3988 lines
79 KiB
C
3988 lines
79 KiB
C
/*
|
|
mpi.c
|
|
|
|
by Michael J. Fromberger <sting@linguist.dartmouth.edu>
|
|
Copyright (C) 1998 Michael J. Fromberger
|
|
|
|
Arbitrary precision integer arithmetic library
|
|
|
|
SPDX-License-Identifier: Unlicense
|
|
|
|
$Id$
|
|
*/
|
|
|
|
#include "mpi.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
|
|
#if MP_DEBUG
|
|
#include <stdio.h>
|
|
|
|
#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
|
|
#else
|
|
#define DIAG(T,V)
|
|
#endif
|
|
|
|
/*
|
|
If MP_LOGTAB is not defined, use the math library to compute the
|
|
logarithms on the fly. Otherwise, use the static table below.
|
|
Pick which works best for your system.
|
|
*/
|
|
#if MP_LOGTAB
|
|
|
|
/* {{{ s_logv_2[] - log table for 2 in various bases */
|
|
|
|
/*
|
|
A table of the logs of 2 for various bases (the 0 and 1 entries of
|
|
this table are meaningless and should not be referenced).
|
|
|
|
This table is used to compute output lengths for the mp_toradix()
|
|
function. Since a number n in radix r takes up about log_r(n)
|
|
digits, we estimate the output size by taking the least integer
|
|
greater than log_r(n), where:
|
|
|
|
log_r(n) = log_2(n) * log_r(2)
|
|
|
|
This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
|
|
which are the output bases supported.
|
|
*/
|
|
|
|
#include "logtab.h"
|
|
|
|
/* }}} */
|
|
#define LOG_V_2(R) s_logv_2[(R)]
|
|
|
|
#else
|
|
|
|
#include <math.h>
|
|
#define LOG_V_2(R) (log(2.0)/log(R))
|
|
|
|
#endif
|
|
|
|
/* Default precision for newly created mp_int's */
|
|
static unsigned int s_mp_defprec = MP_DEFPREC;
|
|
|
|
/* {{{ Digit arithmetic macros */
|
|
|
|
/*
|
|
When adding and multiplying digits, the results can be larger than
|
|
can be contained in an mp_digit. Thus, an mp_word is used. These
|
|
macros mask off the upper and lower digits of the mp_word (the
|
|
mp_word may be more than 2 mp_digits wide, but we only concern
|
|
ourselves with the low-order 2 mp_digits)
|
|
|
|
If your mp_word DOES have more than 2 mp_digits, you need to
|
|
uncomment the first line, and comment out the second.
|
|
*/
|
|
|
|
/* #define CARRYOUT(W) (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */
|
|
#define CARRYOUT(W) ((W)>>DIGIT_BIT)
|
|
#define ACCUM(W) ((W)&MP_DIGIT_MAX)
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ Comparison constants */
|
|
|
|
#define MP_LT -1
|
|
#define MP_EQ 0
|
|
#define MP_GT 1
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ Constant strings */
|
|
|
|
/* Constant strings returned by mp_strerror() */
|
|
static const char *mp_err_string[] = {
|
|
"unknown result code", /* say what? */
|
|
"boolean true", /* MP_OKAY, MP_YES */
|
|
"boolean false", /* MP_NO */
|
|
"out of memory", /* MP_MEM */
|
|
"argument out of range", /* MP_RANGE */
|
|
"invalid input parameter", /* MP_BADARG */
|
|
"result is undefined" /* MP_UNDEF */
|
|
};
|
|
|
|
/* Value to digit maps for radix conversion */
|
|
|
|
/* s_dmap_1 - standard digits and letters */
|
|
static const char *s_dmap_1 =
|
|
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
|
|
|
|
#if 0
|
|
/* s_dmap_2 - base64 ordering for digits */
|
|
static const char *s_dmap_2 =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
#endif
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ Static function declarations */
|
|
|
|
/*
|
|
If MP_MACRO is false, these will be defined as actual functions;
|
|
otherwise, suitable macro definitions will be used. This works
|
|
around the fact that ANSI C89 doesn't support an 'inline' keyword
|
|
(although I hear C9x will ... about bloody time). At present, the
|
|
macro definitions are identical to the function bodies, but they'll
|
|
expand in place, instead of generating a function call.
|
|
|
|
I chose these particular functions to be made into macros because
|
|
some profiling showed they are called a lot on a typical workload,
|
|
and yet they are primarily housekeeping.
|
|
*/
|
|
#if MP_MACRO == 0
|
|
void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */
|
|
void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
|
|
void *s_mp_alloc(size_t nb, size_t ni); /* general allocator */
|
|
void s_mp_free(void *ptr); /* general free function */
|
|
#else
|
|
|
|
/* Even if these are defined as macros, we need to respect the settings
|
|
of the MP_MEMSET and MP_MEMCPY configuration options...
