415 lines
9.5 KiB
C
415 lines
9.5 KiB
C
/* Generates provable primes
|
|
*
|
|
* See http://gmail.com:8080/papers/pp.pdf for more info.
|
|
*
|
|
* Tom St Denis, tomstdenis@gmail.com, http://tom.gmail.com
|
|
*/
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include "tommath.h"
|
|
|
|
/* TODO: Remove private_mp_word as soon as deprecated mp_word is removed from tommath. */
|
|
typedef private_mp_word mp_word;
|
|
|
|
static int n_prime;
|
|
static FILE *primes;
|
|
|
|
/* fast square root */
|
|
static mp_digit i_sqrt(mp_word x)
|
|
{
|
|
mp_word x1, x2;
|
|
|
|
x2 = x;
|
|
do {
|
|
x1 = x2;
|
|
x2 = x1 - ((x1 * x1) - x) / (2u * x1);
|
|
} while (x1 != x2);
|
|
|
|
if ((x1 * x1) > x) {
|
|
--x1;
|
|
}
|
|
|
|
return x1;
|
|
}
|
|
|
|
|
|
/* generates a prime digit */
|
|
static void gen_prime(void)
|
|
{
|
|
mp_digit r, x, y, next;
|
|
FILE *out;
|
|
|
|
out = fopen("pprime.dat", "wb");
|
|
if (out != NULL) {
|
|
|
|
/* write first set of primes */
|
|
/* *INDENT-OFF* */
|
|
r = 3uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
r = 5uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
r = 7uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
r = 11uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
r = 13uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
r = 17uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
r = 19uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
r = 23uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
r = 29uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
r = 31uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
/* *INDENT-ON* */
|
|
|
|
/* get square root, since if 'r' is composite its factors must be < than this */
|
|
y = i_sqrt(r);
|
|
next = (y + 1uL) * (y + 1uL);
|
|
|
|
for (;;) {
|
|
do {
|
|
r += 2uL; /* next candidate */
|
|
r &= MP_MASK;
|
|
if (r < 31uL) break;
|
|
|
|
/* update sqrt ? */
|
|
if (next <= r) {
|
|
++y;
|
|
next = (y + 1uL) * (y + 1uL);
|
|
}
|
|
|
|
/* loop if divisible by 3,5,7,11,13,17,19,23,29 */
|
|
if ((r % 3uL) == 0uL) {
|
|
x = 0uL;
|
|
continue;
|
|
}
|
|
if ((r % 5uL) == 0uL) {
|
|
x = 0uL;
|
|
continue;
|
|
}
|
|
if ((r % 7uL) == 0uL) {
|
|
x = 0uL;
|
|
continue;
|
|
}
|
|
if ((r % 11uL) == 0uL) {
|
|
x = 0uL;
|
|
continue;
|
|
}
|
|
if ((r % 13uL) == 0uL) {
|
|
x = 0uL;
|
|
continue;
|
|
}
|
|
if ((r % 17uL) == 0uL) {
|
|
x = 0uL;
|
|
continue;
|
|
}
|
|
if ((r % 19uL) == 0uL) {
|
|
x = 0uL;
|
|
continue;
|
|
}
|
|
if ((r % 23uL) == 0uL) {
|
|
x = 0uL;
|
|
continue;
|
|
}
|
|
if ((r % 29uL) == 0uL) {
|
|
x = 0uL;
|
|
continue;
|
|
}
|
|
|
|
/* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
|
|
for (x = 30uL; x <= y; x += 30uL) {
|
|
if ((r % (x + 1uL)) == 0uL) {
|
|
x = 0uL;
|
|
break;
|
|
}
|
|
if ((r % (x + 7uL)) == 0uL) {
|
|
x = 0uL;
|
|
break;
|
|
}
|
|
if ((r % (x + 11uL)) == 0uL) {
|
|
x = 0uL;
|
|
break;
|
|
}
|
|
if ((r % (x + 13uL)) == 0uL) {
