
/* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
|
||||
1995/6) omits the condition V0 on p.142, but includes it on
|
||||
p. 130. The condition is NECESSARY; otherwise the test will
|
||||
return false negatives---e.g., the primes 29 and 2000029 will be
|
||||
returned as composite. */
|
||||
|
||||
/* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
|
||||
by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
|
||||
these are congruent to 0 mod N, then N is a prime or a strong
|
||||
Lucas pseudoprime. */
|
||||
|
||||
/* Initialize 2*Q^(d*2^r) for V_2m */
|
||||
if ((e = mp_mul_2(&Qkdz,&Q2kdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
|
||||
for (r = 1; r < s; r++) {
|
||||
if ((e = mp_sqr(&Vz,&Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_sub(&Vz,&Q2kdz,&Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&Vz,a,&Vz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if (mp_iszero(&Vz)) {
|
||||
*result = MP_YES;
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
/* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
|
||||
if (r < (s - 1)) {
|
||||
if ((e = mp_sqr(&Qkdz,&Qkdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mod(&Qkdz,a,&Qkdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
if ((e = mp_mul_2(&Qkdz,&Q2kdz)) != MP_OKAY) {
|
||||
goto LBL_LS_ERR;
|
||||
}
|
||||
}
|
||||
}
|
||||
LBL_LS_ERR:
|
||||
mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL);
|
||||
return e;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
10292
callgraph.txt
10292
callgraph.txt
File diff suppressed because it is too large
Load Diff
88
demo/demo.c
88
demo/demo.c
@ -118,6 +118,35 @@ static struct mp_jacobi_st jacobi[] = {
|
||||
{ 7, { 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1 } },
|
||||
{ 9, { -1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 } },
|
||||
};
|
||||
|
||||
struct mp_kronecker_st {
|
||||
long n;
|
||||
int c[21];
|
||||
};
|
||||
static struct mp_kronecker_st kronecker[] = {
|
||||
/*-10, -9, -8, -7,-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10*/
|
||||
{ -10, { 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 1, 0, 1, 0 } },
|
||||
{ -9, { -1, 0, -1, 1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, -1, 1, 0, 1 } },
|
||||
{ -8, { 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0 } },
|
||||
{ -7, { 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1 } },
|
||||
{ -6, { 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0 } },
|
||||
{ -5, { 0, -1, 1, -1, 1, 0, -1, -1, 1, -1, 0, 1, -1, 1, 1, 0, -1, 1, -1, 1, 0 } },
|
||||
{ -4, { 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0 } },
|
||||
{ -3, { -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1 } },
|
||||
{ -2, { 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0 } },
|
||||
{ -1, { -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1 } },
|
||||
{ 0, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
|
||||
{ 1, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } },
|
||||
{ 2, { 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0 } },
|
||||
{ 3, { 1, 0, -1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -1, 0, 1, -1, 0, -1, -1, 0, 1 } },
|
||||
{ 4, { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 } },
|
||||
{ 5, { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0 } },
|
||||
{ 6, { 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0 } },
|
||||
{ 7, { -1, 1, 1, 0, 1, -1, 1, 1, 1, 1, 0, 1, 1, 1, 1, -1, 1, 0, 1, 1, -1 } },
|
||||
{ 8, { 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0 } },
|
||||
{ 9, { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 } },
|
||||
{ 10, { 0, 1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0 } }
|
||||
};
|
||||
#endif
|
||||
|
||||
#if LTM_DEMO_TEST_VS_MTEST != 0
|
||||
@ -133,6 +162,7 @@ int main(void)
|
||||
gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n;
|
||||
#else
|
||||
unsigned long s, t;
|
||||
long k, m;
|
||||
unsigned long long q, r;
|
||||
mp_digit mp;
|
||||
int i, n, err, should;
|
||||
@ -261,6 +291,43 @@ int main(void)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
mp_set_int(&a, 0);
|
||||
mp_set_int(&b, 1u);
|
||||
if ((err = mp_kronecker(&a, &b, &i)) != MP_OKAY) {
|
||||
printf("Failed executing mp_kronecker(0 | 1) %s.\n", mp_error_to_string(err));
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
if (i != 1) {
|
||||
printf("Failed trivial mp_kronecker(0 | 1) %d != 1\n", i);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
for (cnt = 0; cnt < (int)(sizeof(kronecker)/sizeof(kronecker[0])); ++cnt) {
|
||||
k = kronecker[cnt].n;
|
||||
if (k < 0) {
|
||||
mp_set_int(&a, (unsigned long)(-k));
|
||||
mp_neg(&a, &a);
|
||||
} else {
|
||||
mp_set_int(&a, (unsigned long) k);
|
||||
}
|
||||
/* only test positive values of a */
|
||||
for (m = -10; m <= 10; m++) {
|
||||
if (m < 0) {
|
||||
mp_set_int(&b,(unsigned long)(-m));
|
||||
mp_neg(&b, &b);
|
||||
} else {
|
||||
mp_set_int(&b, (unsigned long) m);
|
||||
}
|
||||
if ((err = mp_kronecker(&a, &b, &i)) != MP_OKAY) {
|
||||
printf("Failed executing mp_kronecker(%ld | %ld) %s.\n", kronecker[cnt].n, m, mp_error_to_string(err));
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
if (err == MP_OKAY && i != kronecker[cnt].c[m + 10]) {
|
||||
printf("Failed trivial mp_kronecker(%ld | %ld) %d != %d\n", kronecker[cnt].n, m, i, kronecker[cnt].c[m + 10]);
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* test mp_complement */
|
||||
printf("\n\nTesting: mp_complement");
|
||||
for (i = 0; i < 1000; ++i) {
|
||||
@ -604,6 +671,27 @@ int main(void)
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
|
||||
/* strong Miller-Rabin pseudoprime to the first 200 primes (F. Arnault) */
|
||||
puts("Testing mp_prime_is_prime() with Arnault's pseudoprime 803...901 \n");
|
||||
mp_read_radix(&a,
|
||||