|
|
*/
|
|
#if MP_MEMSET == 0
|
|
#define s_mp_setz(dp, count) \
|
|
{int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
|
|
#else
|
|
#define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
|
|
#endif /* MP_MEMSET */
|
|
|
|
#if MP_MEMCPY == 0
|
|
#define s_mp_copy(sp, dp, count) \
|
|
{int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
|
|
#else
|
|
#define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
|
|
#endif /* MP_MEMCPY */
|
|
|
|
#define s_mp_alloc(nb, ni) calloc(nb, ni)
|
|
#define s_mp_free(ptr) {if(ptr) free(ptr);}
|
|
#endif /* MP_MACRO */
|
|
|
|
mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
|
|
mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */
|
|
|
|
void s_mp_clamp(mp_int *mp); /* clip leading zeroes */
|
|
|
|
void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */
|
|
|
|
mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */
|
|
void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */
|
|
void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */
|
|
void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */
|
|
mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place*/
|
|
void s_mp_div_2(mp_int *mp); /* divide by 2 in place */
|
|
mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */
|
|
mp_digit s_mp_norm(mp_int *a, mp_int *b); /* normalize for division */
|
|
mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
|
|
mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
|
|
mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
|
|
mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
|
|
/* unsigned digit divide */
|
|
mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu);
|
|
/* Barrett reduction */
|
|
mp_err s_mp_add(mp_int *a, mp_int *b); /* magnitude addition */
|
|
mp_err s_mp_sub(mp_int *a, mp_int *b); /* magnitude subtract */
|
|
mp_err s_mp_mul(mp_int *a, mp_int *b); /* magnitude multiply */
|
|
#if 0
|
|
void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len);
|
|
/* multiply buffers in place */
|
|
#endif
|
|
#if MP_SQUARE
|
|
mp_err s_mp_sqr(mp_int *a); /* magnitude square */
|
|
#else
|
|
#define s_mp_sqr(a) s_mp_mul(a, a)
|
|
#endif
|
|
mp_err s_mp_div(mp_int *a, mp_int *b); /* magnitude divide */
|
|
mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */
|
|
int s_mp_cmp(mp_int *a, mp_int *b); /* magnitude comparison */
|
|
int s_mp_cmp_d(mp_int *a, mp_digit d); /* magnitude digit compare */
|
|
int s_mp_ispow2(mp_int *v); /* is v a power of 2? */
|
|
int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */
|
|
|
|
int s_mp_tovalue(char ch, int r); /* convert ch to value */
|
|
char s_mp_todigit(int val, int r, int low); /* convert val to digit */
|
|
int s_mp_outlen(int bits, int r); /* output length in bytes */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ Default precision manipulation */
|
|
|
|
unsigned int mp_get_prec(void)
|
|
{
|
|
return s_mp_defprec;
|
|
|
|
} /* end mp_get_prec() */
|
|
|
|
void mp_set_prec(unsigned int prec)
|
|
{
|
|
if(prec == 0)
|
|
s_mp_defprec = MP_DEFPREC;
|
|
else
|
|
s_mp_defprec = prec;
|
|
|
|
} /* end mp_set_prec() */
|
|
|
|
/* }}} */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* {{{ mp_init(mp) */
|
|
|
|
/*
|
|
mp_init(mp)
|
|
|
|
Initialize a new zero-valued mp_int. Returns MP_OKAY if successful,
|
|
MP_MEM if memory could not be allocated for the structure.
|
|
*/
|
|
|
|
mp_err mp_init(mp_int *mp)
|
|
{
|
|
return mp_init_size(mp, s_mp_defprec);
|
|
|
|
} /* end mp_init() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_init_array(mp[], count) */
|
|
|
|
mp_err mp_init_array(mp_int mp[], int count)
|
|
{
|
|
mp_err res;
|
|
int pos;
|
|
|
|
ARGCHK(mp !=NULL && count > 0, MP_BADARG);
|
|
|
|
for(pos = 0; pos < count; ++pos) {
|
|
if((res = mp_init(&mp[pos])) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
CLEANUP:
|
|
while(--pos >= 0)
|
|
mp_clear(&mp[pos]);
|
|
|
|
return res;
|
|
|
|
} /* end mp_init_array() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_init_size(mp, prec) */
|
|
|
|
/*
|
|
mp_init_size(mp, prec)
|
|
|
|
Initialize a new zero-valued mp_int with at least the given
|
|
precision; returns MP_OKAY if successful, or MP_MEM if memory could
|
|
not be allocated for the structure.
|
|
*/
|
|
|
|
mp_err mp_init_size(mp_int *mp, mp_size prec)
|
|
{
|
|
ARGCHK(mp != NULL && prec > 0, MP_BADARG);
|
|
|
|
if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL)
|
|
return MP_MEM;
|
|
|
|
SIGN(mp) = MP_ZPOS;
|
|
USED(mp) = 1;
|
|
ALLOC(mp) = prec;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_init_size() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_init_copy(mp, from) */
|
|
|
|
/*
|
|
mp_init_copy(mp, from)
|
|
|
|
Initialize mp as an exact copy of from. Returns MP_OKAY if
|
|
successful, MP_MEM if memory could not be allocated for the new
|
|
structure.
|
|
*/
|
|
|
|
mp_err mp_init_copy(mp_int *mp, mp_int *from)
|
|
{
|
|
ARGCHK(mp != NULL && from != NULL, MP_BADARG);
|
|
|
|
if(mp == from)
|
|
return MP_OKAY;
|
|
|
|
if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
|
|
return MP_MEM;
|
|
|
|
s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
|
|
USED(mp) = USED(from);
|
|
ALLOC(mp) = USED(from);
|
|
SIGN(mp) = SIGN(from);
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_init_copy() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_copy(from, to) */
|
|
|
|
/*
|
|
mp_copy(from, to)
|
|
|
|
Copies the mp_int 'from' to the mp_int 'to'. It is presumed that
|
|
'to' has already been initialized (if not, use mp_init_copy()
|
|
instead). If 'from' and 'to' are identical, nothing happens.
