#include "tommath_private.h" #ifdef BN_S_MP_MUL_DIGS_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Fast (comba) multiplier * * This is the fast column-array [comba] multiplier. It is * designed to compute the columns of the product first * then handle the carries afterwards. This has the effect * of making the nested loops that compute the columns very * simple and schedulable on super-scalar processors. * * This has been modified to produce a variable number of * digits of output so if say only a half-product is required * you don't have to compute the upper half (a feature * required for fast Barrett reduction). * * Based on Algorithm 14.12 on pp.595 of HAC. * */ int s_mp_mul_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY]; mp_word _W; /* grow the destination as required */ if (c->alloc < digs) { if ((res = mp_grow(c, digs)) != MP_OKAY) { return res; } } /* number of output digits to produce */ pa = MP_MIN(digs, a->used + b->used); /* clear the carry */ _W = 0; for (ix = 0; ix < pa; ix++) { int tx, ty; int iy; mp_digit *tmpx, *tmpy; /* get offsets into the two bignums */ ty = MP_MIN(b->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = a->dp + tx; tmpy = b->dp + ty; /* this is the number of times the loop will iterrate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MP_MIN(a->used-tx, ty+1); /* execute loop */ for (iz = 0; iz < iy; ++iz) { _W += (mp_word)*tmpx++ * (mp_word)*tmpy--; } /* store term */ W[ix] = (mp_digit)_W & MP_MASK; /* make next carry */ _W = _W >> (mp_word)MP_DIGIT_BIT; } /* setup dest */ olduse = c->used; c->used = pa; { mp_digit *tmpc; tmpc = c->dp; for (ix = 0; ix < pa; ix++) { /* now extract the previous digit [below the carry] */ *tmpc++ = W[ix]; } /* clear unused digits [that existed in the old copy of c] */ for (; ix < olduse; ix++) { *tmpc++ = 0; } } mp_clamp(c); return MP_OKAY; } #endif