/* Generates provable primes * * See http://gmail.com:8080/papers/pp.pdf for more info. * * Tom St Denis, tomstdenis@gmail.com, http://tom.gmail.com */ #include #include "tommath.h" static int n_prime; static FILE *primes; /* fast square root */ static mp_digit i_sqrt(mp_word x) { mp_word x1, x2; x2 = x; do { x1 = x2; x2 = x1 - ((x1 * x1) - x) / (2u * x1); } while (x1 != x2); if ((x1 * x1) > x) { --x1; } return x1; } /* generates a prime digit */ static void gen_prime(void) { mp_digit r, x, y, next; FILE *out; out = fopen("pprime.dat", "wb"); if (out != NULL) { /* write first set of primes */ /* *INDENT-OFF* */ r = 3uL; fwrite(&r, 1uL, sizeof(mp_digit), out); r = 5uL; fwrite(&r, 1uL, sizeof(mp_digit), out); r = 7uL; fwrite(&r, 1uL, sizeof(mp_digit), out); r = 11uL; fwrite(&r, 1uL, sizeof(mp_digit), out); r = 13uL; fwrite(&r, 1uL, sizeof(mp_digit), out); r = 17uL; fwrite(&r, 1uL, sizeof(mp_digit), out); r = 19uL; fwrite(&r, 1uL, sizeof(mp_digit), out); r = 23uL; fwrite(&r, 1uL, sizeof(mp_digit), out); r = 29uL; fwrite(&r, 1uL, sizeof(mp_digit), out); r = 31uL; fwrite(&r, 1uL, sizeof(mp_digit), out); /* *INDENT-ON* */ /* get square root, since if 'r' is composite its factors must be < than this */ y = i_sqrt(r); next = (y + 1uL) * (y + 1uL); for (;;) { do { r += 2uL; /* next candidate */ r &= MP_MASK; if (r < 31uL) break; /* update sqrt ? */ if (next <= r) { ++y; next = (y + 1uL) * (y + 1uL); } /* loop if divisible by 3,5,7,11,13,17,19,23,29 */ if ((r % 3uL) == 0uL) { x = 0uL; continue; } if ((r % 5uL) == 0uL) { x = 0uL; continue; } if ((r % 7uL) == 0uL) { x = 0uL; continue; } if ((r % 11uL) == 0uL) { x = 0uL; continue; } if ((r % 13uL) == 0uL) { x = 0uL; continue; } if ((r % 17uL) == 0uL) { x = 0uL; continue; } if ((r % 19uL) == 0uL) { x = 0uL; continue; } if ((r % 23uL) == 0uL) { x = 0uL; continue; } if ((r % 29uL) == 0uL) { x = 0uL; continue; } /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */ for (x = 30uL; x <= y; x += 30uL) { if ((r % (x + 1uL)) == 0uL) { x = 0uL; break; } if ((r % (x + 7uL)) == 0uL) { x = 0uL; break; } if ((r % (x + 11uL)) == 0uL) { x = 0uL; break; } if ((r % (x + 13uL)) == 0uL) { x = 0uL; break; } if ((r % (x + 17uL)) == 0uL) { x = 0uL; break; } if ((r % (x + 19uL)) == 0uL) { x = 0uL; break; } if ((r % (x + 23uL)) == 0uL) { x = 0uL; break; } if ((r % (x + 29uL)) == 0uL) { x = 0uL; break; } } } while (x == 0uL); if (r > 31uL) { fwrite(&r, 1uL, sizeof(mp_digit), out); printf("%9lu\r", r); fflush(stdout); } if (r < 31uL) break; } fclose(out); } } static void load_tab(void) { primes = fopen("pprime.dat", "rb"); if (primes == NULL) { gen_prime(); primes = fopen("pprime.dat", "rb"); } fseek(primes, 0L, SEEK_END); n_prime = ftell(primes) / sizeof(mp_digit); } static mp_digit prime_digit(void) { int n; mp_digit d; n = abs(rand()) % n_prime; fseek(primes, n * sizeof(mp_digit), SEEK_SET); fread(&d, 1uL, sizeof(mp_digit), primes); return d; } /* makes a prime of at least k bits */ static int pprime(int k, int li, mp_int *p, mp_int *q) { mp_int a, b, c, n, x, y, z, v; int res, ii; static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 }; /* single digit ? */ if (k <= (int) DIGIT_BIT) { mp_set(p, prime_digit()); return MP_OKAY; } if ((res = mp_init(&c)) != MP_OKAY) { return res; } if ((res = mp_init(&v)) != MP_OKAY) { goto LBL_C; } /* product of first 50 primes */ if ((res = mp_read_radix(&v, "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190", 