|
|
*/
|
|
|
|
mp_err mp_copy(mp_int *from, mp_int *to)
|
|
{
|
|
ARGCHK(from != NULL && to != NULL, MP_BADARG);
|
|
|
|
if(from == to)
|
|
return MP_OKAY;
|
|
|
|
{ /* copy */
|
|
mp_digit *tmp;
|
|
|
|
/*
|
|
If the allocated buffer in 'to' already has enough space to hold
|
|
all the used digits of 'from', we'll re-use it to avoid hitting
|
|
the memory allocater more than necessary; otherwise, we'd have
|
|
to grow anyway, so we just allocate a hunk and make the copy as
|
|
usual
|
|
*/
|
|
if(ALLOC(to) >= USED(from)) {
|
|
s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
|
|
s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
|
|
|
|
} else {
|
|
if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
|
|
return MP_MEM;
|
|
|
|
s_mp_copy(DIGITS(from), tmp, USED(from));
|
|
|
|
if(DIGITS(to) != NULL) {
|
|
#if MP_CRYPTO
|
|
s_mp_setz(DIGITS(to), ALLOC(to));
|
|
#endif
|
|
s_mp_free(DIGITS(to));
|
|
}
|
|
|
|
DIGITS(to) = tmp;
|
|
ALLOC(to) = USED(from);
|
|
}
|
|
|
|
/* Copy the precision and sign from the original */
|
|
USED(to) = USED(from);
|
|
SIGN(to) = SIGN(from);
|
|
} /* end copy */
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_copy() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_exch(mp1, mp2) */
|
|
|
|
/*
|
|
mp_exch(mp1, mp2)
|
|
|
|
Exchange mp1 and mp2 without allocating any intermediate memory
|
|
(well, unless you count the stack space needed for this call and the
|
|
locals it creates...). This cannot fail.
|
|
*/
|
|
|
|
void mp_exch(mp_int *mp1, mp_int *mp2)
|
|
{
|
|
#if MP_ARGCHK == 2
|
|
assert(mp1 != NULL && mp2 != NULL);
|
|
#else
|
|
if(mp1 == NULL || mp2 == NULL)
|
|
return;
|
|
#endif
|
|
|
|
s_mp_exch(mp1, mp2);
|
|
|
|
} /* end mp_exch() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_clear(mp) */
|
|
|
|
/*
|
|
mp_clear(mp)
|
|
|
|
Release the storage used by an mp_int, and void its fields so that
|
|
if someone calls mp_clear() again for the same int later, we won't
|
|
get tollchocked.
|
|
*/
|
|
|
|
void mp_clear(mp_int *mp)
|
|
{
|
|
if(mp == NULL)
|
|
return;
|
|
|
|
if(DIGITS(mp) != NULL) {
|
|
#if MP_CRYPTO
|
|
s_mp_setz(DIGITS(mp), ALLOC(mp));
|
|
#endif
|
|
s_mp_free(DIGITS(mp));
|
|
DIGITS(mp) = NULL;
|
|
}
|
|
|
|
USED(mp) = 0;
|
|
ALLOC(mp) = 0;
|
|
|
|
} /* end mp_clear() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_clear_array(mp[], count) */
|
|
|
|
void mp_clear_array(mp_int mp[], int count)
|
|
{
|
|
ARGCHK(mp != NULL && count > 0, MP_BADARG);
|
|
|
|
while(--count >= 0)
|
|
mp_clear(&mp[count]);
|
|
|
|
} /* end mp_clear_array() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_zero(mp) */
|
|
|
|
/*
|
|
mp_zero(mp)
|
|
|
|
Set mp to zero. Does not change the allocated size of the structure,
|
|
and therefore cannot fail (except on a bad argument, which we ignore)
|
|
*/
|
|
void mp_zero(mp_int *mp)
|
|
{
|
|
if(mp == NULL)
|
|
return;
|
|
|
|
s_mp_setz(DIGITS(mp), ALLOC(mp));
|
|
USED(mp) = 1;
|
|
SIGN(mp) = MP_ZPOS;
|
|
|
|
} /* end mp_zero() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_set(mp, d) */
|
|
|
|
void mp_set(mp_int *mp, mp_digit d)
|
|
{
|
|
if(mp == NULL)
|
|
return;
|
|
|
|
mp_zero(mp);
|
|
DIGIT(mp, 0) = d;
|
|
|
|
} /* end mp_set() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_set_int(mp, z) */
|
|
|
|
mp_err mp_set_int(mp_int *mp, long z)
|
|
{
|
|
int ix;
|
|
unsigned long v = labs(z);
|
|
mp_err res;
|
|
|
|
ARGCHK(mp != NULL, MP_BADARG);
|
|
|
|
mp_zero(mp);
|
|
if(z == 0)
|
|
return MP_OKAY; /* shortcut for zero */
|
|
|
|
for(ix = sizeof(long) - 1; ix >= 0; ix--) {
|
|
|
|
if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
|
|
return res;
|
|
|
|
res = s_mp_add_d(mp,
|
|
(mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
|
|
if(res != MP_OKAY)
|
|
return res;
|
|
|
|
}
|
|
|
|
if(z < 0)
|
|
SIGN(mp) = MP_NEG;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_set_int() */
|
|
|
|
/* }}} */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* {{{ Digit arithmetic */
|
|
|
|
/* {{{ mp_add_d(a, d, b) */
|
|
|
|
/*
|
|
mp_add_d(a, d, b)
|
|
|
|
Compute the sum b = a + d, for a single digit d. Respects the sign of
|
|
its primary addend (single digits are unsigned anyway).