"91xLNF3roobhzgTzoFIG6P13ZqhOVYSN60Fa7Cj2jVR1g0k89zdahO9/kAiRprpfO1VAp1aBHucLFV/qLKLFb+zonV7R2Vxp1K13ClwUXStpV0oxTNQVjwybmFb5NBEHImZ6V7P6+udRJuH8VbMEnS0H8/pSqQrg82OoQQ2fPpAk6G1hkjqoCv5s/Yr",
|
||||
64);
|
||||
mp_prime_is_prime(&a, 8, &cnt);
|
||||
if (cnt == MP_YES) {
|
||||
printf("Arnault's pseudoprime is not prime but mp_prime_is_prime says it is.\n");
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
/* About the same size as Arnault's pseudoprime */
|
||||
puts("Testing mp_prime_is_prime() with certified prime 2^1119 + 53\n");
|
||||
mp_set(&a,1u);
|
||||
mp_mul_2d(&a,1119,&a);
|
||||
mp_add_d(&a,53,&a);
|
||||
mp_prime_is_prime(&a, 8, &cnt);
|
||||
if (cnt == MP_NO) {
|
||||
printf("A certified prime is a prime but mp_prime_is_prime says it not.\n");
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
for (ix = 16; ix < 128; ix++) {
|
||||
printf("Testing ( safe-prime): %9d bits \r", ix);
|
||||
fflush(stdout);
|
||||
|
@ -103,6 +103,10 @@ int main(void)
|
||||
uint64_t tt, gg, CLK_PER_SEC;
|
||||
FILE *log, *logb, *logc, *logd;
|
||||
mp_int a, b, c, d, e, f;
|
||||
#ifdef LTM_TIMING_PRIME_IS_PRIME
|
||||
const char *name;
|
||||
int m;
|
||||
#endif
|
||||
int n, cnt, ix, old_kara_m, old_kara_s, old_toom_m, old_toom_s;
|
||||
unsigned rr;
|
||||
|
||||
@ -121,6 +125,42 @@ int main(void)
|
||||
CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
|
||||
|
||||
printf("CLK_PER_SEC == %" PRIu64 "\n", CLK_PER_SEC);
|
||||
|
||||
#ifdef LTM_TIMING_PRIME_IS_PRIME
|
||||
for (m = 0; m < 2; ++m) {
|
||||
if (m == 0) {
|
||||
name = " Arnault";
|
||||
mp_read_radix(&a,
|
||||
"91xLNF3roobhzgTzoFIG6P13ZqhOVYSN60Fa7Cj2jVR1g0k89zdahO9/kAiRprpfO1VAp1aBHucLFV/qLKLFb+zonV7R2Vxp1K13ClwUXStpV0oxTNQVjwybmFb5NBEHImZ6V7P6+udRJuH8VbMEnS0H8/pSqQrg82OoQQ2fPpAk6G1hkjqoCv5s/Yr",
|
||||
64);
|
||||
} else {
|
||||
name = "2^1119 + 53";
|
||||
mp_set(&a,1u);
|
||||
mp_mul_2d(&a,1119,&a);
|
||||
mp_add_d(&a,53,&a);
|
||||
}
|
||||
cnt = mp_prime_rabin_miller_trials(mp_count_bits(&a));
|
||||
ix = -cnt;
|
||||
for (; cnt >= ix; cnt += ix) {
|
||||
rr = 0u;
|
||||
tt = UINT64_MAX;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_prime_is_prime(&a, cnt, &n));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
if ((m == 0) && (n == MP_YES)) {
|
||||
printf("Arnault's pseudoprime is not prime but mp_prime_is_prime says it is.\n");
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
} while (++rr < 100u);
|
||||
printf("Prime-check\t%s(%2d) => %9" PRIu64 "/sec, %9" PRIu64 " cycles\n",
|
||||
name, cnt, CLK_PER_SEC / tt, tt);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
log = FOPEN("logs/add.log", "w");
|
||||
for (cnt = 8; cnt <= 128; cnt += 8) {
|
||||
SLEEP;
|
||||
|
153
doc/bn.tex
153
doc/bn.tex
@ -152,7 +152,7 @@ myprng | mtest/mtest | test
|
||||
|
||||
This will output a row of numbers that are increasing. Each column is a different test (such as addition, multiplication, etc)
|
||||
that is being performed. The numbers represent how many times the test was invoked. If an error is detected the program
|
||||
will exit with a dump of the relevent numbers it was working with.
|
||||
will exit with a dump of the relevant numbers it was working with.
|
||||
|
||||
\section{Build Configuration}
|
||||
LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''.
|
||||
@ -291,7 +291,7 @@ exponentiations. It depends largely on the processor, compiler and the moduli b
|
||||
|
||||
Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern. However,
|
||||
on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
|
||||
that is very flexible, complete and performs well in resource contrained environments. Fast RSA for example can
|
||||
that is very flexible, complete and performs well in resource constrained environments. Fast RSA for example can
|
||||
be performed with as little as 8KB of ram for data (again depending on build options).
|
||||
|
||||
\chapter{Getting Started with LibTomMath}
|
||||
@ -693,7 +693,7 @@ int mp_count_bits(const mp_int *a);
|
||||
|
||||
|
||||
\section{Small Constants}
|
||||
Setting mp\_ints to small constants is a relatively common operation. To accomodate these instances there are two
|
||||
Setting mp\_ints to small constants is a relatively common operation. To accommodate these instances there are two
|
||||
small constant assignment functions. The first function is used to set a single digit constant while the second sets
|
||||
an ISO C style ``unsigned long'' constant. The reason for both functions is efficiency. Setting a single digit is quick but the
|
||||
domain of a digit can change (it's always at least $0 \ldots 127$).
|
||||
@ -797,7 +797,7 @@ number == 654321
|
||||
int mp_set_long (mp_int * a, unsigned long b);
|
||||
\end{alltt}
|
||||
|
||||
This will assign the value of the platform-dependant sized variable $b$ to the mp\_int $a$.
|
||||
This will assign the value of the platform-dependent sized variable $b$ to the mp\_int $a$.
|
||||
|
||||
To get the ``unsigned long'' copy of an mp\_int the following function can be used.
|
||||
|
||||
@ -1222,6 +1222,15 @@ int mp_tc_xor (mp_int * a, mp_int * b, mp_int * c);
|
||||
The compute $c = a \odot b$ as above if both $a$ and $b$ are positive, negative values are converted into their two-complement representation first. This can be used to implement arbitrary-precision two-complement integers together with the arithmetic right-shift at page \ref{arithrightshift}.
|
||||
|
||||
|
||||
\subsection{Bit Picking}
|
||||
\index{mp\_get\_bit}
|
||||
\begin{alltt}
|
||||
int mp_get_bit(mp_int *a, int b)
|
||||
\end{alltt}
|
||||
|
||||
Pick a bit: returns \texttt{MP\_YES} if the bit at position $b$ (0-index) is set, that is if it is 1 (one), \texttt{MP\_NO}
|
||||
if the bit is 0 (zero) and \texttt{MP\_VAL} if $b < 0$.
|
||||
|
||||
\section{Addition and Subtraction}
|
||||
|
||||
To compute an addition or subtraction the following two functions can be used.