10)) != MP_OKAY) { goto LBL_V; } if ((res = mp_init(&a)) != MP_OKAY) { goto LBL_V; } /* set the prime */ mp_set(&a, prime_digit()); if ((res = mp_init(&b)) != MP_OKAY) { goto LBL_A; } if ((res = mp_init(&n)) != MP_OKAY) { goto LBL_B; } if ((res = mp_init(&x)) != MP_OKAY) { goto LBL_N; } if ((res = mp_init(&y)) != MP_OKAY) { goto LBL_X; } if ((res = mp_init(&z)) != MP_OKAY) { goto LBL_Y; } /* now loop making the single digit */ while (mp_count_bits(&a) < k) { fprintf(stderr, "prime has %4d bits left\r", k - mp_count_bits(&a)); fflush(stderr); top: mp_set(&b, prime_digit()); /* now compute z = a * b * 2 */ if ((res = mp_mul(&a, &b, &z)) != MP_OKAY) { /* z = a * b */ goto LBL_Z; } if ((res = mp_copy(&z, &c)) != MP_OKAY) { /* c = a * b */ goto LBL_Z; } if ((res = mp_mul_2(&z, &z)) != MP_OKAY) { /* z = 2 * a * b */ goto LBL_Z; } /* n = z + 1 */ if ((res = mp_add_d(&z, 1uL, &n)) != MP_OKAY) { /* n = z + 1 */ goto LBL_Z; } /* check (n, v) == 1 */ if ((res = mp_gcd(&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */ goto LBL_Z; } if (mp_cmp_d(&y, 1uL) != MP_EQ) goto top; /* now try base x=bases[ii] */ for (ii = 0; ii < li; ii++) { mp_set(&x, bases[ii]); /* compute x^a mod n */ if ((res = mp_exptmod(&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */ goto LBL_Z; } /* if y == 1 loop */ if (mp_cmp_d(&y, 1uL) == MP_EQ) continue; /* now x^2a mod n */ if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */ goto LBL_Z; } if (mp_cmp_d(&y, 1uL) == MP_EQ) continue; /* compute x^b mod n */ if ((res = mp_exptmod(&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */ goto LBL_Z; } /* if y == 1 loop */ if (mp_cmp_d(&y, 1uL) == MP_EQ) continue; /* now x^2b mod n */ if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */ goto LBL_Z; } if (mp_cmp_d(&y, 1uL) == MP_EQ) continue; /* compute x^c mod n == x^ab mod n */ if ((res = mp_exptmod(&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */ goto LBL_Z; } /* if y == 1 loop */ if (mp_cmp_d(&y, 1uL) == MP_EQ) continue; /* now compute (x^c mod n)^2 */ if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */ goto LBL_Z; } /* y should be 1 */ if (mp_cmp_d(&y, 1uL) != MP_EQ) continue; break; } /* no bases worked? */ if (ii == li) goto top; { char buf[4096]; mp_toradix(&n, buf, 10); printf("Certificate of primality for:\n%s\n\n", buf); mp_toradix(&a, buf, 10); printf("A == \n%s\n\n", buf); mp_toradix(&b, buf, 10); printf("B == \n%s\n\nG == %lu\n", buf, bases[ii]); printf("----------------------------------------------------------------\n"); } /* a = n */ mp_copy(&n, &a); } /* get q to be the order of the large prime subgroup */ mp_sub_d(&n, 1uL, q); mp_div_2(q, q); mp_div(q, &b, q, NULL); mp_exch(&n, p); res = MP_OKAY; LBL_Z: mp_clear(&z); LBL_Y: mp_clear(&y); LBL_X: mp_clear(&x); LBL_N: mp_clear(&n); LBL_B: mp_clear(&b); LBL_A: mp_clear(&a); LBL_V: mp_clear(&v); LBL_C: mp_clear(&c); return res; } int main(void) { mp_int p, q; char buf[4096]; int k, li; clock_t t1; srand(time(NULL)); load_tab(); printf("Enter # of bits: \n"); fgets(buf, sizeof(buf), stdin); sscanf(buf, "%d", &k); printf("Enter number of bases to try (1 to 8):\n"); fgets(buf, sizeof(buf), stdin); sscanf(buf, "%d", &li); mp_init(&p); mp_init(&q); t1 = clock(); pprime(k, li, &p, &q); t1 = clock() - t1; printf("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits(&p)); mp_toradix(&p, buf, 10); printf("P == %s\n", buf); mp_toradix(&q, buf, 10); printf("Q == %s\n", buf); return 0; }