|
|
*/
|
|
|
|
mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b)
|
|
{
|
|
mp_err res = MP_OKAY;
|
|
|
|
ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
|
if((res = mp_copy(a, b)) != MP_OKAY)
|
|
return res;
|
|
|
|
if(SIGN(b) == MP_ZPOS) {
|
|
res = s_mp_add_d(b, d);
|
|
} else if(s_mp_cmp_d(b, d) >= 0) {
|
|
res = s_mp_sub_d(b, d);
|
|
} else {
|
|
SIGN(b) = MP_ZPOS;
|
|
|
|
DIGIT(b, 0) = d - DIGIT(b, 0);
|
|
}
|
|
|
|
return res;
|
|
|
|
} /* end mp_add_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_sub_d(a, d, b) */
|
|
|
|
/*
|
|
mp_sub_d(a, d, b)
|
|
|
|
Compute the difference b = a - d, for a single digit d. Respects the
|
|
sign of its subtrahend (single digits are unsigned anyway).
|
|
*/
|
|
|
|
mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
|
if((res = mp_copy(a, b)) != MP_OKAY)
|
|
return res;
|
|
|
|
if(SIGN(b) == MP_NEG) {
|
|
if((res = s_mp_add_d(b, d)) != MP_OKAY)
|
|
return res;
|
|
|
|
} else if(s_mp_cmp_d(b, d) >= 0) {
|
|
if((res = s_mp_sub_d(b, d)) != MP_OKAY)
|
|
return res;
|
|
|
|
} else {
|
|
mp_neg(b, b);
|
|
|
|
DIGIT(b, 0) = d - DIGIT(b, 0);
|
|
SIGN(b) = MP_NEG;
|
|
}
|
|
|
|
if(s_mp_cmp_d(b, 0) == 0)
|
|
SIGN(b) = MP_ZPOS;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_sub_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_mul_d(a, d, b) */
|
|
|
|
/*
|
|
mp_mul_d(a, d, b)
|
|
|
|
Compute the product b = a * d, for a single digit d. Respects the sign
|
|
of its multiplicand (single digits are unsigned anyway)
|
|
*/
|
|
|
|
mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
|
if(d == 0) {
|
|
mp_zero(b);
|
|
return MP_OKAY;
|
|
}
|
|
|
|
if((res = mp_copy(a, b)) != MP_OKAY)
|
|
return res;
|
|
|
|
res = s_mp_mul_d(b, d);
|
|
|
|
return res;
|
|
|
|
} /* end mp_mul_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_mul_2(a, c) */
|
|
|
|
mp_err mp_mul_2(mp_int *a, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
|
if((res = mp_copy(a, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
return s_mp_mul_2(c);
|
|
|
|
} /* end mp_mul_2() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_div_d(a, d, q, r) */
|
|
|
|
/*
|
|
mp_div_d(a, d, q, r)
|
|
|
|
Compute the quotient q = a / d and remainder r = a mod d, for a
|
|
single digit d. Respects the sign of its divisor (single digits are
|
|
unsigned anyway).
|
|
*/
|
|
|
|
mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
|
|
{
|
|
mp_err res;
|
|
mp_digit rem;
|
|
int pow;
|
|
|
|
ARGCHK(a != NULL, MP_BADARG);
|
|
|
|
if(d == 0)
|
|
return MP_RANGE;
|
|
|
|
/* Shortcut for powers of two ... */
|
|
if((pow = s_mp_ispow2d(d)) >= 0) {
|
|
mp_digit mask;
|
|
|
|
mask = (1 << pow) - 1;
|
|
rem = DIGIT(a, 0) & mask;
|
|
|
|
if(q) {
|
|
mp_copy(a, q);
|
|
s_mp_div_2d(q, pow);
|
|
}
|
|
|
|
if(r)
|
|
*r = rem;
|
|
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/*
|
|
If the quotient is actually going to be returned, we'll try to
|
|
avoid hitting the memory allocator by copying the dividend into it
|
|
and doing the division there. This can't be any _worse_ than
|
|
always copying, and will sometimes be better (since it won't make
|
|
another copy)
|
|
|
|
If it's not going to be returned, we need to allocate a temporary
|
|
to hold the quotient, which will just be discarded.
|
|
*/
|
|
if(q) {
|
|
if((res = mp_copy(a, q)) != MP_OKAY)
|
|
return res;
|
|
|
|
res = s_mp_div_d(q, d, &rem);
|
|
if(s_mp_cmp_d(q, 0) == MP_EQ)
|
|
SIGN(q) = MP_ZPOS;
|
|
|
|
} else {
|
|
mp_int qp;
|
|
|
|
if((res = mp_init_copy(&qp, a)) != MP_OKAY)
|
|
return res;
|
|
|
|
res = s_mp_div_d(&qp, d, &rem);
|
|
if(s_mp_cmp_d(&qp, 0) == 0)
|
|
SIGN(&qp) = MP_ZPOS;
|
|
|
|
mp_clear(&qp);
|
|
}
|
|
|
|
if(r)
|
|
*r = rem;
|
|
|
|
return res;
|
|
|
|
} /* end mp_div_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_div_2(a, c) */
|
|
|
|
/*
|
|
mp_div_2(a, c)
|
|
|
|
Compute c = a / 2, disregarding the remainder.