|
||||
@ -1613,9 +1622,9 @@ a single final reduction to correct for the normalization and the fast reduction
|
||||
|
||||
For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
|
||||
|
||||
\section{Restricted Dimminished Radix}
|
||||
\section{Restricted Diminished Radix}
|
||||
|
||||
``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
|
||||
``Diminished Radix'' reduction refers to reduction with respect to moduli that are amenable to simple
|
||||
digit shifting and small multiplications. In this case the ``restricted'' variant refers to moduli of the
|
||||
form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).
|
||||
|
||||
@ -1636,8 +1645,8 @@ int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
|
||||
\end{alltt}
|
||||
|
||||
This reduces $a$ in place modulo $b$ with the pre--computed value $mp$. $b$ must be of a restricted
|
||||
dimminished radix form and $a$ must be in the range $0 \le a < b^2$. Dimminished radix reductions are
|
||||
much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.
|
||||
diminished radix form and $a$ must be in the range $0 \le a < b^2$. Diminished radix reductions are
|
||||
much faster than both Barrett and Montgomery reductions as they have a much lower asymptotic running time.
|
||||
|
||||
Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
|
||||
BBS cryptographic purposes. This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
|
||||
@ -1646,7 +1655,7 @@ primes are acceptable.
|
||||
Note that unlike Montgomery reduction there is no normalization process. The result of this function is
|
||||
equal to the correct residue.
|
||||
|
||||
\section{Unrestricted Dimminshed Radix}
|
||||
\section{Unrestricted Diminished Radix}
|
||||
|
||||
Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the
|
||||
form $2^k - p$ for $0 < p < \beta$. In this sense the unrestricted reductions are more flexible as they
|
||||
@ -1731,8 +1740,8 @@ $X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \ver
|
||||
$gcd(G, P) = 1$.
|
||||
|
||||
This function is actually a shell around the two internal exponentiation functions. This routine will automatically
|
||||
detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used. Generally
|
||||
moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations. Followed by Montgomery
|
||||
detect when Barrett, Montgomery, Restricted and Unrestricted Diminished Radix based exponentiation can be used. Generally
|
||||
moduli of the a ``restricted diminished radix'' form lead to the fastest modular exponentiations. Followed by Montgomery
|
||||
and the other two algorithms.
|
||||
|
||||
\section{Modulus a Power of Two}
|
||||
@ -1815,6 +1824,92 @@ require ten tests whereas a 1024-bit number would only require four tests.
|
||||
|
||||
You should always still perform a trial division before a Miller-Rabin test though.
|
||||
|
||||
A small table, broke in two for typographical reasons, with the number of rounds of Miller-Rabin tests is shown below.
|
||||
The first column is the number of bits $b$ in the prime $p = 2^b$, the numbers in the first row represent the
|
||||
probability that the number that all of the Miller-Rabin tests deemed a pseudoprime is actually a composite. There is a deterministic test for numbers smaller than $2^{80}$.
|
||||
|
||||
\begin{table}[h]
|
||||
\begin{center}
|
||||
\begin{tabular}{c c c c c c c}
|
||||
\textbf{bits} & $\mathbf{2^{-80}}$ & $\mathbf{2^{-96}}$ & $\mathbf{2^{-112}}$ & $\mathbf{2^{-128}}$ & $\mathbf{2^{-160}}$ & $\mathbf{2^{-192}}$ \\
|
||||
80 & 31 & 39 & 47 & 55 & 71 & 87 \\
|
||||
96 & 29 & 37 & 45 & 53 & 69 & 85 \\
|
||||
128 & 24 & 32 & 40 & 48 & 64 & 80 \\
|
||||
160 & 19 & 27 & 35 & 43 & 59 & 75 \\
|
||||
192 & 15 & 21 & 29 & 37 & 53 & 69 \\
|
||||
256 & 10 & 15 & 20 & 27 & 43 & 59 \\
|
||||
384 & 7 & 9 & 12 & 16 & 25 & 38 \\
|
||||
512 & 5 & 7 & 9 & 12 & 18 & 26 \\
|
||||
768 & 4 & 5 & 6 & 8 & 11 & 16 \\
|
||||
1024 & 3 & 4 & 5 & 6 & 9 & 12 \\
|
||||
1536 & 2 & 3 & 3 & 4 & 6 & 8 \\
|
||||
2048 & 2 & 2 & 3 & 3 & 4 & 6 \\
|
||||
3072 & 1 & 2 & 2 & 2 & 3 & 4 \\
|
||||
4096 & 1 & 1 & 2 & 2 & 2 & 3 \\
|
||||
6144 & 1 & 1 & 1 & 1 & 2 & 2 \\
|
||||
8192 & 1 & 1 & 1 & 1 & 2 & 2 \\
|
||||
12288 & 1 & 1 & 1 & 1 & 1 & 1 \\
|
||||
16384 & 1 & 1 & 1 & 1 & 1 & 1 \\
|
||||
24576 & 1 & 1 & 1 & 1 & 1 & 1 \\
|
||||
32768 & 1 & 1 & 1 & 1 & 1 & 1
|
||||
\end{tabular}
|
||||
\caption{ Number of Miller-Rabin rounds. Part I } \label{table:millerrabinrunsp1}
|
||||
\end{center}
|
||||
\end{table}
|
||||
\newpage
|
||||
\begin{table}[h]
|
||||
\begin{center}
|
||||
\begin{tabular}{c c c c c c c c}
|
||||
\textbf{bits} &$\mathbf{2^{-224}}$ & $\mathbf{2^{-256}}$ & $\mathbf{2^{-288}}$ & $\mathbf{2^{-320}}$ & $\mathbf{2^{-352}}$ & $\mathbf{2^{-384}}$ & $\mathbf{2^{-416}}$\\
|
||||
80 & 103 & 119 & 135 & 151 & 167 & 183 & 199 \\
|
||||
96 & 101 & 117 & 133 & 149 & 165 & 181 & 197 \\
|
||||
128 & 96 & 112 & 128 & 144 & 160 & 176 & 192 \\
|
||||
160 & 91 & 107 & 123 & 139 & 155 & 171 & 187 \\
|
||||
192 & 85 & 101 & 117 & 133 & 149 & 165 & 181 \\
|
||||
256 & 75 & 91 & 107 & 123 & 139 & 155 & 171 \\
|
||||
384 & 54 & 70 & 86 & 102 & 118 & 134 & 150 \\
|
||||
512 & 36 & 49 & 65 & 81 & 97 & 113 & 129 \\
|
||||
768 & 22 & 29 & 37 & 47 & 58 & 70 & 86 \\
|
||||
1024 & 16 & 21 & 26 & 33 & 40 & 48 & 58 \\
|
||||
1536 & 10 & 13 & 17 & 21 & 25 & 30 & 35 \\
|
||||
2048 & 8 & 10 & 13 & 15 & 18 & 22 & 26 \\
|
||||
3072 & 5 & 7 & 8 & 10 & 12 & 14 & 17 \\
|
||||
4096 & 4 & 5 & 6 & 8 & 9 & 11 & 12 \\
|
||||
6144 & 3 & 4 & 4 & 5 & 6 & 7 & 8 \\
|
||||
8192 & 2 & 3 & 3 & 4 & 5 & 6 & 6 \\
|
||||
12288 & 2 & 2 & 2 & 3 & 3 & 4 & 4 \\
|
||||
16384 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \\
|
||||
24576 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
|
||||
32768 & 1 & 1 & 1 & 1 & 2 & 2 & 2
|
||||
\end{tabular}
|
||||
\caption{ Number of Miller-Rabin rounds. Part II } \label{table:millerrabinrunsp2}
|
||||
\end{center}
|
||||
\end{table}
|
||||
|
||||
Determining the probability needed to pick the right column is a bit harder. Fips 186.4, for example has $2^{-80}$ for $512$ bit large numbers, $2^{-112}$ for $1024$ bits, and $2^{128}$ for $1536$ bits. It can be seen in table \ref{table:millerrabinrunsp1} that those combinations follow the diagonal from $(512,2^{-80})$ downwards and to the right to gain a lower probabilty of getting a composite declared a pseudoprime for the same amount of work or less.
