Additional input checks and a test for b \cong 0 (mod a) in test_mp_sqrtmod_prime

to go along with it.
This commit is contained in:
czurnieden 2020-08-05 15:18:59 +02:00
parent 44ee82cd34
commit fb305e093d
3 changed files with 43 additions and 20 deletions

View File

@ -707,9 +707,9 @@ static int test_mp_sqrtmod_prime(void)
}; };
static struct mp_sqrtmod_prime_st sqrtmod_prime[] = { static struct mp_sqrtmod_prime_st sqrtmod_prime[] = {
{ 5, 14, 3 }, { 5, 14, 3 }, /* 5 \cong 1 (mod 4) */
{ 7, 9, 4 }, { 7, 9, 4 }, /* 7 \cong 3 (mod 4) */
{ 113, 2, 62 } { 113, 2, 62 } /* 113 \cong 1 (mod 4) */
}; };
int i; int i;
@ -723,6 +723,14 @@ static int test_mp_sqrtmod_prime(void)
DO(mp_sqrtmod_prime(&b, &a, &c)); DO(mp_sqrtmod_prime(&b, &a, &c));
EXPECT(mp_cmp_d(&c, sqrtmod_prime[i].r) == MP_EQ); EXPECT(mp_cmp_d(&c, sqrtmod_prime[i].r) == MP_EQ);
} }
/* Check handling of wrong input (here: modulus is square and cong. 1 mod 4,24 ) */
mp_set_ul(&a, 25);
mp_set_ul(&b, 2);
EXPECT(mp_sqrtmod_prime(&b, &a, &c) == MP_VAL);
/* b \cong 0 (mod a) */
mp_set_ul(&a, 45);
mp_set_ul(&b, 3);
EXPECT(mp_sqrtmod_prime(&b, &a, &c) == MP_VAL);
mp_clear_multi(&a, &b, &c, NULL); mp_clear_multi(&a, &b, &c, NULL);
return EXIT_SUCCESS; return EXIT_SUCCESS;