|
|
*/
|
|
|
|
mp_err mp_div_2(mp_int *a, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
|
if((res = mp_copy(a, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
s_mp_div_2(c);
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_div_2() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_expt_d(a, d, b) */
|
|
|
|
mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c)
|
|
{
|
|
mp_int s, x;
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
|
if((res = mp_init(&s)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
goto X;
|
|
|
|
DIGIT(&s, 0) = 1;
|
|
|
|
while(d != 0) {
|
|
if(d & 1) {
|
|
if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
d >>= 1;
|
|
|
|
if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
s_mp_exch(&s, c);
|
|
|
|
CLEANUP:
|
|
mp_clear(&x);
|
|
X:
|
|
mp_clear(&s);
|
|
|
|
return res;
|
|
|
|
} /* end mp_expt_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* {{{ Full arithmetic */
|
|
|
|
/* {{{ mp_abs(a, b) */
|
|
|
|
/*
|
|
mp_abs(a, b)
|
|
|
|
Compute b = |a|. 'a' and 'b' may be identical.
|
|
*/
|
|
|
|
mp_err mp_abs(mp_int *a, mp_int *b)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
|
if((res = mp_copy(a, b)) != MP_OKAY)
|
|
return res;
|
|
|
|
SIGN(b) = MP_ZPOS;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_abs() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_neg(a, b) */
|
|
|
|
/*
|
|
mp_neg(a, b)
|
|
|
|
Compute b = -a. 'a' and 'b' may be identical.
|
|
*/
|
|
|
|
mp_err mp_neg(mp_int *a, mp_int *b)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
|
if((res = mp_copy(a, b)) != MP_OKAY)
|
|
return res;
|
|
|
|
if(s_mp_cmp_d(b, 0) == MP_EQ)
|
|
SIGN(b) = MP_ZPOS;
|
|
else
|
|
SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_neg() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_add(a, b, c) */
|
|
|
|
/*
|
|
mp_add(a, b, c)
|
|
|
|
Compute c = a + b. All parameters may be identical.
|
|
*/
|
|
|
|
mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
int cmp;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */
|
|
|
|
/* Commutativity of addition lets us do this in either order,
|
|
so we avoid having to use a temporary even if the result
|
|
is supposed to replace the output
|
|
*/
|
|
if(c == b) {
|
|
if((res = s_mp_add(c, a)) != MP_OKAY)
|
|
return res;
|
|
} else {
|
|
if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
if((res = s_mp_add(c, b)) != MP_OKAY)
|
|
return res;
|
|
}
|
|
|
|
} else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */
|
|
|
|
/* If the output is going to be clobbered, we will use a temporary
|
|
variable; otherwise, we'll do it without touching the memory
|
|
allocator at all, if possible
|
|
*/
|
|
if(c == b) {
|
|
mp_int tmp;
|
|
|
|
if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
|
|
return res;
|
|
if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
|
|
mp_clear(&tmp);
|
|
return res;
|
|
}
|
|
|
|
s_mp_exch(&tmp, c);
|
|
mp_clear(&tmp);
|
|
|
|
} else {
|
|
|
|
if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
|
|
return res;
|
|
if((res = s_mp_sub(c, b)) != MP_OKAY)
|
|
return res;
|
|
|
|
}
|
|
|
|
} else if(cmp == 0) { /* different sign, a == b */
|
|
|
|
mp_zero(c);
|
|
return MP_OKAY;
|
|
|
|
} else { /* different sign: a < b */
|
|
|
|
/* See above... */
|
|
if(c == a) {
|
|
mp_int tmp;
|
|
|
|
if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
|
|
return res;
|
|
if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
|
|
mp_clear(&tmp);
|
|
return res;
|
|
}
|
|
|
|
s_mp_exch(&tmp, c);
|
|
mp_clear(&tmp);
|
|
|
|
} else {
|
|
|
|
if(c != b && (res = mp_copy(b, c)) != MP_OKAY)
|
|
return res;
|
|
if((res = s_mp_sub(c, a)) != MP_OKAY)
|
|
return res;
|
|
|
|
}
|
|
}
|
|
|
|
if(USED(c) == 1 && DIGIT(c, 0) == 0)
|
|
SIGN(c) = MP_ZPOS;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_add() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_sub(a, b, c) */
|
|
|
|
/*
|
|
mp_sub(a, b, c)
|
|
|
|
Compute c = a - b. All parameters may be identical.
