616 lines
19 KiB
C
616 lines
19 KiB
C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
*
|
|
* LibTomMath is a library that provides multiple-precision
|
|
* integer arithmetic as well as number theoretic functionality.
|
|
*
|
|
* The library was designed directly after the MPI library by
|
|
* Michael Fromberger but has been written from scratch with
|
|
* additional optimizations in place.
|
|
*
|
|
* SPDX-License-Identifier: Unlicense
|
|
*/
|
|
#ifndef BN_H_
|
|
#define BN_H_
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <limits.h>
|
|
|
|
#include "tommath_class.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */
|
|
#if defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__)
|
|
# define MP_32BIT
|
|
#endif
|
|
|
|
/* detect 64-bit mode if possible */
|
|
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
|
|
defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
|
|
defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \
|
|
defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
|
|
defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
|
|
defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
|
|
# if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
|
|
# if defined(__GNUC__)
|
|
/* we support 128bit integers only via: __attribute__((mode(TI))) */
|
|
# define MP_64BIT
|
|
# else
|
|
/* otherwise we fall back to MP_32BIT even on 64bit platforms */
|
|
# define MP_32BIT
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
/* some default configurations.
|
|
*
|
|
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
|
|
* A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
|
|
*
|
|
* At the very least a mp_digit must be able to hold 7 bits
|
|
* [any size beyond that is ok provided it doesn't overflow the data type]
|
|
*/
|
|
#ifdef MP_8BIT
|
|
typedef uint8_t mp_digit;
|
|
typedef uint16_t mp_word;
|
|
# define MP_SIZEOF_MP_DIGIT 1
|
|
# ifdef DIGIT_BIT
|
|
# error You must not define DIGIT_BIT when using MP_8BIT
|
|
# endif
|
|
#elif defined(MP_16BIT)
|
|
typedef uint16_t mp_digit;
|
|
typedef uint32_t mp_word;
|
|
# define MP_SIZEOF_MP_DIGIT 2
|
|
# ifdef DIGIT_BIT
|
|
# error You must not define DIGIT_BIT when using MP_16BIT
|
|
# endif
|
|
#elif defined(MP_64BIT)
|
|
/* for GCC only on supported platforms */
|
|
typedef uint64_t mp_digit;
|
|
typedef unsigned long mp_word __attribute__((mode(TI)));
|
|
# define DIGIT_BIT 60
|
|
#else
|
|
/* this is the default case, 28-bit digits */
|
|
|
|
/* this is to make porting into LibTomCrypt easier :-) */
|
|
typedef uint32_t mp_digit;
|
|
typedef uint64_t mp_word;
|
|
|
|
# ifdef MP_31BIT
|
|
/* this is an extension that uses 31-bit digits */
|
|
# define DIGIT_BIT 31
|
|
# else
|
|
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
|
|
# define DIGIT_BIT 28
|
|
# define MP_28BIT
|
|
# endif
|
|
#endif
|
|
|
|
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
|
|
#ifndef DIGIT_BIT
|
|
# define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */
|
|
typedef uint_least32_t mp_min_u32;
|
|
#else
|
|
typedef mp_digit mp_min_u32;
|
|
#endif
|
|
|
|
#define MP_DIGIT_BIT DIGIT_BIT
|
|
#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
|
|
#define MP_DIGIT_MAX MP_MASK
|
|
|
|
/* equalities */
|
|
#define MP_LT -1 /* less than */
|
|
#define MP_EQ 0 /* equal to */
|
|
#define MP_GT 1 /* greater than */
|
|
|
|
#define MP_ZPOS 0 /* positive integer */
|
|
#define MP_NEG 1 /* negative */
|
|
|
|
#define MP_OKAY 0 /* ok result */
|
|
#define MP_MEM -2 /* out of mem */
|
|
#define MP_VAL -3 /* invalid input */
|
|
#define MP_RANGE MP_VAL
|
|
#define MP_ITER -4 /* Max. iterations reached */
|
|
|
|
#define MP_YES 1 /* yes response */
|
|
#define MP_NO 0 /* no response */
|
|
|
|
/* Primality generation flags */
|
|
#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
