/* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifndef TOMMATH_PRIVATE_H_ #define TOMMATH_PRIVATE_H_ #include "tommath.h" #include "tommath_class.h" #include /* * Private symbols * --------------- * * On Unix symbols can be marked as hidden if libtommath is compiled * as a shared object. By default, symbols are visible. * On Win32 a .def file must be used to specify the exported symbols. */ #if defined(__GNUC__) && __GNUC__ >= 4 && !defined(_WIN32) && !defined(__CYGWIN__) # define MP_PRIVATE __attribute__ ((visibility ("hidden"))) #else # define MP_PRIVATE #endif /* Hardening libtommath * -------------------- * * By default memory is zeroed before calling * MP_FREE to avoid leaking data. This is good * practice in cryptographical applications. * * Note however that memory allocators used * in cryptographical applications can often * be configured by itself to clear memory, * rendering the clearing in tommath unnecessary. * See for example https://github.com/GrapheneOS/hardened_malloc * and the option CONFIG_ZERO_ON_FREE. * * Furthermore there are applications which * value performance more and want this * feature to be disabled. For such applications * define MP_NO_ZERO_ON_FREE during compilation. */ #ifdef MP_NO_ZERO_ON_FREE # define MP_FREE_BUF(mem, size) MP_FREE((mem), (size)) # define MP_FREE_DIGS(mem, digits) MP_FREE((mem), sizeof (mp_digit) * (size_t)(digits)) #else # define MP_FREE_BUF(mem, size) \ do { \ size_t fs_ = (size); \ void* fm_ = (mem); \ if (fm_ != NULL) { \ s_mp_zero_buf(fm_, fs_); \ MP_FREE(fm_, fs_); \ } \ } while (0) # define MP_FREE_DIGS(mem, digits) \ do { \ int fd_ = (digits); \ mp_digit* fm_ = (mem); \ if (fm_ != NULL) { \ s_mp_zero_digs(fm_, fd_); \ MP_FREE(fm_, sizeof (mp_digit) * (size_t)fd_); \ } \ } while (0) #endif /* Tunable cutoffs * --------------- * * - In the default settings, a cutoff X can be modified at runtime * by adjusting the corresponding X_CUTOFF variable. * * - Tunability of the library can be disabled at compile time * by defining the MP_FIXED_CUTOFFS macro. * * - There is an additional file tommath_cutoffs.h, which defines * the default cutoffs. These can be adjusted manually or by the * autotuner. * */ #ifdef MP_FIXED_CUTOFFS # include "tommath_cutoffs.h" # define MP_MUL_KARATSUBA_CUTOFF MP_DEFAULT_MUL_KARATSUBA_CUTOFF # define MP_SQR_KARATSUBA_CUTOFF MP_DEFAULT_SQR_KARATSUBA_CUTOFF # define MP_MUL_TOOM_CUTOFF MP_DEFAULT_MUL_TOOM_CUTOFF # define MP_SQR_TOOM_CUTOFF MP_DEFAULT_SQR_TOOM_CUTOFF #endif /* define heap macros */ #ifndef MP_MALLOC /* default to libc stuff */ # include # define MP_MALLOC(size) malloc(size) # define MP_REALLOC(mem, oldsize, newsize) realloc((mem), (newsize)) # define MP_CALLOC(nmemb, size) calloc((nmemb), (size)) # define MP_FREE(mem, size) free(mem) #else /* prototypes for our heap functions */ extern void *MP_MALLOC(size_t size); extern void *MP_REALLOC(void *mem, size_t oldsize, size_t newsize); extern void *MP_CALLOC(size_t nmemb, size_t size); extern void MP_FREE(void *mem, size_t size); #endif /* feature detection macro */ #ifdef _MSC_VER /* Prevent false positive: not enough arguments for function-like macro invocation */ #pragma warning(disable: 4003) #endif #define MP_STRINGIZE(x) MP__STRINGIZE(x) #define MP__STRINGIZE(x) ""#x"" #define MP_HAS(x) (sizeof(MP_STRINGIZE(x##_C)) == 1u) #define MP_MIN(x, y) (((x) < (y)) ? (x) : (y)) #define MP_MAX(x, y) (((x) > (y)) ? (x) : (y)) #define MP_TOUPPER(c) ((((c) >= 'a') && ((c) <= 'z')) ? (((c) + 'A') - 'a') : (c)) #define MP_EXCH(t, a, b) do { t _c = a; a = b; b = _c; } while (0) #define MP_IS_2EXPT(x) (((x) != 0u) && (((x) & ((x) - 1u)) == 0u)) /* Static assertion */ #define MP_STATIC_ASSERT(msg, cond) typedef char mp_static_assert_##msg[(cond) ? 1 : -1]; #define MP_SIZEOF_BITS(type) ((size_t)CHAR_BIT * sizeof(type)) #define MP_MAX_COMBA (int)(1uL << (MP_SIZEOF_BITS(mp_word) - (2u * (size_t)MP_DIGIT_BIT))) #define MP_WARRAY (int)(1uL << ((MP_SIZEOF_BITS(mp_word) - (2u * (size_t)MP_DIGIT_BIT)) + 1u)) #if defined(MP_16BIT) typedef uint32_t mp_word; #elif defined(MP_64BIT) typedef unsigned long mp_word __attribute__((mode(TI))); #else typedef uint64_t mp_word; #endif MP_STATIC_ASSERT(correct_word_size, sizeof(mp_word) == (2u * sizeof(mp_digit))) /* default number of digits */ #ifndef MP_DEFAULT_DIGIT_COUNT # ifndef MP_LOW_MEM # define MP_DEFAULT_DIGIT_COUNT 32 # else # define MP_DEFAULT_DIGIT_COUNT 8 # endif #endif /* Minimum number of available digits in mp_int, MP_DEFAULT_DIGIT_COUNT >= MP_MIN_DIGIT_COUNT * - Must be at least 3 for s_mp_div_school. * - Must be large enough such that the mp_set_u64 setter can * store uint64_t in the mp_int without growing */ #define MP_MIN_DIGIT_COUNT MP_MAX(3, (((int)MP_SIZEOF_BITS(uint64_t) + MP_DIGIT_BIT) - 1) / MP_DIGIT_BIT) MP_STATIC_ASSERT(prec_geq_min_prec, MP_DEFAULT_DIGIT_COUNT >= MP_MIN_DIGIT_COUNT) /* Maximum number of digits. * - Must be small enough such that mp_bit_count does not overflow. * - Must be small enough such that mp_radix_size for base 2 does not overflow. * mp_radix_size needs two additional bytes for zero termination and sign. */ #define MP_MAX_DIGIT_COUNT ((INT_MAX - 2) / MP_DIGIT_BIT) #if defined(__STDC_IEC_559__) || defined(__GCC_IEC_559) \ || defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) \ || defined(__i386__) || defined(_M_X86) || defined(_M_IX86) \ || defined(__aarch64__) || defined(__arm__) #define MP_HAS_SET_DOUBLE #endif /* random number source */ extern MP_PRIVATE mp_err(*s_mp_rand_source)(void *out, size_t size); /* lowlevel functions, do not call! */ MP_PRIVATE bool s_mp_get_bit(const mp_int *a, int b) MP_WUR; MP_PRIVATE int s_mp_log_2expt(const mp_int *a, mp_digit base) MP_WUR; MP_PRIVATE int s_mp_log_d(mp_digit base, mp_digit n) MP_WUR; MP_PRIVATE mp_err s_mp_add(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_div_3(const mp_int *a, mp_int *c, mp_digit *d) MP_WUR; MP_PRIVATE mp_err s_mp_div_recursive(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) MP_WUR; MP_PRIVATE mp_err s_mp_div_school(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) MP_WUR; MP_PRIVATE mp_err s_mp_div_small(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) MP_WUR; MP_PRIVATE mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR; MP_PRIVATE mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) MP_WUR; MP_PRIVATE mp_err s_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_invmod_odd(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_log(const mp_int *a, mp_digit base, int *c) MP_WUR; MP_PRIVATE mp_err s_mp_montgomery_reduce_comba(mp_int *x, const mp_int *n, mp_digit rho) MP_WUR; MP_PRIVATE mp_err s_mp_mul(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR; MP_PRIVATE mp_err s_mp_mul_balance(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_mul_comba(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR; MP_PRIVATE mp_err s_mp_mul_high(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR; MP_PRIVATE mp_err s_mp_mul_high_comba(const mp_int *a, const mp_int *b, mp_int *c, int digs) MP_WUR; MP_PRIVATE mp_err s_mp_mul_karatsuba(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_mul_toom(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE mp_err s_mp_prime_is_divisible(const mp_int *a, bool *result) MP_WUR; MP_PRIVATE mp_err s_mp_rand_platform(void *p, size_t n) MP_WUR; MP_PRIVATE mp_err s_mp_sqr(const mp_int *a, mp_int *b) MP_WUR; MP_PRIVATE mp_err s_mp_sqr_comba(const mp_int *a, mp_int *b) MP_WUR; MP_PRIVATE mp_err s_mp_sqr_karatsuba(const mp_int *a, mp_int *b) MP_WUR; MP_PRIVATE mp_err s_mp_sqr_toom(const mp_int *a, mp_int *b) MP_WUR; MP_PRIVATE mp_err s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c) MP_WUR; MP_PRIVATE void s_mp_copy_digs(mp_digit *d, const mp_digit *s, int digits); MP_PRIVATE void s_mp_zero_buf(void *mem, size_t size); MP_PRIVATE void s_mp_zero_digs(mp_digit *d, int digits); MP_PRIVATE mp_err s_mp_radix_size_overestimate(const mp_int *a, const int radix, size_t *size); /* TODO: jenkins prng is not thread safe as of now */ MP_PRIVATE mp_err s_mp_rand_jenkins(void *p, size_t n) MP_WUR; MP_PRIVATE void s_mp_rand_jenkins_init(uint64_t seed); #define MP_RADIX_MAP_REVERSE_SIZE 80u extern MP_PRIVATE const char s_mp_radix_map[]; extern MP_PRIVATE const uint8_t s_mp_radix_map_reverse[]; extern MP_PRIVATE const mp_digit s_mp_prime_tab[]; /* number of primes */ #define MP_PRIME_TAB_SIZE 256 #define MP_GET_ENDIANNESS(x) \ do{\ int16_t n = 0x1; \ char *p = (char *)&n; \ x = (p[0] == '\x01') ? MP_LITTLE_ENDIAN : MP_BIG_ENDIAN; \ } while (0) /* code-generating macros */ #define MP_SET_UNSIGNED(name, type) \ void name(mp_int * a, type b) \ { \ int i = 0; \ while (b != 0u) { \ a->dp[i++] = ((mp_digit)b & MP_MASK); \ if (MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) { break; } \ b >>= ((MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) ? 0 : MP_DIGIT_BIT); \ } \ a->used = i; \ a->sign = MP_ZPOS; \ s_mp_zero_digs(a->dp + a->used, a->alloc - a->used); \ } #define MP_SET_SIGNED(name, uname, type, utype) \ void name(mp_int * a, type b) \ { \ uname(a, (b < 0) ? -(utype)b : (utype)b); \ if (b < 0) { a->sign = MP_NEG; } \ } #define MP_INIT_INT(name , set, type) \ mp_err name(mp_int * a, type b) \ { \ mp_err err; \ if ((err = mp_init(a)) != MP_OKAY) { \ return err; \ } \ set(a, b); \ return MP_OKAY; \ } #define MP_GET_MAG(name, type) \ type name(const mp_int* a) \ { \ int i = MP_MIN(a->used, (int)((MP_SIZEOF_BITS(type) + MP_DIGIT_BIT - 1) / MP_DIGIT_BIT)); \ type res = 0u; \ while (i --> 0) { \ res <<= ((MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) ? 0 : MP_DIGIT_BIT); \ res |= (type)a->dp[i]; \ if (MP_SIZEOF_BITS(type) <= MP_DIGIT_BIT) { break; } \ } \ return res; \ } #define MP_GET_SIGNED(name, mag, type, utype) \ type name(const mp_int* a) \ { \ utype res = mag(a); \ return mp_isneg(a) ? (type)-res : (type)res; \ } #endif