|
||||
|
||||
If this version of the library has the strong Lucas-Selfridge and/or the Frobenius-Underwood test implemented only one or two rounds of the Miller-Rabin test with a random base is necesssary for numbers larger than or equal to $1024$ bits.
|
||||
|
||||
|
||||
\section{Strong Lucas-Selfridge Test}
|
||||
\index{mp\_prime\_strong\_lucas\_selfridge}
|
||||
\begin{alltt}
|
||||
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
|
||||
\end{alltt}
|
||||
Performs a strong Lucas-Selfridge test. The strong Lucas-Selfridge test together with the Rabin-Miler test with bases $2$ and $3$ resemble the BPSW test. The single internal use is a compile-time option in \texttt{mp\_prime\_is\_prime} and can be excluded
|
||||
from the Libtommath build if not needed.
|
||||
|
||||
\section{Frobenius (Underwood) Test}
|
||||
\index{mp\_prime\_frobenius\_underwood}
|
||||
\begin{alltt}
|
||||
int mp_prime_frobenius_underwood(const mp_int *N, int *result)
|
||||
\end{alltt}
|
||||
Performs the variant of the Frobenius test as described by Paul Underwood. The single internal use is in
|
||||
\texttt{mp\_prime\_is\_prime} for \texttt{MP\_8BIT} only but can be included at build-time for all other sizes
|
||||
if the preprocessor macro \texttt{LTM\_USE\_FROBENIUS\_TEST} is defined.
|
||||
|
||||
It returns \texttt{MP\_ITER} if the number of iterations is exhausted, assumes a composite as the input and sets \texttt{result} accordingly. This will reduce the set of available pseudoprimes by a very small amount: test with large datasets (more than $10^{10}$ numbers, both randomly chosen and sequences of odd numbers with a random start point) found only 31 (thirty-one) numbers with $a > 120$ and none at all with just an additional simple check for divisors $d < 2^8$.
|
||||
|
||||
\section{Primality Testing}
|
||||
Testing if a number is a square can be done a bit faster than just by calculating the square root. It is used by the primality testing function described below.
|
||||
\index{mp\_is\_square}
|
||||
@ -1827,16 +1922,29 @@ int mp_is_square(const mp_int *arg, int *ret);
|
||||
\begin{alltt}
|
||||
int mp_prime_is_prime (mp_int * a, int t, int *result)
|
||||
\end{alltt}
|
||||
This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.
|
||||
If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero. Note that $t$ is bounded by
|
||||
$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
|
||||
This will perform a trial division followed by two rounds of Miller-Rabin with bases 2 and 3 and a Lucas-Selfridge test. The Lucas-Selfridge test is replaced with a Frobenius-Underwood for \texttt{MP\_8BIT}. The Frobenius-Underwood test for all other sizes is available as a compile-time option with the preprocessor macro \texttt{LTM\_USE\_FROBENIUS\_TEST}. See file
|
||||
\texttt{bn\_mp\_prime\_is\_prime.c} for the necessary details. It shall be noted that both functions are much slower than
|
||||
the Miller-Rabin test and if speed is an essential issue, the macro \texttt{LTM\_USE\_FIPS\_ONLY} switches both functions, the Frobenius-Underwood test and the Lucas-Selfridge test off and their code will not even be compiled into the library.
|
||||
|
||||
If $t$ is set to a positive value $t$ additional rounds of the Miller-Rabin test with random bases will be performed to allow for Fips 186.4 (vid.~p.~126ff) compliance. The function \texttt{mp\_prime\_rabin\_miller\_trials} can be used to determine the number of rounds. It is vital that the function \texttt{mp\_rand()} has a cryptographically strong random number generator available.
|
||||
|
||||
One Miller-Rabin tests with a random base will be run automatically, so by setting $t$ to a positive value this function will run $t + 1$ Miller-Rabin tests with random bases.
|
||||
|
||||
If $t$ is set to a negative value the test will run the deterministic Miller-Rabin test for the primes up to
|
||||
$3317044064679887385961981$. That limit has to be checked by the caller. If $-t > 13$ than $-t - 13$ additional rounds of the
|
||||
Miller-Rabin test will be performed but note that $-t$ is bounded by $1 \le -t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number
|
||||
of primes in the prime number table (by default this is $256$) and the first 13 primes have already been used. It will return
|
||||
\texttt{MP\_VAL} in case of$-t > PRIME\_SIZE$.
|
||||
|
||||
If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero.
|
||||
|
||||
\section{Next Prime}
|
||||
\index{mp\_prime\_next\_prime}
|
||||
\begin{alltt}
|
||||
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
|
||||
\end{alltt}
|
||||
This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests. Set $bbs\_style$ to one if you
|
||||
This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests but see the documentation for
|
||||
mp\_prime\_is\_prime for details regarding the use of the argument $t$. Set $bbs\_style$ to one if you
|
||||
want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.
|
||||
|
||||
\section{Random Primes}
|
||||
@ -1846,7 +1954,8 @@ int mp_prime_random(mp_int *a, int t, int size, int bbs,
|
||||
ltm_prime_callback cb, void *dat)
|
||||
\end{alltt}
|
||||
This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
|
||||
$t$ rounds of tests. The ``ltm\_prime\_callback'' is a typedef for
|
||||
$t$ rounds of tests but see the documentation for mp\_prime\_is\_prime for details regarding the use of the argument $t$.