|
|
#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
|
|
#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
|
|
|
|
typedef int mp_err;
|
|
|
|
/* you'll have to tune these... */
|
|
extern int KARATSUBA_MUL_CUTOFF,
|
|
KARATSUBA_SQR_CUTOFF,
|
|
TOOM_MUL_CUTOFF,
|
|
TOOM_SQR_CUTOFF;
|
|
|
|
/* define this to use lower memory usage routines (exptmods mostly) */
|
|
/* #define MP_LOW_MEM */
|
|
|
|
/* default precision */
|
|
#ifndef MP_PREC
|
|
# ifndef MP_LOW_MEM
|
|
# define MP_PREC 32 /* default digits of precision */
|
|
# else
|
|
# define MP_PREC 8 /* default digits of precision */
|
|
# endif
|
|
#endif
|
|
|
|
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
|
|
#define MP_WARRAY (1u << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))
|
|
|
|
/* the infamous mp_int structure */
|
|
typedef struct {
|
|
int used, alloc, sign;
|
|
mp_digit *dp;
|
|
} mp_int;
|
|
|
|
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
|
|
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
|
|
|
|
|
|
#define USED(m) ((m)->used)
|
|
#define DIGIT(m, k) ((m)->dp[(k)])
|
|
#define SIGN(m) ((m)->sign)
|
|
|
|
/* error code to char* string */
|
|
const char *mp_error_to_string(int code);
|
|
|
|
/* ---> init and deinit bignum functions <--- */
|
|
/* init a bignum */
|
|
int mp_init(mp_int *a);
|
|
|
|
/* free a bignum */
|
|
void mp_clear(mp_int *a);
|
|
|
|
/* init a null terminated series of arguments */
|
|
int mp_init_multi(mp_int *mp, ...);
|
|
|
|
/* clear a null terminated series of arguments */
|
|
void mp_clear_multi(mp_int *mp, ...);
|
|
|
|
/* exchange two ints */
|
|
void mp_exch(mp_int *a, mp_int *b);
|
|
|
|
/* shrink ram required for a bignum */
|
|
int mp_shrink(mp_int *a);
|
|
|
|
/* grow an int to a given size */
|
|
int mp_grow(mp_int *a, int size);
|
|
|
|
/* init to a given number of digits */
|
|
int mp_init_size(mp_int *a, int size);
|
|
|
|
/* ---> Basic Manipulations <--- */
|
|
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
|
|
int mp_iseven(const mp_int *a);
|
|
int mp_isodd(const mp_int *a);
|
|
#define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)
|
|
|
|
/* set to zero */
|
|
void mp_zero(mp_int *a);
|
|
|
|
/* set to a digit */
|
|
void mp_set(mp_int *a, mp_digit b);
|
|
|
|
/* set a double */
|
|
int mp_set_double(mp_int *a, double b);
|
|
|
|
/* set a 32-bit const */
|
|
int mp_set_int(mp_int *a, unsigned long b);
|
|
|
|
/* set a platform dependent unsigned long value */
|
|
int mp_set_long(mp_int *a, unsigned long b);
|
|
|
|
/* set a platform dependent unsigned long long value */
|
|
int mp_set_long_long(mp_int *a, unsigned long long b);
|
|
|
|
/* get a double */
|
|
double mp_get_double(const mp_int *a);
|
|
|
|
/* get a 32-bit value */
|
|
unsigned long mp_get_int(const mp_int *a);
|
|
|
|
/* get a platform dependent unsigned long value */
|
|
unsigned long mp_get_long(const mp_int *a);
|
|
|
|
/* get a platform dependent unsigned long long value */
|
|
unsigned long long mp_get_long_long(const mp_int *a);
|
|
|
|
/* initialize and set a digit */
|
|
int mp_init_set(mp_int *a, mp_digit b);
|
|
|
|
/* initialize and set 32-bit value */
|
|
int mp_init_set_int(mp_int *a, unsigned long b);
|
|
|
|
/* copy, b = a */
|
|
int mp_copy(const mp_int *a, mp_int *b);
|
|
|
|
/* inits and copies, a = b */
|
|
int mp_init_copy(mp_int *a, const mp_int *b);
|
|
|
|
/* trim unused digits */
|
|
void mp_clamp(mp_int *a);
|
|
|
|
/* import binary data */
|
|
int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
|
|
|
|
/* export binary data */
|
|
int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
|
|
|
|
/* ---> digit manipulation <--- */
|
|
|
|
/* right shift by "b" digits */
|
|
void mp_rshd(mp_int *a, int b);
|
|
|
|
/* left shift by "b" digits */
|
|
int mp_lshd(mp_int *a, int b);
|
|
|
|
