#include "tommath_private.h" #ifdef S_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* hac 14.61, pp608 */ mp_err s_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x, y, u, v, A, B, C, D; mp_err err; /* b cannot be negative */ if ((b->sign == MP_NEG) || mp_iszero(b)) { return MP_VAL; } /* init temps */ if ((err = mp_init_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL)) != MP_OKAY) { return err; } /* x = a, y = b */ if ((err = mp_mod(a, b, &x)) != MP_OKAY) goto LBL_ERR; if ((err = mp_copy(b, &y)) != MP_OKAY) goto LBL_ERR; /* 2. [modified] if x,y are both even then return an error! */ if (mp_iseven(&x) && mp_iseven(&y)) { err = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((err = mp_copy(&x, &u)) != MP_OKAY) goto LBL_ERR; if ((err = mp_copy(&y, &v)) != MP_OKAY) goto LBL_ERR; mp_set(&A, 1uL); mp_set(&D, 1uL); do { /* 4. while u is even do */ while (mp_iseven(&u)) { /* 4.1 u = u/2 */ if ((err = mp_div_2(&u, &u)) != MP_OKAY) goto LBL_ERR; /* 4.2 if A or B is odd then */ if (mp_isodd(&A) || mp_isodd(&B)) { /* A = (A+y)/2, B = (B-x)/2 */ if ((err = mp_add(&A, &y, &A)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) goto LBL_ERR; } /* A = A/2, B = B/2 */ if ((err = mp_div_2(&A, &A)) != MP_OKAY) goto LBL_ERR; if ((err = mp_div_2(&B, &B)) != MP_OKAY) goto LBL_ERR; } /* 5. while v is even do */ while (mp_iseven(&v)) { /* 5.1 v = v/2 */ if ((err = mp_div_2(&v, &v)) != MP_OKAY) goto LBL_ERR; /* 5.2 if C or D is odd then */ if (mp_isodd(&C) || mp_isodd(&D)) { /* C = (C+y)/2, D = (D-x)/2 */ if ((err = mp_add(&C, &y, &C)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) goto LBL_ERR; } /* C = C/2, D = D/2 */ if ((err = mp_div_2(&C, &C)) != MP_OKAY) goto LBL_ERR; if ((err = mp_div_2(&D, &D)) != MP_OKAY) goto LBL_ERR; } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, A = A - C, B = B - D */ if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&A, &C, &A)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) goto LBL_ERR; } else { /* v - v - u, C = C - A, D = D - B */ if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&C, &A, &C)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) goto LBL_ERR; } /* if not zero goto step 4 */ } while (!mp_iszero(&u)); /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1uL) != MP_EQ) { err = MP_VAL; goto LBL_ERR; } /* if its too low */ while (mp_cmp_d(&C, 0uL) == MP_LT) { if ((err = mp_add(&C, b, &C)) != MP_OKAY) goto LBL_ERR; } /* too big */ while (mp_cmp_mag(&C, b) != MP_LT) { if ((err = mp_sub(&C, b, &C)) != MP_OKAY) goto LBL_ERR; } /* C is now the inverse */ mp_exch(&C, c); LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL); return err; } #endif