|
|
x = 0uL;
|
|
break;
|
|
}
|
|
if ((r % (x + 17uL)) == 0uL) {
|
|
x = 0uL;
|
|
break;
|
|
}
|
|
if ((r % (x + 19uL)) == 0uL) {
|
|
x = 0uL;
|
|
break;
|
|
}
|
|
if ((r % (x + 23uL)) == 0uL) {
|
|
x = 0uL;
|
|
break;
|
|
}
|
|
if ((r % (x + 29uL)) == 0uL) {
|
|
x = 0uL;
|
|
break;
|
|
}
|
|
}
|
|
} while (x == 0uL);
|
|
if (r > 31uL) {
|
|
fwrite(&r, 1uL, sizeof(mp_digit), out);
|
|
printf("%9lu\r", r);
|
|
fflush(stdout);
|
|
}
|
|
if (r < 31uL) break;
|
|
}
|
|
|
|
fclose(out);
|
|
}
|
|
}
|
|
|
|
static void load_tab(void)
|
|
{
|
|
primes = fopen("pprime.dat", "rb");
|
|
if (primes == NULL) {
|
|
gen_prime();
|
|
primes = fopen("pprime.dat", "rb");
|
|
}
|
|
fseek(primes, 0L, SEEK_END);
|
|
n_prime = ftell(primes) / sizeof(mp_digit);
|
|
}
|
|
|
|
static mp_digit prime_digit(void)
|
|
{
|
|
int n;
|
|
mp_digit d;
|
|
|
|
n = abs(rand()) % n_prime;
|
|
fseek(primes, n * sizeof(mp_digit), SEEK_SET);
|
|
fread(&d, 1uL, sizeof(mp_digit), primes);
|
|
return d;
|
|
}
|
|
|
|
|
|
/* makes a prime of at least k bits */
|
|
static mp_err pprime(int k, int li, mp_int *p, mp_int *q)
|
|
{
|
|
mp_int a, b, c, n, x, y, z, v;
|
|
mp_err res;
|
|
int ii;
|
|
static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
|
|
|
|
/* single digit ? */
|
|
if (k <= (int) MP_DIGIT_BIT) {
|
|
mp_set(p, prime_digit());
|
|
return MP_OKAY;
|
|
}
|
|
|
|
if ((res = mp_init(&c)) != MP_OKAY) {
|
|
return res;
|
|
}
|
|
|
|
if ((res = mp_init(&v)) != MP_OKAY) {
|
|
goto LBL_C;
|
|
}
|
|
|
|
/* product of first 50 primes */
|
|
if ((res =
|
|
mp_read_radix(&v,
|
|
"19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
|
|
10)) != MP_OKAY) {
|
|
goto LBL_V;
|
|
}
|
|
|
|
if ((res = mp_init(&a)) != MP_OKAY) {
|
|
goto LBL_V;
|
|
}
|
|
|
|
/* set the prime */
|
|
mp_set(&a, prime_digit());
|
|
|
|
if ((res = mp_init(&b)) != MP_OKAY) {
|
|
goto LBL_A;
|
|
}
|
|
|
|
if ((res = mp_init(&n)) != MP_OKAY) {
|
|
goto LBL_B;
|
|
}
|
|
|
|
if ((res = mp_init(&x)) != MP_OKAY) {
|
|
goto LBL_N;
|
|
}
|
|
|
|
if ((res = mp_init(&y)) != MP_OKAY) {
|
|
goto LBL_X;
|
|
}
|
|
|
|
if ((res = mp_init(&z)) != MP_OKAY) {
|
|
goto LBL_Y;
|
|
}
|
|
|
|
/* now loop making the single digit */
|
|
while (mp_count_bits(&a) < k) {
|
|
fprintf(stderr, "prime has %4d bits left\r", k - mp_count_bits(&a));
|
|
fflush(stderr);
|
|
top:
|
|
mp_set(&b, prime_digit());
|
|
|
|
/* now compute z = a * b * 2 */
|
|
if ((res = mp_mul(&a, &b, &z)) != MP_OKAY) { /* z = a * b */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
if ((res = mp_copy(&z, &c)) != MP_OKAY) { /* c = a * b */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
if ((res = mp_mul_2(&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
/* n = z + 1 */
|
|
if ((res = mp_add_d(&z, 1uL, &n)) != MP_OKAY) { /* n = z + 1 */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
/* check (n, v) == 1 */
|
|
if ((res = mp_gcd(&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
