/* Finds Mersenne primes using the Lucas-Lehmer test * * Tom St Denis, tomstdenis@gmail.com */ #include #include static int is_mersenne(long s, int *pp) { mp_int n, u; int res, k; *pp = 0; if ((res = mp_init(&n)) != MP_OKAY) { return res; } if ((res = mp_init(&u)) != MP_OKAY) { goto LBL_N; } /* n = 2^s - 1 */ if ((res = mp_2expt(&n, (int)s)) != MP_OKAY) { goto LBL_MU; } if ((res = mp_sub_d(&n, 1uL, &n)) != MP_OKAY) { goto LBL_MU; } /* set u=4 */ mp_set(&u, 4uL); /* for k=1 to s-2 do */ for (k = 1; k <= (s - 2); k++) { /* u = u^2 - 2 mod n */ if ((res = mp_sqr(&u, &u)) != MP_OKAY) { goto LBL_MU; } if ((res = mp_sub_d(&u, 2uL, &u)) != MP_OKAY) { goto LBL_MU; } /* make sure u is positive */ while (u.sign == MP_NEG) { if ((res = mp_add(&u, &n, &u)) != MP_OKAY) { goto LBL_MU; } } /* reduce */ if ((res = mp_reduce_2k(&u, &n, 1uL)) != MP_OKAY) { goto LBL_MU; } } /* if u == 0 then its prime */ if (mp_iszero(&u) == 1) { mp_prime_is_prime(&n, 8, pp); if (*pp != 1) printf("FAILURE\n"); } res = MP_OKAY; LBL_MU: mp_clear(&u); LBL_N: mp_clear(&n); return res; } /* square root of a long < 65536 */ static long i_sqrt(long x) { long x1, x2; x2 = 16; do { x1 = x2; x2 = x1 - ((x1 * x1) - x) / (2 * x1); } while (x1 != x2); if ((x1 * x1) > x) { --x1; } return x1; } /* is the long prime by brute force */ static int isprime(long k) { long y, z; y = i_sqrt(k); for (z = 2; z <= y; z++) { if ((k % z) == 0) return 0; } return 1; } int main(void) { int pp; long k; clock_t tt; k = 3; for (;;) { /* start time */ tt = clock(); /* test if 2^k - 1 is prime */ if (is_mersenne(k, &pp) != MP_OKAY) { printf("Whoa error\n"); return -1; } if (pp == 1) { /* count time */ tt = clock() - tt; /* display if prime */ printf("2^%-5ld - 1 is prime, test took %ld ticks\n", k, (long)tt); } /* goto next odd exponent */ k += 2; /* but make sure its prime */ while (isprime(k) == 0) { k += 2; } } }