|
|
*/
|
|
|
|
mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
int cmp;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
if(SIGN(a) != SIGN(b)) {
|
|
if(c == a) {
|
|
if((res = s_mp_add(c, b)) != MP_OKAY)
|
|
return res;
|
|
} else {
|
|
if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
|
|
return res;
|
|
if((res = s_mp_add(c, a)) != MP_OKAY)
|
|
return res;
|
|
SIGN(c) = SIGN(a);
|
|
}
|
|
|
|
} else if((cmp = s_mp_cmp(a, b)) > 0) { /* Same sign, a > b */
|
|
if(c == b) {
|
|
mp_int tmp;
|
|
|
|
if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
|
|
return res;
|
|
if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
|
|
mp_clear(&tmp);
|
|
return res;
|
|
}
|
|
s_mp_exch(&tmp, c);
|
|
mp_clear(&tmp);
|
|
|
|
} else {
|
|
if(c != a && ((res = mp_copy(a, c)) != MP_OKAY))
|
|
return res;
|
|
|
|
if((res = s_mp_sub(c, b)) != MP_OKAY)
|
|
return res;
|
|
}
|
|
|
|
} else if(cmp == 0) { /* Same sign, equal magnitude */
|
|
mp_zero(c);
|
|
return MP_OKAY;
|
|
|
|
} else { /* Same sign, b > a */
|
|
if(c == a) {
|
|
mp_int tmp;
|
|
|
|
if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
|
|
return res;
|
|
|
|
if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
|
|
mp_clear(&tmp);
|
|
return res;
|
|
}
|
|
s_mp_exch(&tmp, c);
|
|
mp_clear(&tmp);
|
|
|
|
} else {
|
|
if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
|
|
return res;
|
|
|
|
if((res = s_mp_sub(c, a)) != MP_OKAY)
|
|
return res;
|
|
}
|
|
|
|
SIGN(c) = !SIGN(b);
|
|
}
|
|
|
|
if(USED(c) == 1 && DIGIT(c, 0) == 0)
|
|
SIGN(c) = MP_ZPOS;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_sub() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_mul(a, b, c) */
|
|
|
|
/*
|
|
mp_mul(a, b, c)
|
|
|
|
Compute c = a * b. All parameters may be identical.
|
|
*/
|
|
|
|
mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
mp_sign sgn;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG;
|
|
|
|
if(c == b) {
|
|
if((res = s_mp_mul(c, a)) != MP_OKAY)
|
|
return res;
|
|
|
|
} else {
|
|
if((res = mp_copy(a, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
if((res = s_mp_mul(c, b)) != MP_OKAY)
|
|
return res;
|
|
}
|
|
|
|
if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ)
|
|
SIGN(c) = MP_ZPOS;
|
|
else
|
|
SIGN(c) = sgn;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_mul() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_mul_2d(a, d, c) */
|
|
|
|
/*
|
|
mp_mul_2d(a, d, c)
|
|
|
|
Compute c = a * 2^d. a may be the same as c.
|
|
*/
|
|
|
|
mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
|
if((res = mp_copy(a, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
if(d == 0)
|
|
return MP_OKAY;
|
|
|
|
return s_mp_mul_2d(c, d);
|
|
|
|
} /* end mp_mul() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_sqr(a, b) */
|
|
|
|
#if MP_SQUARE
|
|
mp_err mp_sqr(mp_int *a, mp_int *b)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
|
if((res = mp_copy(a, b)) != MP_OKAY)
|
|
return res;
|
|
|
|
if((res = s_mp_sqr(b)) != MP_OKAY)
|
|
return res;
|
|
|
|
SIGN(b) = MP_ZPOS;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_sqr() */
|
|
#endif
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_div(a, b, q, r) */
|
|
|
|
/*
|
|
mp_div(a, b, q, r)
|
|
|
|
Compute q = a / b and r = a mod b. Input parameters may be re-used
|
|
as output parameters. If q or r is NULL, that portion of the
|
|
computation will be discarded (although it will still be computed)
|
|
|
|
Pay no attention to the hacker behind the curtain.
|
|
*/
|
|
|
|
mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
|
|
{
|
|
mp_err res;
|
|
mp_int qtmp, rtmp;
|
|
int cmp;
|
|
|
|
ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
|
if(mp_cmp_z(b) == MP_EQ)
|
|
return MP_RANGE;
|
|
|
|
/* If a <= b, we can compute the solution without division, and
|
|
avoid any memory allocation
|
|
*/
|
|
if((cmp = s_mp_cmp(a, b)) < 0) {
|
|
if(r) {
|
|
if((res = mp_copy(a, r)) != MP_OKAY)
|
|
return res;
|
|
}
|
|
|
|
if(q)
|
|
mp_zero(q);
|
|
|
|
return MP_OKAY;
|
|
|
|
} else if(cmp == 0) {
|
|
|
|
/* Set quotient to 1, with appropriate sign */
|
|
if(q) {
|
|
int qneg = (SIGN(a) != SIGN(b));
|
|
|
|
mp_set(q, 1);
|
|
if(qneg)
|
|
SIGN(q) = MP_NEG;
|
|
}
|
|
|
|
if(r)
|
|
mp_zero(r);
|
|
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* If we get here, it means we actually have to do some division */
|
|
|
|
/* Set up some temporaries... */
|
|
if((res = mp_init_copy(&qtmp, a)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_init_copy(&rtmp, b)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
if((res = s_mp_div(&qtmp, &rtmp)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
/* Compute the signs for the output */
|
|
SIGN(&rtmp) = SIGN(a); /* Sr = Sa */
|
|
if(SIGN(a) == SIGN(b))
|
|
SIGN(&qtmp) = MP_ZPOS; /* Sq = MP_ZPOS if Sa = Sb */
|
|
else
|
|
SIGN(&qtmp) = MP_NEG; /* Sq = MP_NEG if Sa != Sb */
|
|
|
|
if(s_mp_cmp_d(&qtmp, 0) == MP_EQ)
|
|
SIGN(&qtmp) = MP_ZPOS;
|
|
if(s_mp_cmp_d(&rtmp, 0) == MP_EQ)
|
|
SIGN(&rtmp) = MP_ZPOS;
|
|
|
|
/* Copy output, if it is needed */
|
|
if(q)
|
|
s_mp_exch(&qtmp, q);
|
|
|
|
if(r)
|
|
s_mp_exch(&rtmp, r);
|
|
|
|
CLEANUP:
|
|
mp_clear(&rtmp);
|
|
mp_clear(&qtmp);
|
|
|
|
return res;
|
|
|
|
} /* end mp_div() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_div_2d(a, d, q, r) */
|
|
|
|
mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL, MP_BADARG);
|
|
|
|
if(q) {
|
|
if((res = mp_copy(a, q)) != MP_OKAY)
|
|
return res;
|
|
|
|
s_mp_div_2d(q, d);
|
|
}
|
|
|
|
if(r) {
|
|
if((res = mp_copy(a, r)) != MP_OKAY)
|
|
return res;
|
|
|
|
s_mp_mod_2d(r, d);
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_div_2d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_expt(a, b, c) */
|
|
|
|
/*
|
|
mp_expt(a, b, c)
|
|
|
|
Compute c = a ** b, that is, raise a to the b power. Uses a
|
|
standard iterative square-and-multiply technique.
|
|
*/
|
|
|
|
mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
|
|
{
|
|
mp_int s, x;
|
|
mp_err res;
|
|
mp_digit d;
|
|
unsigned int bit, dig;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
if(mp_cmp_z(b) < 0)
|
|
return MP_RANGE;
|
|
|
|
if((res = mp_init(&s)) != MP_OKAY)
|
|
return res;
|
|
|
|
mp_set(&s, 1);
|
|
|
|
if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
goto X;
|
|
|
|
/* Loop over low-order digits in ascending order */
|
|
for(dig = 0; dig < (USED(b) - 1); dig++) {
|
|
d = DIGIT(b, dig);
|
|
|
|
/* Loop over bits of each non-maximal digit */
|
|
for(bit = 0; bit < DIGIT_BIT; bit++) {
|
|
if(d & 1) {
|
|
if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
d >>= 1;
|
|
|
|
if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
}
|
|
|
|
/* Consider now the last digit... */
|
|
d = DIGIT(b, dig);
|
|
|
|
while(d) {
|
|
if(d & 1) {
|
|
if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
d >>= 1;
|
|
|
|
if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
if(mp_iseven(b))
|
|
SIGN(&s) = SIGN(a);
|
|
|
|
res = mp_copy(&s, c);
|
|
|
|
CLEANUP:
|
|
mp_clear(&x);
|
|
X:
|
|
mp_clear(&s);
|
|
|
|
return res;
|
|
|
|
} /* end mp_expt() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_2expt(a, k) */
|
|
|
|
/* Compute a = 2^k */
|
|
|
|
mp_err mp_2expt(mp_int *a, mp_digit k)
|
|
{
|
|
ARGCHK(a != NULL, MP_BADARG);
|
|
|
|
return s_mp_2expt(a, k);
|
|
|
|
} /* end mp_2expt() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_mod(a, m, c) */
|
|
|
|
/*
|
|
mp_mod(a, m, c)
|
|
|
|
Compute c = a (mod m). Result will always be 0 <= c < m.
|
|
*/
|
|
|
|
mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
int mag;
|
|
|
|
ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
|
if(SIGN(m) == MP_NEG)
|
|
return MP_RANGE;
|
|
|
|
/*
|
|
If |a| > m, we need to divide to get the remainder and take the
|
|
absolute value.
|
|
|
|
If |a| < m, we don't need to do any division, just copy and adjust
|
|
the sign (if a is negative).
|
|
|
|
If |a| == m, we can simply set the result to zero.
|
|
|
|
This order is intended to minimize the average path length of the
|
|
comparison chain on common workloads -- the most frequent cases are
|
|
that |a| != m, so we do those first.
|
|
*/
|
|
if((mag = s_mp_cmp(a, m)) > 0) {
|
|
if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
if(SIGN(c) == MP_NEG) {
|
|
if((res = mp_add(c, m, c)) != MP_OKAY)
|
|
return res;
|
|
}
|
|
|
|
} else if(mag < 0) {
|
|
if((res = mp_copy(a, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
if(mp_cmp_z(a) < 0) {
|
|
if((res = mp_add(c, m, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
}
|
|
|
|
} else {
|
|
mp_zero(c);
|
|
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_mod() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_mod_d(a, d, c) */
|
|
|
|
/*
|
|
mp_mod_d(a, d, c)
|
|
|
|
Compute c = a (mod d). Result will always be 0 <= c < d
|
|
*/
|
|
mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c)
|
|
{
|
|
mp_err res;
|
|
mp_digit rem;
|
|
|
|
ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
|
if(s_mp_cmp_d(a, d) > 0) {
|
|
if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
|
|
return res;
|
|
|
|
} else {
|
|
if(SIGN(a) == MP_NEG)
|
|
rem = d - DIGIT(a, 0);
|
|
else
|
|
rem = DIGIT(a, 0);
|
|
}
|
|
|
|
if(c)
|
|
*c = rem;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_mod_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_sqrt(a, b) */
|
|
|
|
/*
|
|
mp_sqrt(a, b)
|
|
|
|
Compute the integer square root of a, and store the result in b.
