#include "tommath_private.h" #ifdef MP_PRIME_FROBENIUS_UNDERWOOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* * See file mp_prime_is_prime.c or the documentation in doc/bn.tex for the details */ #ifndef LTM_USE_ONLY_MR /* * floor of positive solution of * (2^16)-1 = (a+4)*(2*a+5) * TODO: Both values are smaller than N^(1/4), would have to use a bigint * for a instead but any a biger than about 120 are already so rare that * it is possible to ignore them and still get enough pseudoprimes. * But it is still a restriction of the set of available pseudoprimes * which makes this implementation less secure if used stand-alone. */ #define LTM_FROBENIUS_UNDERWOOD_A 32764 mp_err mp_prime_frobenius_underwood(const mp_int *N, bool *result) { mp_int T1z, T2z, Np1z, sz, tz; int a, ap2, length, i, j; mp_err err; *result = false; if ((err = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) { return err; } for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) { /* TODO: That's ugly! No, really, it is! */ if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) || (a==14) || (a==18) || (a==23) || (a==26) || (a==28)) { continue; } mp_set_i32(&T1z, (int32_t)((a * a) - 4)); if ((err = mp_kronecker(&T1z, N, &j)) != MP_OKAY) goto LBL_FU_ERR; if (j == -1) { break; } if (j == 0) { /* composite */ goto LBL_FU_ERR; } } /* Tell it a composite and set return value accordingly */ if (a >= LTM_FROBENIUS_UNDERWOOD_A) { err = MP_ITER; goto LBL_FU_ERR; } /* Composite if N and (a+4)*(2*a+5) are not coprime */ mp_set_u32(&T1z, (uint32_t)((a+4)*((2*a)+5))); if ((err = mp_gcd(N, &T1z, &T1z)) != MP_OKAY) goto LBL_FU_ERR; if (!((T1z.used == 1) && (T1z.dp[0] == 1u))) goto LBL_FU_ERR; ap2 = a + 2; if ((err = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY) goto LBL_FU_ERR; mp_set(&sz, 1uL); mp_set(&tz, 2uL); length = mp_count_bits(&Np1z); for (i = length - 2; i >= 0; i--) { /* * temp = (sz*(a*sz+2*tz))%N; * tz = ((tz-sz)*(tz+sz))%N; * sz = temp; */ if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY) goto LBL_FU_ERR; /* a = 0 at about 50% of the cases (non-square and odd input) */ if (a != 0) { if ((err = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) goto LBL_FU_ERR; if ((err = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY) goto LBL_FU_ERR; } if ((err = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) goto LBL_FU_ERR; if ((err = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) goto LBL_FU_ERR; if ((err = mp_add(&sz, &tz, &sz)) != MP_OKAY) goto LBL_FU_ERR; if ((err = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) goto LBL_FU_ERR; if ((err = mp_mod(&tz, N, &tz)) != MP_OKAY) goto LBL_FU_ERR; if ((err = mp_mod(&T1z, N, &sz)) != MP_OKAY) goto LBL_FU_ERR; if (s_mp_get_bit(&Np1z, (unsigned int)i)) { /* * temp = (a+2) * sz + tz * tz = 2 * tz - sz * sz = temp */ if (a == 0) { if ((err = mp_mul_2(&sz, &T1z)) != MP_OKAY) goto LBL_FU_ERR; } else { if ((err = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) goto LBL_FU_ERR; } if ((err = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) goto LBL_FU_ERR; if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY) goto LBL_FU_ERR; if ((err = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) goto LBL_FU_ERR; mp_exch(&sz, &T1z); } } mp_set_u32(&T1z, (uint32_t)((2 * a) + 5)); if ((err = mp_mod(&T1z, N, &T1z)) != MP_OKAY) goto LBL_FU_ERR; if (mp_iszero(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) { *result = true; } LBL_FU_ERR: mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL); return err; } #endif #endif