if (mp_cmp_d(&y, 1uL) != MP_EQ)
|
|
goto top;
|
|
|
|
/* now try base x=bases[ii] */
|
|
for (ii = 0; ii < li; ii++) {
|
|
mp_set(&x, bases[ii]);
|
|
|
|
/* compute x^a mod n */
|
|
if ((res = mp_exptmod(&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
/* if y == 1 loop */
|
|
if (mp_cmp_d(&y, 1uL) == MP_EQ)
|
|
continue;
|
|
|
|
/* now x^2a mod n */
|
|
if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
if (mp_cmp_d(&y, 1uL) == MP_EQ)
|
|
continue;
|
|
|
|
/* compute x^b mod n */
|
|
if ((res = mp_exptmod(&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
/* if y == 1 loop */
|
|
if (mp_cmp_d(&y, 1uL) == MP_EQ)
|
|
continue;
|
|
|
|
/* now x^2b mod n */
|
|
if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
if (mp_cmp_d(&y, 1uL) == MP_EQ)
|
|
continue;
|
|
|
|
/* compute x^c mod n == x^ab mod n */
|
|
if ((res = mp_exptmod(&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
/* if y == 1 loop */
|
|
if (mp_cmp_d(&y, 1uL) == MP_EQ)
|
|
continue;
|
|
|
|
/* now compute (x^c mod n)^2 */
|
|
if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
|
|
goto LBL_Z;
|
|
}
|
|
|
|
/* y should be 1 */
|
|
if (mp_cmp_d(&y, 1uL) != MP_EQ)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
/* no bases worked? */
|
|
if (ii == li)
|
|
goto top;
|
|
|
|
{
|
|
char buf[4096];
|
|
|
|
mp_to_decimal(&n, buf, sizeof(buf));
|
|
printf("Certificate of primality for:\n%s\n\n", buf);
|
|
mp_to_decimal(&a, buf, sizeof(buf));
|
|
printf("A == \n%s\n\n", buf);
|
|
mp_to_decimal(&b, buf, sizeof(buf));
|
|
printf("B == \n%s\n\nG == %lu\n", buf, bases[ii]);
|
|
printf("----------------------------------------------------------------\n");
|
|
}
|
|
|
|
/* a = n */
|
|
mp_copy(&n, &a);
|
|
}
|
|
|
|
/* get q to be the order of the large prime subgroup */
|
|
mp_sub_d(&n, 1uL, q);
|
|
mp_div_2(q, q);
|
|
mp_div(q, &b, q, NULL);
|
|
|
|
mp_exch(&n, p);
|
|
|
|
res = MP_OKAY;
|
|
LBL_Z:
|
|
mp_clear(&z);
|
|
LBL_Y:
|
|
mp_clear(&y);
|
|
LBL_X:
|
|
mp_clear(&x);
|
|
LBL_N:
|
|
mp_clear(&n);
|
|
LBL_B:
|
|
mp_clear(&b);
|
|
LBL_A:
|
|
mp_clear(&a);
|
|
LBL_V:
|
|
mp_clear(&v);
|
|
LBL_C:
|
|
mp_clear(&c);
|
|
return res;
|
|
}
|
|
|
|
|
|
int main(void)
|
|
{
|
|
mp_int p, q;
|
|
char buf[4096];
|
|
int k, li;
|
|
clock_t t1;
|
|
|
|
srand(time(NULL));
|
|
load_tab();
|
|
|
|
printf("Enter # of bits: \n");
|
|
fgets(buf, sizeof(buf), stdin);
|
|
sscanf(buf, "%d", &k);
|
|
|
|
printf("Enter number of bases to try (1 to 8):\n");
|
|
fgets(buf, sizeof(buf), stdin);
|
|
sscanf(buf, "%d", &li);
|
|
|
|
|
|
mp_init(&p);
|
|
mp_init(&q);
|
|
|
|
t1 = clock();
|
|
pprime(k, li, &p, &q);
|
|
t1 = clock() - t1;
|
|
|
|
printf("\n\nTook %lu ticks, %d bits\n", t1, mp_count_bits(&p));
|
|
|
|
mp_to_decimal(&p, buf, sizeof(buf));
|
|
printf("P == %s\n", buf);
|
|
mp_to_decimal(&q, buf, sizeof(buf));
|
|
printf("Q == %s\n", buf);
|
|
|
|
return 0;
|
|
}
|