/* c = a / 2**b, implemented as c = a >> b */
|
|
int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
|
|
|
|
/* b = a/2 */
|
|
int mp_div_2(const mp_int *a, mp_int *b);
|
|
|
|
/* c = a * 2**b, implemented as c = a << b */
|
|
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
|
|
|
|
/* b = a*2 */
|
|
int mp_mul_2(const mp_int *a, mp_int *b);
|
|
|
|
/* c = a mod 2**b */
|
|
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
|
|
|
|
/* computes a = 2**b */
|
|
int mp_2expt(mp_int *a, int b);
|
|
|
|
/* Counts the number of lsbs which are zero before the first zero bit */
|
|
int mp_cnt_lsb(const mp_int *a);
|
|
|
|
/* I Love Earth! */
|
|
|
|
/* makes a pseudo-random mp_int of a given size */
|
|
int mp_rand(mp_int *a, int digits);
|
|
/* makes a pseudo-random small int of a given size */
|
|
int mp_rand_digit(mp_digit *r);
|
|
|
|
#ifdef MP_PRNG_ENABLE_LTM_RNG
|
|
/* A last resort to provide random data on systems without any of the other
|
|
* implemented ways to gather entropy.
|
|
* It is compatible with `rng_get_bytes()` from libtomcrypt so you could
|
|
* provide that one and then set `ltm_rng = rng_get_bytes;` */
|
|
extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
|
|
extern void (*ltm_rng_callback)(void);
|
|
#endif
|
|
|
|
/* ---> binary operations <--- */
|
|
/* c = a XOR b */
|
|
int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* c = a OR b */
|
|
int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* c = a AND b */
|
|
int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* Checks the bit at position b and returns MP_YES
|
|
if the bit is 1, MP_NO if it is 0 and MP_VAL
|
|
in case of error */
|
|
int mp_get_bit(const mp_int *a, int b);
|
|
|
|
/* c = a XOR b (two complement) */
|
|
int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* c = a OR b (two complement) */
|
|
int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* c = a AND b (two complement) */
|
|
int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* right shift (two complement) */
|
|
int mp_tc_div_2d(const mp_int *a, int b, mp_int *c);
|
|
|
|
/* ---> Basic arithmetic <--- */
|
|
|
|
/* b = ~a */
|
|
int mp_complement(const mp_int *a, mp_int *b);
|
|
|
|
/* b = -a */
|
|
int mp_neg(const mp_int *a, mp_int *b);
|
|
|
|
/* b = |a| */
|
|
int mp_abs(const mp_int *a, mp_int *b);
|
|
|
|
/* compare a to b */
|
|
int mp_cmp(const mp_int *a, const mp_int *b);
|
|
|
|
/* compare |a| to |b| */
|
|
int mp_cmp_mag(const mp_int *a, const mp_int *b);
|
|
|
|
/* c = a + b */
|
|
int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* c = a - b */
|
|
int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* c = a * b */
|
|
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* b = a*a */
|
|
int mp_sqr(const mp_int *a, mp_int *b);
|
|
|
|
/* a/b => cb + d == a */
|
|
int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
/* c = a mod b, 0 <= c < b */
|
|
int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* ---> single digit functions <--- */
|
|
|
|
/* compare against a single digit */
|
|
int mp_cmp_d(const mp_int *a, mp_digit b);
|
|
|
|
/* c = a + b */
|
|
int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
/* c = a - b */
|
|
int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
/* c = a * b */
|
|
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
/* a/b => cb + d == a */
|
|
int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
|
|
|
|
/* a/3 => 3c + d == a */
|
|
int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
|
|
|
|
/* c = a**b */
|
|
int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
|
|
int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
|
|
|
|
/* c = a mod b, 0 <= c < b */
|
|
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
|
|
|
|
/* ---> number theory <--- */
|
|
|
|
/* d = a + b (mod c) */
|
|
int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
|
|
|
|
/* d = a - b (mod c) */
|
|
int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
|
|
|
|
/* d = a * b (mod c) */
|
|
int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
|
|
|
|
/* c = a * a (mod b) */
|
|
int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* c = 1/a (mod b) */
|
|
int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* c = (a, b) */
|
|
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* produces value such that U1*a + U2*b = U3 */
|
|
int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
|
|
|
|
/* c = [a, b] or (a*b)/(a, b) */
|
|
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
|
|
|
|
/* finds one of the b'th root of a, such that |c|**b <= |a|
|
|
*
|
|
* returns error if a < 0 and b is even
|
|
*/
|
|
int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
|
|
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
|
|
|
|
/* special sqrt algo */
|
|
int mp_sqrt(const mp_int *arg, mp_int *ret);
|
|
|
|
/* special sqrt (mod prime) */
|
|
int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret);
|
|
|
|
/* is number a square? */
|
|
int mp_is_square(const mp_int *arg, int *ret);
|
|
|
|
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
|
|
int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
|
|
|
|
/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
|
|
int mp_kronecker(const mp_int *a, const mp_int *p, int *c);
|
|
|
|
/* used to setup the Barrett reduction for a given modulus b */
|
|
int mp_reduce_setup(mp_int *a, const mp_int *b);
|
|
|
|
/* Barrett Reduction, computes a (mod b) with a precomputed value c
|
|
*
|
|
* Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
|
|
* compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
|
|
*/
|
|
int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
|
|
|
|
/* setups the montgomery reduction */
|
|
int mp_montgomery_setup(const mp_int *n, mp_digit *rho);
|
|
|
|
/* computes a = B**n mod b without division or multiplication useful for
|
|
* normalizing numbers in a Montgomery system.
|
|
*/
|
|
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
|
|
|
|
/* computes x/R == x (mod N) via Montgomery Reduction */
|
|
int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
|
|
|
|
/* returns 1 if a is a valid DR modulus */
|
|
int mp_dr_is_modulus(const mp_int *a);
|
|
|
|
/* sets the value of "d" required for mp_dr_reduce */
|
|
void mp_dr_setup(const mp_int *a, mp_digit *d);
|
|
|
|
/* reduces a modulo n using the Diminished Radix method */
|
|
int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k);
|
|
|
|
/* returns true if a can be reduced with mp_reduce_2k */
|
|
int mp_reduce_is_2k(const mp_int *a);
|
|
|
|
/* determines k value for 2k reduction */
|
|
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
|
|
|
|
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
|
|
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
|
|
|
|
/* returns true if a can be reduced with mp_reduce_2k_l */
|
|
int mp_reduce_is_2k_l(const mp_int *a);
|
|
|
|
/* determines k value for 2k reduction */
|
|
int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
|
|
|
|
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
|
|
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
|
|
|
|
/* Y = G**X (mod P) */
|
|
int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);
|
|
|
|
/* ---> Primes <--- */
|
|
|
|
/* number of primes */
|
|
#ifdef MP_8BIT
|
|
# define PRIME_SIZE 31
|
|
#else
|
|
# define PRIME_SIZE 256
|
|
#endif
|
|
|
|
/* table of first PRIME_SIZE primes */
|
|
extern const mp_digit ltm_prime_tab[PRIME_SIZE];
|
|
|
|
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
|
|
int mp_prime_is_divisible(const mp_int *a, int *result);
|
|
|
|
/* performs one Fermat test of "a" using base "b".
|
|
* Sets result to 0 if composite or 1 if probable prime
|
|
*/
|
|
int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
|
|
|
|
/* performs one Miller-Rabin test of "a" using base "b".
|
|
* Sets result to 0 if composite or 1 if probable prime
|
|
*/
|
|
int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
|
|
|
|
/* This gives [for a given bit size] the number of trials required
|
|
* such that Miller-Rabin gives a prob of failure lower than 2^-96
|
|
*/
|
|
int mp_prime_rabin_miller_trials(int size);
|
|
|
|
/* performs one strong Lucas-Selfridge test of "a".
|
|
* Sets result to 0 if composite or 1 if probable prime
|
|
*/
|
|
int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result);
|
|
|
|
/* performs one Frobenius test of "a" as described by Paul Underwood.
|
|
* Sets result to 0 if composite or 1 if probable prime
|
|
*/
|
|
int mp_prime_frobenius_underwood(const mp_int *N, int *result);
|
|
|
|
/* performs t random rounds of Miller-Rabin on "a" additional to
|
|
* bases 2 and 3. Also performs an initial sieve of trial
|
|
* division. Determines if "a" is prime with probability
|
|
* of error no more than (1/4)**t.
|
|
* Both a strong Lucas-Selfridge to complete the BPSW test
|
|
* and a separate Frobenius test are available at compile time.
|
|
* With t<0 a deterministic test is run for primes up to
|
|
* 318665857834031151167461. With t<13 (abs(t)-13) additional
|
|
* tests with sequential small primes are run starting at 43.
|
|
* Is Fips 186.4 compliant if called with t as computed by
|
|
* mp_prime_rabin_miller_trials();
|
|
*
|
|
* Sets result to 1 if probably prime, 0 otherwise
|
|
*/
|
|
int mp_prime_is_prime(const mp_int *a, int t, int *result);
|
|
|
|
/* finds the next prime after the number "a" using "t" trials
|
|
* of Miller-Rabin.
|
|
*
|
|
* bbs_style = 1 means the prime must be congruent to 3 mod 4
|
|
*/
|
|
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
|
|
|
|
/* makes a truly random prime of a given size (bytes),
|
|
* call with bbs = 1 if you want it to be congruent to 3 mod 4
|
|
*
|
|
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
|
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
|
* so it can be NULL
|
|
*
|
|
* The prime generated will be larger than 2^(8*size).
|
|
*/
|
|
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
|
|
|
|
/* makes a truly random prime of a given size (bits),
|
|
*
|
|
* Flags are as follows:
|
|
*
|
|
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
|
|
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
|
|
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
|
|
*
|
|
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
|
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
|
* so it can be NULL
|
|
*
|
|
*/
|
|
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
|
|
|
|
/* ---> radix conversion <--- */
|
|
int mp_count_bits(const mp_int *a);
|
|
|
|
int mp_unsigned_bin_size(const mp_int *a);
|
|
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
|
|
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
|
|
int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
|
|
|
|
int mp_signed_bin_size(const mp_int *a);
|
|
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
|
|
int mp_to_signed_bin(const mp_int *a, unsigned char *b);
|
|
int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
|
|
|
|
int mp_read_radix(mp_int *a, const char *str, int radix);
|
|
int mp_toradix(const mp_int *a, char *str, int radix);
|
|
int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
|
|
int mp_radix_size(const mp_int *a, int radix, int *size);
|
|
|
|
#ifndef LTM_NO_FILE
|
|
int mp_fread(mp_int *a, int radix, FILE *stream);
|
|
int mp_fwrite(const mp_int *a, int radix, FILE *stream);
|
|
#endif
|
|
|
|
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
|
|
#define mp_raw_size(mp) mp_signed_bin_size(mp)
|
|
#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
|
|
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
|
|
#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
|
|
#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
|
|
|
|
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
|
|
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
|
|
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
|
|
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
/* ref: $Format:%D$ */
|
|
/* git commit: $Format:%H$ */
|
|
/* commit time: $Format:%ai$ */
|