|
||||
The ``ltm\_prime\_callback'' is a typedef for
|
||||
|
||||
\begin{alltt}
|
||||
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
|
||||
@ -2016,7 +2125,7 @@ This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that
|
||||
a \cdot U1 + b \cdot U2 = U3
|
||||
\end{equation}
|
||||
|
||||
Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.
|
||||
Any of the U1/U2/U3 parameters can be set to \textbf{NULL} if they are not desired.
|
||||
|
||||
\section{Greatest Common Divisor}
|
||||
\index{mp\_gcd}
|
||||
@ -2042,6 +2151,14 @@ symbol. The result is stored in $c$ and can take on one of three values $\lbrac
|
||||
then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$. The result will be $0$ if $a$ divides $p$
|
||||
and the result will be $1$ if $a$ is a quadratic residue modulo $p$.
|
||||
|
||||
\section{Kronecker Symbol}
|
||||
\index{mp\_kronecker}
|
||||
\begin{alltt}
|
||||
int mp_kronecker (mp_int * a, mp_int * p, int *c)
|
||||
\end{alltt}
|
||||
Extension of the Jacoby symbol to all $\lbrace a, p \rbrace \in \mathbb{Z}$ .
|
||||
|
||||
|
||||
\section{Modular square root}
|
||||
\index{mp\_sqrtmod\_prime}
|
||||
\begin{alltt}
|
||||
@ -2087,6 +2204,7 @@ These work like the full mp\_int capable variants except the second parameter $b
|
||||
functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
|
||||
an entire mp\_int to store a number like $1$ or $2$.
|
||||
|
||||
|
||||
The division by three can be made faster by replacing the division with a multiplication by the multiplicative inverse of three.
|
||||
|
||||
\index{mp\_div\_3}
|
||||
@ -2191,7 +2309,6 @@ Other macros which are either shortcuts to normal functions or just other names
|
||||
\end{alltt}
|
||||
|
||||
|
||||
|
||||
\input{bn.ind}
|
||||
|
||||
\end{document}
|
||||
|
@ -37,7 +37,7 @@ top:
|
||||
if ((clock() - t1) > CLOCKS_PER_SEC) {
|
||||
printf(".");
|
||||
fflush(stdout);
|
||||
/* sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC); */
|
||||
/* sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC); */
|
||||
t1 = clock();
|
||||
}
|
||||
|
||||
|
@ -472,6 +472,10 @@
|
||||
RelativePath="bn_mp_gcd.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="bn_mp_get_bit.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="bn_mp_get_double.c"
|
||||
>
|
||||
@ -544,6 +548,10 @@
|
||||
RelativePath="bn_mp_karatsuba_sqr.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="bn_mp_kronecker.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="bn_mp_lcm.c"
|
||||
>
|
||||
@ -616,6 +624,10 @@
|
||||
RelativePath="bn_mp_prime_fermat.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="bn_mp_prime_frobenius_underwood.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="bn_mp_prime_is_divisible.c"
|
||||
>
|
||||
@ -640,6 +652,10 @@
|
||||
RelativePath="bn_mp_prime_random_ex.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="bn_mp_prime_strong_lucas_selfridge.c"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="bn_mp_radix_size.c"
|
||||
>
|
||||
|
33
makefile
33
makefile
@ -32,25 +32,26 @@ bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp
|
||||
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \
|
||||
bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \
|
||||
bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \
|
||||
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o \
|
||||
bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o bn_mp_init.o \
|
||||
bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
|
||||
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \
|
||||
bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \
|
||||
bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
|
||||
bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \
|
||||
bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
|
||||
bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
|
||||
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
|
||||
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \
|
||||
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o bn_mp_prime_is_prime.o \
|
||||
bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o \
|
||||
bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o \
|
||||
bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o \
|
||||
bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o \
|
||||
bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o \
|
||||
bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o \
|
||||
bn_mp_tc_or.o bn_mp_tc_xor.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o \
|
||||
bn_mp_to_unsigned_bin_n.o bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o \
|
||||
bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o \
|
||||
bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o
|
||||
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \
|
||||
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
|
||||
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \
|
||||
bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \
|
||||
bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \
|
||||
bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \
|
||||
bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \
|
||||
bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \
|
||||
bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \
|
||||
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \
|
||||
bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \
|
||||
bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o
|
||||
|
||||
#END_INS
|
||||
|
||||
|
@ -35,25 +35,26 @@ bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp
|
||||
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \
|
||||
bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \
|
||||
bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \
|
||||
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o \
|
||||
bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o bn_mp_init.o \
|
||||
bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
|
||||
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \
|
||||
bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \
|
||||
bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
|
||||
bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \
|
||||
bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
|
||||
bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
|
||||
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
|
||||
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \
|
||||
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o bn_mp_prime_is_prime.o \
|
||||
bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o \
|
||||
bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o \
|
||||
bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o \
|
||||
bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o \
|
||||
bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o \
|
||||
bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o \
|
||||
bn_mp_tc_or.o bn_mp_tc_xor.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o \
|
||||
bn_mp_to_unsigned_bin_n.o bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o \
|
||||
bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o \
|
||||
bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o
|
||||
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \
|
||||
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
|
||||
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \
|
||||
bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \
|
||||
bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \
|
||||
bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \
|
||||
bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \
|
||||
bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \
|
||||
bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \
|
||||
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \
|
||||
bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \
|
||||
bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o
|
||||
|
||||
HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h
|
||||
|
||||
|
@ -27,25 +27,26 @@ bn_mp_addmod.obj bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi
|
||||
bn_mp_cmp_mag.obj bn_mp_cnt_lsb.obj bn_mp_complement.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_div.obj \
|
||||
bn_mp_div_2.obj bn_mp_div_2d.obj bn_mp_div_3.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj \
|
||||
bn_mp_dr_setup.obj bn_mp_exch.obj bn_mp_export.obj bn_mp_expt_d.obj bn_mp_expt_d_ex.obj bn_mp_exptmod.obj \
|
||||
bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_double.obj \
|
||||
bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj bn_mp_grow.obj bn_mp_import.obj bn_mp_init.obj \
|
||||
bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_init_size.obj \
|
||||
bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_bit.obj \
|
||||
bn_mp_get_double.obj bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj bn_mp_grow.obj bn_mp_import.obj \
|
||||
bn_mp_init.obj bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_init_size.obj \
|
||||
bn_mp_invmod.obj bn_mp_invmod_slow.obj bn_mp_is_square.obj bn_mp_jacobi.obj bn_mp_karatsuba_mul.obj \
|
||||
bn_mp_karatsuba_sqr.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod.obj bn_mp_mod_2d.obj bn_mp_mod_d.obj \
|
||||
bn_mp_karatsuba_sqr.obj bn_mp_kronecker.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod.obj bn_mp_mod_2d.obj bn_mp_mod_d.obj \
|
||||
bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj bn_mp_montgomery_setup.obj bn_mp_mul.obj \
|
||||
bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_n_root.obj bn_mp_n_root_ex.obj bn_mp_neg.obj \
|
||||
bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_is_divisible.obj bn_mp_prime_is_prime.obj \
|
||||
bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj bn_mp_prime_rabin_miller_trials.obj \
|
||||
bn_mp_prime_random_ex.obj bn_mp_radix_size.obj bn_mp_radix_smap.obj bn_mp_rand.obj bn_mp_read_radix.obj \
|
||||
bn_mp_read_signed_bin.obj bn_mp_read_unsigned_bin.obj bn_mp_reduce.obj bn_mp_reduce_2k.obj bn_mp_reduce_2k_l.obj \
|
||||
bn_mp_reduce_2k_setup.obj bn_mp_reduce_2k_setup_l.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj \
|
||||
bn_mp_reduce_setup.obj bn_mp_rshd.obj bn_mp_set.obj bn_mp_set_double.obj bn_mp_set_int.obj bn_mp_set_long.obj \
|
||||
bn_mp_set_long_long.obj bn_mp_shrink.obj bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj bn_mp_sqrt.obj \
|
||||
bn_mp_sqrtmod_prime.obj bn_mp_sub.obj bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_tc_and.obj bn_mp_tc_div_2d.obj \
|
||||
bn_mp_tc_or.obj bn_mp_tc_xor.obj bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin.obj \
|
||||
bn_mp_to_unsigned_bin_n.obj bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj \
|
||||
bn_mp_unsigned_bin_size.obj bn_mp_xor.obj bn_mp_zero.obj bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj \
|
||||
bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj bn_s_mp_mul_high_digs.obj bn_s_mp_sqr.obj bn_s_mp_sub.obj bncore.obj
|
||||
bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_frobenius_underwood.obj bn_mp_prime_is_divisible.obj \
|
||||
bn_mp_prime_is_prime.obj bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj \
|
||||
bn_mp_prime_rabin_miller_trials.obj bn_mp_prime_random_ex.obj bn_mp_prime_strong_lucas_selfridge.obj \
|
||||
bn_mp_radix_size.obj bn_mp_radix_smap.obj bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj \
|
||||
bn_mp_read_unsigned_bin.obj bn_mp_reduce.obj bn_mp_reduce_2k.obj bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj \
|
||||
bn_mp_reduce_2k_setup_l.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj \
|
||||
bn_mp_set.obj bn_mp_set_double.obj bn_mp_set_int.obj bn_mp_set_long.obj bn_mp_set_long_long.obj bn_mp_shrink.obj \
|
||||
bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj bn_mp_sub.obj \
|
||||
bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_tc_and.obj bn_mp_tc_div_2d.obj bn_mp_tc_or.obj bn_mp_tc_xor.obj \
|
||||
bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj \
|
||||
bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj bn_mp_unsigned_bin_size.obj bn_mp_xor.obj \
|
||||
bn_mp_zero.obj bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj \
|
||||
bn_s_mp_mul_high_digs.obj bn_s_mp_sqr.obj bn_s_mp_sub.obj bncore.obj
|
||||
|
||||
HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h
|
||||
|
||||
|
@ -28,25 +28,26 @@ bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp
|
||||
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \
|
||||
bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \
|
||||
bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \
|
||||
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o \
|
||||
bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o bn_mp_init.o \
|
||||
bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
|
||||
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \
|
||||
bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \
|
||||
bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
|
||||
bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \
|
||||
bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
|
||||
bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
|
||||
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
|
||||
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \
|
||||
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o bn_mp_prime_is_prime.o \
|
||||
bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o \
|
||||
bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o \
|
||||
bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o \
|
||||
bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o \
|
||||
bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o \
|
||||
bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o \
|
||||
