#include "tommath_private.h" #ifdef S_MP_DIV_RECURSIVE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Direct implementation of algorithms 1.8 "RecursiveDivRem" and 1.9 "UnbalancedDivision" from: Brent, Richard P., and Paul Zimmermann. "Modern computer arithmetic" Vol. 18. Cambridge University Press, 2010 Available online at https://arxiv.org/pdf/1004.4710 pages 19ff. in the above online document. */ static mp_err s_recursion(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) { mp_err err; mp_int A1, A2, B1, B0, Q1, Q0, R1, R0, t; int m = a->used - b->used, k = m/2; if (m < MP_MUL_KARATSUBA_CUTOFF) { return s_mp_div_school(a, b, q, r); } if ((err = mp_init_multi(&A1, &A2, &B1, &B0, &Q1, &Q0, &R1, &R0, &t, NULL)) != MP_OKAY) { goto LBL_ERR; } /* B1 = b / beta^k, B0 = b % beta^k*/ if ((err = mp_div_2d(b, k * MP_DIGIT_BIT, &B1, &B0)) != MP_OKAY) goto LBL_ERR; /* (Q1, R1) = RecursiveDivRem(A / beta^(2k), B1) */ if ((err = mp_div_2d(a, 2*k * MP_DIGIT_BIT, &A1, &t)) != MP_OKAY) goto LBL_ERR; if ((err = s_recursion(&A1, &B1, &Q1, &R1)) != MP_OKAY) goto LBL_ERR; /* A1 = (R1 * beta^(2k)) + (A % beta^(2k)) - (Q1 * B0 * beta^k) */ if ((err = mp_lshd(&R1, 2*k)) != MP_OKAY) goto LBL_ERR; if ((err = mp_add(&R1, &t, &A1)) != MP_OKAY) goto LBL_ERR; if ((err = mp_mul(&Q1, &B0, &t)) != MP_OKAY) goto LBL_ERR; if ((err = mp_lshd(&t, k)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&A1, &t, &A1)) != MP_OKAY) goto LBL_ERR; /* while A1 < 0 do Q1 = Q1 - 1, A1 = A1 + (beta^k * B) */ if ((err = mp_mul_2d(b, k * MP_DIGIT_BIT, &t)) != MP_OKAY) goto LBL_ERR; while (mp_cmp_d(&A1, 0uL) == MP_LT) { if ((err = mp_decr(&Q1)) != MP_OKAY) goto LBL_ERR; if ((err = mp_add(&A1, &t, &A1)) != MP_OKAY) goto LBL_ERR; } /* (Q0, R0) = RecursiveDivRem(A1 / beta^(k), B1) */ if ((err = mp_div_2d(&A1, k * MP_DIGIT_BIT, &A1, &t)) != MP_OKAY) goto LBL_ERR; if ((err = s_recursion(&A1, &B1, &Q0, &R0)) != MP_OKAY) goto LBL_ERR; /* A2 = (R0*beta^k) + (A1 % beta^k) - (Q0*B0) */ if ((err = mp_lshd(&R0, k)) != MP_OKAY) goto LBL_ERR; if ((err = mp_add(&R0, &t, &A2)) != MP_OKAY) goto LBL_ERR; if ((err = mp_mul(&Q0, &B0, &t)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&A2, &t, &A2)) != MP_OKAY) goto LBL_ERR; /* while A2 < 0 do Q0 = Q0 - 1, A2 = A2 + B */ while (mp_cmp_d(&A2, 0uL) == MP_LT) { if ((err = mp_decr(&Q0)) != MP_OKAY) goto LBL_ERR; if ((err = mp_add(&A2, b, &A2)) != MP_OKAY) goto LBL_ERR; } /* return q = (Q1*beta^k) + Q0, r = A2 */ if (q != NULL) { if ((err = mp_lshd(&Q1, k)) != MP_OKAY) goto LBL_ERR; if ((err = mp_add(&Q1, &Q0, q)) != MP_OKAY) goto LBL_ERR; } if (r != NULL) { if ((err = mp_copy(&A2, r)) != MP_OKAY) goto LBL_ERR; } LBL_ERR: mp_clear_multi(&A1, &A2, &B1, &B0, &Q1, &Q0, &R1, &R0, &t, NULL); return err; } mp_err s_mp_div_recursive(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r) { int j, m, n, sigma; mp_err err; bool neg; mp_digit msb_b, msb; mp_int A, B, Q, Q1, R, A_div, A_mod; if ((err = mp_init_multi(&A, &B, &Q, &Q1, &R, &A_div, &A_mod, NULL)) != MP_OKAY) { goto LBL_ERR; } /* most significant bit of a limb */ /* assumes MP_DIGIT_MAX < (sizeof(mp_digit) * CHAR_BIT) */ msb = (MP_DIGIT_MAX + (mp_digit)(1)) >> 1; /* Method to compute sigma shamelessly stolen from J. Burnikel and J. Ziegler, "Fast recursive division", Research Report MPI-I-98-1-022, Max-Planck-Institut fuer Informatik, Saarbruecken, Germany, October 1998. (available online) Vid. section 2.3. */ m = MP_MUL_KARATSUBA_CUTOFF; while (m <= b->used) { m <<= 1; } j = (b->used + m - 1) / m; n = j * m; sigma = MP_DIGIT_BIT * (n - b->used); msb_b = b->dp[b->used - 1]; while (msb_b < msb) { sigma++; msb_b <<= 1; } /* Use that sigma to normalize B */ if ((err = mp_mul_2d(b, sigma, &B)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_mul_2d(a, sigma, &A)) != MP_OKAY) { goto LBL_ERR; } /* fix the sign */ neg = (a->sign != b->sign); A.sign = B.sign = MP_ZPOS; /* If the magnitude of "A" is not more more than twice that of "B" we can work on them directly, otherwise we need to work at "A" in chunks */ n = B.used; m = A.used - B.used; /* Q = 0 */ mp_zero(&Q); while (m > n) { /* (q, r) = RecursveDivRem(A / (beta^(m-n)), B) */ j = (m - n) * MP_DIGIT_BIT; if ((err = mp_div_2d(&A, j, &A_div, &A_mod)) != MP_OKAY) goto LBL_ERR; if ((err = s_recursion(&A_div, &B, &Q1, &R)) != MP_OKAY) goto LBL_ERR; /* Q = (Q*beta!(n)) + q */ if ((err = mp_mul_2d(&Q, n * MP_DIGIT_BIT, &Q)) != MP_OKAY) goto LBL_ERR; if ((err = mp_add(&Q, &Q1, &Q)) != MP_OKAY) goto LBL_ERR; /* A = (r * beta^(m-n)) + (A % beta^(m-n))*/ if ((err = mp_mul_2d(&R, (m - n) * MP_DIGIT_BIT, &R)) != MP_OKAY) goto LBL_ERR; if ((err = mp_add(&R, &A_mod, &A)) != MP_OKAY) goto LBL_ERR; /* m = m - n */ m = m - n; } /* (q, r) = RecursveDivRem(A, B) */ if ((err = s_recursion(&A, &B, &Q1, &R)) != MP_OKAY) goto LBL_ERR; /* Q = (Q * beta^m) + q, R = r */ if ((err = mp_mul_2d(&Q, m * MP_DIGIT_BIT, &Q)) != MP_OKAY) goto LBL_ERR; if ((err = mp_add(&Q, &Q1, &Q)) != MP_OKAY) goto LBL_ERR; /* get sign before writing to c */ Q.sign = (mp_iszero(&Q) ? MP_ZPOS : a->sign); if (q != NULL) { mp_exch(&Q, q); q->sign = (neg ? MP_NEG : MP_ZPOS); } if (r != NULL) { /* de-normalize the remainder */ if ((err = mp_div_2d(&R, sigma, &R, NULL)) != MP_OKAY) goto LBL_ERR; mp_exch(&R, r); } LBL_ERR: mp_clear_multi(&A, &B, &Q, &Q1, &R, &A_div, &A_mod, NULL); return err; } #endif