View File

@ -13,19 +13,23 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
{ {
mp_err err; mp_err err;
int legendre; int legendre;
mp_int t1, C, Q, S, Z, M, T, R, two; /* The type is "int" because of the types in the mp_int struct.
mp_digit i; Don't forget to change them here when you change them there! */
int S, M, i;
mp_int t1, C, Q, Z, T, R, two;
/* first handle the simple cases */ /* first handle the simple cases */
if (mp_cmp_d(n, 0uL) == MP_EQ) { if (mp_cmp_d(n, 0uL) == MP_EQ) {
mp_zero(ret); mp_zero(ret);
return MP_OKAY; return MP_OKAY;
} }
if (mp_cmp_d(prime, 2uL) == MP_EQ) return MP_VAL; /* prime must be odd */ /* "prime" must be odd and > 2 */
if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY) return err; if (mp_iseven(prime) || (mp_cmp_d(prime, 3uL) == MP_LT)) return MP_VAL;
if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY) return err;
/* n \not\cong 0 (mod p) and n \cong r^2 (mod p) for some r \in N^+ */
if (legendre != 1) return MP_VAL;
if ((err = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { if ((err = mp_init_multi(&t1, &C, &Q, &Z, &T, &R, &two, NULL)) != MP_OKAY) {
return err; return err;
} }
@ -33,8 +37,8 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
* compute directly: err = n^(prime+1)/4 mod prime * compute directly: err = n^(prime+1)/4 mod prime
* Handbook of Applied Cryptography algorithm 3.36 * Handbook of Applied Cryptography algorithm 3.36
*/ */
if ((err = mp_mod_d(prime, 4uL, &i)) != MP_OKAY) goto LBL_END; /* x%4 == x&3 for x in N and x>0 */
if (i == 3u) { if ((prime->dp[0] & 3u) == 3u) {
if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto LBL_END;
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END;
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END;
@ -49,12 +53,12 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto LBL_END; if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto LBL_END;
if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto LBL_END; if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto LBL_END;
/* Q = prime - 1 */ /* Q = prime - 1 */
mp_zero(&S); S = 0;
/* S = 0 */ /* S = 0 */
while (mp_iseven(&Q)) { while (mp_iseven(&Q)) {
if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto LBL_END; if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto LBL_END;
/* Q = Q / 2 */ /* Q = Q / 2 */
if ((err = mp_add_d(&S, 1uL, &S)) != MP_OKAY) goto LBL_END; S++;
/* S = S + 1 */ /* S = S + 1 */
} }
@ -63,6 +67,12 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
/* Z = 2 */ /* Z = 2 */
for (;;) { for (;;) {
if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto LBL_END; if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto LBL_END;
/* If "prime" (p) is an odd prime Jacobi(k|p) = 0 for k \cong 0 (mod p) */
/* but there is at least one non-quadratic residue before k>=p if p is an odd prime. */
if (legendre == 0) {
err = MP_VAL;
goto LBL_END;
}
if (legendre == -1) break; if (legendre == -1) break;
if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto LBL_END; if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto LBL_END;
/* Z = Z + 1 */ /* Z = Z + 1 */
@ -77,7 +87,7 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
/* R = n ^ ((Q + 1) / 2) mod prime */ /* R = n ^ ((Q + 1) / 2) mod prime */
if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto LBL_END; if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto LBL_END;
/* T = n ^ Q mod prime */ /* T = n ^ Q mod prime */
if ((err = mp_copy(&S, &M)) != MP_OKAY) goto LBL_END; M = S;
/* M = S */ /* M = S */
mp_set(&two, 2uL); mp_set(&two, 2uL);
@ -86,16 +96,21 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
i = 0; i = 0;
for (;;) { for (;;) {
if (mp_cmp_d(&t1, 1uL) == MP_EQ) break; if (mp_cmp_d(&t1, 1uL) == MP_EQ) break;
/* No exponent in the range 0 < i < M found
(M is at least 1 in the first round because "prime" > 2) */
if (M == i) {
err = MP_VAL;
goto LBL_END;
}
if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto LBL_END;
i++; i++;
} }
if (i == 0u) { if (i == 0) {
if ((err = mp_copy(&R, ret)) != MP_OKAY) goto LBL_END; if ((err = mp_copy(&R, ret)) != MP_OKAY) goto LBL_END;
err = MP_OKAY; err = MP_OKAY;
goto LBL_END; goto LBL_END;
} }
if ((err = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto LBL_END; mp_set_i32(&t1, M - i - 1);
if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_END;
if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto LBL_END;
/* t1 = 2 ^ (M - i - 1) */ /* t1 = 2 ^ (M - i - 1) */
if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto LBL_END;
@ -106,12 +121,12 @@ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
/* R = (R * t1) mod prime */ /* R = (R * t1) mod prime */
if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto LBL_END; if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto LBL_END;
/* T = (T * C) mod prime */ /* T = (T * C) mod prime */
mp_set(&M, i); M = i;
/* M = i */ /* M = i */
} }
LBL_END: LBL_END:
mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); mp_clear_multi(&t1, &C, &Q, &Z, &T, &R, &two, NULL);
return err; return err;
} }

View File

@ -872,12 +872,12 @@
# define MP_CMP_D_C # define MP_CMP_D_C
# define MP_COPY_C # define MP_COPY_C
# define MP_DIV_2_C # define MP_DIV_2_C
# define MP_DIV_D_C
# define MP_EXPTMOD_C # define MP_EXPTMOD_C
# define MP_INIT_MULTI_C # define MP_INIT_MULTI_C
# define MP_KRONECKER_C # define MP_KRONECKER_C
# define MP_MULMOD_C # define MP_MULMOD_C
# define MP_SET_C # define MP_SET_C
# define MP_SET_I32_C
# define MP_SQRMOD_C # define MP_SQRMOD_C
# define MP_SUB_D_C # define MP_SUB_D_C
# define MP_ZERO_C # define MP_ZERO_C