bn_mp_tc_or.o bn_mp_tc_xor.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o \
|
||||
bn_mp_to_unsigned_bin_n.o bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o \
|
||||
bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o \
|
||||
bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o
|
||||
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \
|
||||
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
|
||||
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \
|
||||
bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \
|
||||
bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \
|
||||
bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \
|
||||
bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \
|
||||
bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \
|
||||
bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \
|
||||
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \
|
||||
bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \
|
||||
bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o
|
||||
|
||||
#END_INS
|
||||
|
||||
|
@ -36,25 +36,26 @@ bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp
|
||||
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_complement.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div.o \
|
||||
bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o \
|
||||
bn_mp_dr_setup.o bn_mp_exch.o bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o \
|
||||
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_double.o \
|
||||
bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o bn_mp_init.o \
|
||||
bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
|
||||
bn_mp_exptmod_fast.o bn_mp_exteuclid.o bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_bit.o \
|
||||
bn_mp_get_double.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o bn_mp_grow.o bn_mp_import.o \
|
||||
bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o bn_mp_init_set_int.o bn_mp_init_size.o \
|
||||
bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o bn_mp_jacobi.o bn_mp_karatsuba_mul.o \
|
||||
bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
|
||||
bn_mp_karatsuba_sqr.o bn_mp_kronecker.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod.o bn_mp_mod_2d.o bn_mp_mod_d.o \
|
||||
bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o bn_mp_montgomery_setup.o bn_mp_mul.o \
|
||||
bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_neg.o \
|
||||
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o bn_mp_prime_is_prime.o \
|
||||
bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o bn_mp_prime_rabin_miller_trials.o \
|
||||
bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o \
|
||||
bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o \
|
||||
bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o \
|
||||
bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o \
|
||||
bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o \
|
||||
bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o \
|
||||
bn_mp_tc_or.o bn_mp_tc_xor.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o \
|
||||
bn_mp_to_unsigned_bin_n.o bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o \
|
||||
bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o \
|
||||
bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o
|
||||
bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_frobenius_underwood.o bn_mp_prime_is_divisible.o \
|
||||
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
|
||||
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_prime_strong_lucas_selfridge.o \
|
||||
bn_mp_radix_size.o bn_mp_radix_smap.o bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o \
|
||||
bn_mp_read_unsigned_bin.o bn_mp_reduce.o bn_mp_reduce_2k.o bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o \
|
||||
bn_mp_reduce_2k_setup_l.o bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o \
|
||||
bn_mp_set.o bn_mp_set_double.o bn_mp_set_int.o bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o \
|
||||
bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o \
|
||||
bn_mp_sub_d.o bn_mp_submod.o bn_mp_tc_and.o bn_mp_tc_div_2d.o bn_mp_tc_or.o bn_mp_tc_xor.o \
|
||||
bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o \
|
||||
bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o \
|
||||
bn_mp_zero.o bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o \
|
||||
bn_s_mp_mul_high_digs.o bn_s_mp_sqr.o bn_s_mp_sub.o bncore.o
|
||||
|
||||
HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h
|
||||
|
||||
|
@ -293,7 +293,7 @@ int main(int argc, char *argv[])
|
||||
rand_num2(&a);
|
||||
rand_num2(&b);
|
||||
rand_num2(&c);
|
||||
/* if (c.dp[0]&1) mp_add_d(&c, 1, &c); */
|
||||
/* if (c.dp[0]&1) mp_add_d(&c, 1, &c); */
|
||||
a.sign = b.sign = c.sign = 0;
|
||||
mp_exptmod(&a, &b, &c, &d);
|
||||
printf("expt\n");
|
||||
|
@ -66,6 +66,9 @@ _die()
|
||||
exit 128
|
||||
else
|
||||
echo "assuming timeout while running test - continue"
|
||||
local _tail=""
|
||||
which tail >/dev/null && _tail="tail -n 1 test_${suffix}.log" && \
|
||||
echo "last line of test_"${suffix}".log was:" && $_tail && echo ""
|
||||
ret=$(( $ret + 1 ))
|
||||
fi
|
||||
}
|
||||
|
30
tommath.h
30
tommath.h
@ -115,6 +115,7 @@ typedef mp_digit mp_min_u32;
|
||||
#define MP_MEM -2 /* out of mem */
|
||||
#define MP_VAL -3 /* invalid input */
|
||||
#define MP_RANGE MP_VAL
|
||||
#define MP_ITER -4 /* Max. iterations reached */
|
||||
|
||||
#define MP_YES 1 /* yes response */
|
||||
#define MP_NO 0 /* no response */
|
||||
@ -298,6 +299,11 @@ int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
/* c = a AND b */
|
||||
int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
/* Checks the bit at position b and returns MP_YES
|
||||
if the bit is 1, MP_NO if it is 0 and MP_VAL
|
||||
in case of error */
|
||||
int mp_get_bit(const mp_int *a, int b);
|
||||
|
||||
/* c = a XOR b (two complement) */
|
||||
int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c);
|
||||
|
||||
@ -417,6 +423,9 @@ int mp_is_square(const mp_int *arg, int *ret);
|
||||
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
|
||||
int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
|
||||
|
||||
/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
|
||||
int mp_kronecker(const mp_int *a, const mp_int *p, int *c);
|
||||
|
||||
/* used to setup the Barrett reduction for a given modulus b */
|
||||
int mp_reduce_setup(mp_int *a, const mp_int *b);
|
||||
|
||||
@ -498,10 +507,27 @@ int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
|
||||
*/
|
||||
int mp_prime_rabin_miller_trials(int size);
|
||||
|
||||
/* performs t rounds of Miller-Rabin on "a" using the first
|
||||
* t prime bases. Also performs an initial sieve of trial
|
||||
/* performs one strong Lucas-Selfridge test of "a".
|
||||
* Sets result to 0 if composite or 1 if probable prime
|
||||
*/
|
||||
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result);
|
||||
|
