fb305e093d
to go along with it.
134 lines
4.7 KiB
C
134 lines
4.7 KiB
C
#include "tommath_private.h"
|
|
#ifdef MP_SQRTMOD_PRIME_C
|
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
|
/* SPDX-License-Identifier: Unlicense */
|
|
|
|
/* Tonelli-Shanks algorithm
|
|
* https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
|
|
* https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
|
|
*
|
|
*/
|
|
|
|
mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
|
|
{
|
|
mp_err err;
|
|
int legendre;
|
|
/* The type is "int" because of the types in the mp_int struct.
|
|
Don't forget to change them here when you change them there! */
|
|
int S, M, i;
|
|
mp_int t1, C, Q, Z, T, R, two;
|
|
|
|
/* first handle the simple cases */
|
|
if (mp_cmp_d(n, 0uL) == MP_EQ) {
|
|
mp_zero(ret);
|
|
return MP_OKAY;
|
|
}
|
|
/* "prime" must be odd and > 2 */
|
|
if (mp_iseven(prime) || (mp_cmp_d(prime, 3uL) == MP_LT)) return MP_VAL;
|
|
if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY) return err;
|
|
/* n \not\cong 0 (mod p) and n \cong r^2 (mod p) for some r \in N^+ */
|
|
if (legendre != 1) return MP_VAL;
|
|
|
|
if ((err = mp_init_multi(&t1, &C, &Q, &Z, &T, &R, &two, NULL)) != MP_OKAY) {
|
|
return err;
|
|
}
|
|
|
|
/* SPECIAL CASE: if prime mod 4 == 3
|
|
* compute directly: err = n^(prime+1)/4 mod prime
|
|
* Handbook of Applied Cryptography algorithm 3.36
|
|
*/
|
|
/* x%4 == x&3 for x in N and x>0 */
|
|
if ((prime->dp[0] & 3u) == 3u) {
|
|
if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto LBL_END;
|
|
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END;
|
|
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END;
|
|
if ((err = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto LBL_END;
|
|
err = MP_OKAY;
|
|
goto LBL_END;
|
|
}
|
|
|
|
/* NOW: Tonelli-Shanks algorithm */
|
|
|
|
/* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
|
|
if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto LBL_END;
|
|
if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto LBL_END;
|
|
/* Q = prime - 1 */
|
|
S = 0;
|
|
/* S = 0 */
|
|
while (mp_iseven(&Q)) {
|
|
if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto LBL_END;
|
|
/* Q = Q / 2 */
|
|
S++;
|
|
/* S = S + 1 */
|
|
}
|
|
|
|
/* find a Z such that the Legendre symbol (Z|prime) == -1 */
|
|
mp_set(&Z, 2uL);
|
|
/* Z = 2 */
|
|
for (;;) {
|
|
if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto LBL_END;
|
|
/* If "prime" (p) is an odd prime Jacobi(k|p) = 0 for k \cong 0 (mod p) */
|
|
/* but there is at least one non-quadratic residue before k>=p if p is an odd prime. */
|
|
if (legendre == 0) {
|
|
err = MP_VAL;
|
|
goto LBL_END;
|
|
}
|
|
if (legendre == -1) break;
|
|
if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto LBL_END;
|
|
/* Z = Z + 1 */
|
|
}
|
|
|
|
if ((err = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto LBL_END;
|
|
/* C = Z ^ Q mod prime */
|
|
if ((err = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto LBL_END;
|
|
if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END;
|
|
/* t1 = (Q + 1) / 2 */
|
|
if ((err = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto LBL_END;
|
|
/* R = n ^ ((Q + 1) / 2) mod prime */
|
|
if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto LBL_END;
|
|
/* T = n ^ Q mod prime */
|
|
M = S;
|
|
/* M = S */
|
|
mp_set(&two, 2uL);
|
|
|
|
for (;;) {
|
|
if ((err = mp_copy(&T, &t1)) != MP_OKAY) goto LBL_END;
|
|
i = 0;
|
|
for (;;) {
|
|
if (mp_cmp_d(&t1, 1uL) == MP_EQ) break;
|
|
/* No exponent in the range 0 < i < M found
|
|
(M is at least 1 in the first round because "prime" > 2) */
|
|
if (M == i) {
|
|
err = MP_VAL;
|
|
goto LBL_END;
|
|
}
|
|
if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto LBL_END;
|
|
i++;
|
|
}
|
|
if (i == 0) {
|
|
if ((err = mp_copy(&R, ret)) != MP_OKAY) goto LBL_END;
|
|
err = MP_OKAY;
|
|
goto LBL_END;
|
|
}
|
|
mp_set_i32(&t1, M - i - 1);
|
|
if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto LBL_END;
|
|
/* t1 = 2 ^ (M - i - 1) */
|
|
if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto LBL_END;
|
|
/* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
|
|
if ((err = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto LBL_END;
|
|
/* C = (t1 * t1) mod prime */
|
|
if ((err = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto LBL_END;
|
|
/* R = (R * t1) mod prime */
|
|
if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto LBL_END;
|
|
/* T = (T * C) mod prime */
|
|
M = i;
|
|
/* M = i */
|
|
}
|
|
|
|
LBL_END:
|
|
mp_clear_multi(&t1, &C, &Q, &Z, &T, &R, &two, NULL);
|
|
return err;
|
|
}
|
|
|
|
#endif
|