#include "tommath_private.h" #ifdef S_MP_MUL_KARATSUBA_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* c = |a| * |b| using Karatsuba Multiplication using * three half size multiplications * * Let B represent the radix [e.g. 2**MP_DIGIT_BIT] and * let n represent half of the number of digits in * the min(a,b) * * a = a1 * B**n + a0 * b = b1 * B**n + b0 * * Then, a * b => a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0 * * Note that a1b1 and a0b0 are used twice and only need to be * computed once. So in total three half size (half # of * digit) multiplications are performed, a0b0, a1b1 and * (a1+b1)(a0+b0) * * Note that a multiplication of half the digits requires * 1/4th the number of single precision multiplications so in * total after one call 25% of the single precision multiplications * are saved. Note also that the call to mp_mul can end up back * in this function if the a0, a1, b0, or b1 are above the threshold. * This is known as divide-and-conquer and leads to the famous * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than * the standard O(N**2) that the baseline/comba methods use. * Generally though the overhead of this method doesn't pay off * until a certain size (N ~ 80) is reached. */ mp_err s_mp_mul_karatsuba(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x0, x1, y0, y1, t1, x0y0, x1y1; int B; mp_err err; /* min # of digits */ B = MP_MIN(a->used, b->used); /* now divide in two */ B = B >> 1; /* init copy all the temps */ if ((err = mp_init_size(&x0, B)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_init_size(&x1, a->used - B)) != MP_OKAY) { goto X0; } if ((err = mp_init_size(&y0, B)) != MP_OKAY) { goto X1; } if ((err = mp_init_size(&y1, b->used - B)) != MP_OKAY) { goto Y0; } /* init temps */ if ((err = mp_init_size(&t1, B * 2)) != MP_OKAY) { goto Y1; } if ((err = mp_init_size(&x0y0, B * 2)) != MP_OKAY) { goto T1; } if ((err = mp_init_size(&x1y1, B * 2)) != MP_OKAY) { goto X0Y0; } /* now shift the digits */ x0.used = y0.used = B; x1.used = a->used - B; y1.used = b->used - B; /* we copy the digits directly instead of using higher level functions * since we also need to shift the digits */ s_mp_copy_digs(x0.dp, a->dp, x0.used); s_mp_copy_digs(y0.dp, b->dp, y0.used); s_mp_copy_digs(x1.dp, a->dp + B, x1.used); s_mp_copy_digs(y1.dp, b->dp + B, y1.used); /* only need to clamp the lower words since by definition the * upper words x1/y1 must have a known number of digits */ mp_clamp(&x0); mp_clamp(&y0); /* now calc the products x0y0 and x1y1 */ /* after this x0 is no longer required, free temp [x0==t2]! */ if ((err = mp_mul(&x0, &y0, &x0y0)) != MP_OKAY) { goto X1Y1; /* x0y0 = x0*y0 */ } if ((err = mp_mul(&x1, &y1, &x1y1)) != MP_OKAY) { goto X1Y1; /* x1y1 = x1*y1 */ } /* now calc x1+x0 and y1+y0 */ if ((err = s_mp_add(&x1, &x0, &t1)) != MP_OKAY) { goto X1Y1; /* t1 = x1 - x0 */ } if ((err = s_mp_add(&y1, &y0, &x0)) != MP_OKAY) { goto X1Y1; /* t2 = y1 - y0 */ } if ((err = mp_mul(&t1, &x0, &t1)) != MP_OKAY) { goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */ } /* add x0y0 */ if ((err = mp_add(&x0y0, &x1y1, &x0)) != MP_OKAY) { goto X1Y1; /* t2 = x0y0 + x1y1 */ } if ((err = s_mp_sub(&t1, &x0, &t1)) != MP_OKAY) { goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */ } /* shift by B */ if ((err = mp_lshd(&t1, B)) != MP_OKAY) { goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<