||||
/* performs one Frobenius test of "a" as described by Paul Underwood.
|
||||
* Sets result to 0 if composite or 1 if probable prime
|
||||
*/
|
||||
int mp_prime_frobenius_underwood(const mp_int *N, int *result);
|
||||
|
||||
/* performs t random rounds of Miller-Rabin on "a" additional to
|
||||
* bases 2 and 3. Also performs an initial sieve of trial
|
||||
* division. Determines if "a" is prime with probability
|
||||
* of error no more than (1/4)**t.
|
||||
* Both a strong Lucas-Selfridge to complete the BPSW test
|
||||
* and a separate Frobenius test are available at compile time.
|
||||
* With t<0 a deterministic test is run for primes up to
|
||||
* 318665857834031151167461. With t<13 (abs(t)-13) additional
|
||||
* tests with sequential small primes are run starting at 43.
|
||||
* Is Fips 186.4 compliant if called with t as computed by
|
||||
* mp_prime_rabin_miller_trials();
|
||||
*
|
||||
* Sets result to 1 if probably prime, 0 otherwise
|
||||
*/
|
||||
|
103
tommath_class.h
103
tommath_class.h
@ -10,6 +10,7 @@
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*/
|
||||
|
||||
#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))
|
||||
#if defined(LTM2)
|
||||
# define LTM3
|
||||
@ -60,6 +61,7 @@
|
||||
# define BN_MP_FREAD_C
|
||||
# define BN_MP_FWRITE_C
|
||||
# define BN_MP_GCD_C
|
||||
# define BN_MP_GET_BIT_C
|
||||
# define BN_MP_GET_DOUBLE_C
|
||||
# define BN_MP_GET_INT_C
|
||||
# define BN_MP_GET_LONG_C
|
||||
@ -78,6 +80,7 @@
|
||||
# define BN_MP_JACOBI_C
|
||||
# define BN_MP_KARATSUBA_MUL_C
|
||||
# define BN_MP_KARATSUBA_SQR_C
|
||||
# define BN_MP_KRONECKER_C
|
||||
# define BN_MP_LCM_C
|
||||
# define BN_MP_LSHD_C
|
||||
# define BN_MP_MOD_C
|
||||
@ -96,12 +99,14 @@
|
||||
# define BN_MP_NEG_C
|
||||
# define BN_MP_OR_C
|
||||
# define BN_MP_PRIME_FERMAT_C
|
||||
# define BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
|
||||
# define BN_MP_PRIME_IS_DIVISIBLE_C
|
||||
# define BN_MP_PRIME_IS_PRIME_C
|
||||
# define BN_MP_PRIME_MILLER_RABIN_C
|
||||
# define BN_MP_PRIME_NEXT_PRIME_C
|
||||
# define BN_MP_PRIME_RABIN_MILLER_TRIALS_C
|
||||
# define BN_MP_PRIME_RANDOM_EX_C
|
||||
# define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
|
||||
# define BN_MP_RADIX_SIZE_C
|
||||
# define BN_MP_RADIX_SMAP_C
|
||||
# define BN_MP_RAND_C
|
||||
@ -174,6 +179,7 @@
|
||||
# define BN_MP_CMP_C
|
||||
# define BN_MP_CMP_D_C
|
||||
# define BN_MP_ADD_C
|
||||
# define BN_MP_CMP_MAG_C
|
||||
# define BN_MP_EXCH_C
|
||||
# define BN_MP_CLEAR_MULTI_C
|
||||
#endif
|
||||
@ -439,6 +445,10 @@
|
||||
# define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_GET_BIT_C)
|
||||
# define BN_MP_ISZERO_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_GET_DOUBLE_C)
|
||||
# define BN_MP_ISNEG_C
|
||||
#endif
|
||||
@ -527,14 +537,9 @@
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_JACOBI_C)
|
||||
# define BN_MP_KRONECKER_C
|
||||
# define BN_MP_ISNEG_C
|
||||
# define BN_MP_CMP_D_C
|
||||
# define BN_MP_ISZERO_C
|
||||
# define BN_MP_INIT_COPY_C
|
||||
# define BN_MP_CNT_LSB_C
|
||||
# define BN_MP_DIV_2D_C
|
||||
# define BN_MP_MOD_C
|
||||
# define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_KARATSUBA_MUL_C)
|
||||
@ -559,6 +564,18 @@
|
||||
# define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_KRONECKER_C)
|
||||
# define BN_MP_ISZERO_C
|
||||
# define BN_MP_ISEVEN_C
|
||||
# define BN_MP_INIT_COPY_C
|
||||
# define BN_MP_CNT_LSB_C
|
||||
# define BN_MP_DIV_2D_C
|
||||
# define BN_MP_CMP_D_C
|
||||
# define BN_MP_COPY_C
|
||||
# define BN_MP_MOD_C
|
||||
# define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_LCM_C)
|
||||
# define BN_MP_INIT_MULTI_C
|
||||
# define BN_MP_GCD_C
|
||||
@ -684,16 +701,49 @@
|
||||
# define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_PRIME_FROBENIUS_UNDERWOOD_C)
|
||||
# define BN_MP_PRIME_IS_PRIME_C
|
||||
# define BN_MP_INIT_MULTI_C
|
||||
# define BN_MP_SET_LONG_C
|
||||
# define BN_MP_SQR_C
|
||||
# define BN_MP_SUB_D_C
|
||||
# define BN_MP_KRONECKER_C
|
||||
# define BN_MP_GCD_C
|
||||
# define BN_MP_ADD_D_C
|
||||
# define BN_MP_SET_C
|
||||
# define BN_MP_COUNT_BITS_C
|
||||
# define BN_MP_MUL_2_C
|
||||
# define BN_MP_MUL_D_C
|
||||
# define BN_MP_ADD_C
|
||||
# define BN_MP_MUL_C
|
||||
# define BN_MP_SUB_C
|
||||
# define BN_MP_MOD_C
|
||||
# define BN_MP_GET_BIT_C
|
||||
# define BN_MP_EXCH_C
|
||||
# define BN_MP_ISZERO_C
|
||||
# define BN_MP_CMP_C
|
||||
# define BN_MP_CLEAR_MULTI_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_PRIME_IS_DIVISIBLE_C)
|
||||
# define BN_MP_MOD_D_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_PRIME_IS_PRIME_C)
|
||||
# define BN_MP_ISEVEN_C
|
||||
# define BN_MP_IS_SQUARE_C
|
||||
# define BN_MP_CMP_D_C
|
||||
# define BN_MP_PRIME_IS_DIVISIBLE_C
|
||||
# define BN_MP_INIT_C
|
||||
# define BN_MP_SET_C
|
||||
# define BN_MP_INIT_SET_C
|
||||
# define BN_MP_PRIME_MILLER_RABIN_C
|
||||
# define BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
|
||||
# define BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
|
||||
# define BN_MP_READ_RADIX_C
|
||||
# define BN_MP_CMP_C
|
||||
# define BN_MP_SET_C
|
||||
# define BN_MP_COUNT_BITS_C
|
||||
# define BN_MP_RAND_C
|
||||
# define BN_MP_DIV_2D_C
|
||||
# define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
@ -717,7 +767,7 @@
|
||||
# define BN_MP_MOD_D_C
|
||||
# define BN_MP_INIT_C
|
||||
# define BN_MP_ADD_D_C
|
||||
# define BN_MP_PRIME_MILLER_RABIN_C
|
||||
# define BN_MP_PRIME_IS_PRIME_C
|
||||
# define BN_MP_CLEAR_C
|
||||
#endif
|
||||
|
||||
@ -733,6 +783,37 @@
|
||||
# define BN_MP_ADD_D_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C)
|
||||
# define BN_MP_PRIME_IS_PRIME_C
|
||||
# define BN_MP_MUL_D_C
|
||||
# define BN_MP_MUL_SI_C
|
||||
# define BN_MP_INIT_C
|
||||
# define BN_MP_SET_LONG_C
|
||||
# define BN_MP_MUL_C
|
||||
# define BN_MP_CLEAR_C
|
||||
# define BN_MP_INIT_MULTI_C
|
||||
# define BN_MP_GCD_C
|
||||
# define BN_MP_CMP_D_C
|
||||
# define BN_MP_CMP_C
|
||||
# define BN_MP_KRONECKER_C
|
||||
# define BN_MP_ADD_D_C
|
||||
# define BN_MP_CNT_LSB_C
|
||||
# define BN_MP_DIV_2D_C
|
||||
# define BN_MP_SET_C
|
||||
# define BN_MP_MUL_2_C
|
||||
# define BN_MP_COUNT_BITS_C
|
||||
# define BN_MP_MOD_C
|
||||
# define BN_MP_SQR_C
|
||||
# define BN_MP_SUB_C
|
||||
# define BN_MP_GET_BIT_C
|
||||
# define BN_MP_ADD_C
|
||||
# define BN_MP_ISODD_C
|
||||
# define BN_MP_DIV_2_C
|
||||
# define BN_MP_SUB_D_C
|
||||
# define BN_MP_ISZERO_C
|
||||
# define BN_MP_CLEAR_MULTI_C
|
||||
#endif
|
||||
|
||||
#if defined(BN_MP_RADIX_SIZE_C)
|
||||
# define BN_MP_ISZERO_C
|
||||
# define BN_MP_COUNT_BITS_C
|
||||
@ -1133,8 +1214,8 @@
|
||||
# define LTM_LAST
|
||||
#endif
|
||||
|
||||
#include "tommath_superclass.h"
|
||||
#include "tommath_class.h"
|
||||
#include <tommath_superclass.h>
|
||||
#include <tommath_class.h>
|
||||
#else
|
||||
# define LTM_LAST
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user