#include "tommath_private.h" #ifdef BN_MP_DIV_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ #ifdef BN_MP_DIV_SMALL /* slower bit-bang division... also smaller */ int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int ta, tb, tq, q; int res, n, n2; /* is divisor zero ? */ if (IS_ZERO(b)) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { res = mp_copy(a, d); } else { res = MP_OKAY; } if (c != NULL) { mp_zero(c); } return res; } /* init our temps */ if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) { return res; } mp_set(&tq, 1uL); n = mp_count_bits(a) - mp_count_bits(b); if (((res = mp_abs(a, &ta)) != MP_OKAY) || ((res = mp_abs(b, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { goto LBL_ERR; } while (n-- >= 0) { if (mp_cmp(&tb, &ta) != MP_GT) { if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { goto LBL_ERR; } } if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { goto LBL_ERR; } } /* now q == quotient and ta == remainder */ n = a->sign; n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; if (c != NULL) { mp_exch(c, &q); c->sign = IS_ZERO(c) ? MP_ZPOS : n2; } if (d != NULL) { mp_exch(d, &ta); d->sign = IS_ZERO(d) ? MP_ZPOS : n; } LBL_ERR: mp_clear_multi(&ta, &tb, &tq, &q, NULL); return res; } #else /* integer signed division. * c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * * Note that the description in HAC is horribly * incomplete. For example, it doesn't consider * the case where digits are removed from 'x' in * the inner loop. It also doesn't consider the * case that y has fewer than three digits, etc.. * * The overall algorithm is as described as * 14.20 from HAC but fixed to treat these cases. */ int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int q, x, y, t1, t2; int res, n, t, i, norm, neg; /* is divisor zero ? */ if (IS_ZERO(b)) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { res = mp_copy(a, d); } else { res = MP_OKAY; } if (c != NULL) { mp_zero(c); } return res; } if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) { return res; } q.used = a->used + 2; if ((res = mp_init(&t1)) != MP_OKAY) { goto LBL_Q; } if ((res = mp_init(&t2)) != MP_OKAY) { goto LBL_T1; } if ((res = mp_init_copy(&x, a)) != MP_OKAY) { goto LBL_T2; } if ((res = mp_init_copy(&y, b)) != MP_OKAY) { goto LBL_X; } /* fix the sign */ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; x.sign = y.sign = MP_ZPOS; /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ norm = mp_count_bits(&y) % DIGIT_BIT; if (norm < (DIGIT_BIT - 1)) { norm = (DIGIT_BIT - 1) - norm; if ((res = mp_mul_2d(&x, norm, &x)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_mul_2d(&y, norm, &y)) != MP_OKAY) { goto LBL_Y; } } else { norm = 0; } /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ n = x.used - 1; t = y.used - 1; /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ if ((res = mp_lshd(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ goto LBL_Y; } while (mp_cmp(&x, &y) != MP_LT) { ++(q.dp[n - t]); if ((res = mp_sub(&x, &y, &x)) != MP_OKAY) { goto LBL_Y; } } /* reset y by shifting it back down */ mp_rshd(&y, n - t); /* step 3. for i from n down to (t + 1) */ for (i = n; i >= (t + 1); i--) { if (i > x.used) { continue; } /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)DIGIT_BIT) - (mp_digit)1; } else { mp_word tmp; tmp = (mp_word)x.dp[i] << (mp_word)DIGIT_BIT; tmp |= (mp_word)x.dp[i - 1]; tmp /= (mp_word)y.dp[t]; if (tmp > (mp_word)MP_MASK) { tmp = MP_MASK; } q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK); } /* while (q{i-t-1} * (yt * b + y{t-1})) > xi * b**2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK; do { q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK; /* find left hand */ mp_zero(&t1); t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; if ((res = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } /* find right hand */ t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2]; t2.dp[1] = ((i - 1) < 0) ? 0u : x.dp[i - 1]; t2.dp[2] = x.dp[i]; t2.used = 3; } while (mp_cmp_mag(&t1, &t2) == MP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ if ((res = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_sub(&x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ if (x.sign == MP_NEG) { if ((res = mp_copy(&y, &t1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_add(&x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK; } } /* now q is the quotient and x is the remainder * [which we have to normalize] */ /* get sign before writing to c */ x.sign = (x.used == 0) ? MP_ZPOS : a->sign; if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); c->sign = neg; } if (d != NULL) { if ((res = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) { goto LBL_Y; } mp_exch(&x, d); } res = MP_OKAY; LBL_Y: mp_clear(&y); LBL_X: mp_clear(&x); LBL_T2: mp_clear(&t2); LBL_T1: mp_clear(&t1); LBL_Q: mp_clear(&q); return res; } #endif #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */