libtommath/bn_mp_is_square.c
2010-07-15 17:26:06 +02:00

110 lines
3.1 KiB
C

#include <tommath.h>
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* Check if remainders are possible squares - fast exclude non-squares */
static const char rem_128[128] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
};
static const char rem_105[105] = {
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
};
/* Store non-zero to ret if arg is square, and zero if not */
int mp_is_square(mp_int *arg,int *ret)
{
int res;
mp_digit c;
mp_int t;
unsigned long r;
/* Default to Non-square :) */
*ret = MP_NO;
if (arg->sign == MP_NEG) {
return MP_VAL;
}
/* digits used? (TSD) */
if (arg->used == 0) {
return MP_OKAY;
}
/* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
if (rem_128[127 & DIGIT(arg,0)] == 1) {
return MP_OKAY;
}
/* Next check mod 105 (3*5*7) */
if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
return res;
}
if (rem_105[c] == 1) {
return MP_OKAY;
}
if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
return res;
}
if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
goto ERR;
}
r = mp_get_int(&t);
/* Check for other prime modules, note it's not an ERROR but we must
* free "t" so the easiest way is to goto ERR. We know that res
* is already equal to MP_OKAY from the mp_mod call
*/
if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
/* Final check - is sqr(sqrt(arg)) == arg ? */
if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
goto ERR;
}
*ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
ERR:mp_clear(&t);
return res;
}
#endif
/* $Source$ */
/* $Revision$ */
/* $Date$ */