|
|
Uses an integer-arithmetic version of Newton's iterative linear
|
|
approximation technique to determine this value; the result has the
|
|
following two properties:
|
|
|
|
b^2 <= a
|
|
(b+1)^2 >= a
|
|
|
|
It is a range error to pass a negative value.
|
|
*/
|
|
mp_err mp_sqrt(mp_int *a, mp_int *b)
|
|
{
|
|
mp_int x, t;
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL, MP_BADARG);
|
|
|
|
/* Cannot take square root of a negative value */
|
|
if(SIGN(a) == MP_NEG)
|
|
return MP_RANGE;
|
|
|
|
/* Special cases for zero and one, trivial */
|
|
if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ)
|
|
return mp_copy(a, b);
|
|
|
|
/* Initialize the temporaries we'll use below */
|
|
if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
|
|
return res;
|
|
|
|
/* Compute an initial guess for the iteration as a itself */
|
|
if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
goto X;
|
|
|
|
s_mp_rshd(&x, (USED(&x)/2)+1);
|
|
mp_add_d(&x, 1, &x);
|
|
|
|
for(;;) {
|
|
/* t = (x * x) - a */
|
|
mp_copy(&x, &t); /* can't fail, t is big enough for original x */
|
|
if((res = mp_sqr(&t, &t)) != MP_OKAY ||
|
|
(res = mp_sub(&t, a, &t)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
/* t = t / 2x */
|
|
s_mp_mul_2(&x);
|
|
if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
s_mp_div_2(&x);
|
|
|
|
/* Terminate the loop, if the quotient is zero */
|
|
if(mp_cmp_z(&t) == MP_EQ)
|
|
break;
|
|
|
|
/* x = x - t */
|
|
if((res = mp_sub(&x, &t, &x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
}
|
|
|
|
/* Copy result to output parameter */
|
|
mp_sub_d(&x, 1, &x);
|
|
s_mp_exch(&x, b);
|
|
|
|
CLEANUP:
|
|
mp_clear(&x);
|
|
X:
|
|
mp_clear(&t);
|
|
|
|
return res;
|
|
|
|
} /* end mp_sqrt() */
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* {{{ Modular arithmetic */
|
|
|
|
#if MP_MODARITH
|
|
/* {{{ mp_addmod(a, b, m, c) */
|
|
|
|
/*
|
|
mp_addmod(a, b, m, c)
|
|
|
|
Compute c = (a + b) mod m
|
|
*/
|
|
|
|
mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
|
if((res = mp_add(a, b, c)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_mod(c, m, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
return MP_OKAY;
|
|
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_submod(a, b, m, c) */
|
|
|
|
/*
|
|
mp_submod(a, b, m, c)
|
|
|
|
Compute c = (a - b) mod m
|
|
*/
|
|
|
|
mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
|
if((res = mp_sub(a, b, c)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_mod(c, m, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
return MP_OKAY;
|
|
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_mulmod(a, b, m, c) */
|
|
|
|
/*
|
|
mp_mulmod(a, b, m, c)
|
|
|
|
Compute c = (a * b) mod m
|
|
*/
|
|
|
|
mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
|
if((res = mp_mul(a, b, c)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_mod(c, m, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
return MP_OKAY;
|
|
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_sqrmod(a, m, c) */
|
|
|
|
#if MP_SQUARE
|
|
mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
|
|
|
|
if((res = mp_sqr(a, c)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_mod(c, m, c)) != MP_OKAY)
|
|
return res;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_sqrmod() */
|
|
#endif
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_exptmod(a, b, m, c) */
|
|
|
|
/*
|
|
mp_exptmod(a, b, m, c)
|
|
|
|
Compute c = (a ** b) mod m. Uses a standard square-and-multiply
|
|
method with modular reductions at each step. (This is basically the
|
|
same code as mp_expt(), except for the addition of the reductions)
|
|
|
|
The modular reductions are done using Barrett's algorithm (see
|
|
s_mp_reduce() below for details)
|
|
*/
|
|
|
|
mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
|
|
{
|
|
mp_int s, x, mu;
|
|
mp_err res;
|
|
mp_digit d, *db = DIGITS(b);
|
|
mp_size ub = USED(b);
|
|
unsigned int bit, dig;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0)
|
|
return MP_RANGE;
|
|
|
|
if((res = mp_init(&s)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
goto X;
|
|
if((res = mp_mod(&x, m, &x)) != MP_OKAY ||
|
|
(res = mp_init(&mu)) != MP_OKAY)
|
|
goto MU;
|
|
|
|
mp_set(&s, 1);
|
|
|
|
/* mu = b^2k / m */
|
|
s_mp_add_d(&mu, 1);
|
|
s_mp_lshd(&mu, 2 * USED(m));
|
|
if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
/* Loop over digits of b in ascending order, except highest order */
|
|
for(dig = 0; dig < (ub - 1); dig++) {
|
|
d = *db++;
|
|
|
|
/* Loop over the bits of the lower-order digits */
|
|
for(bit = 0; bit < DIGIT_BIT; bit++) {
|
|
if(d & 1) {
|
|
if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
d >>= 1;
|
|
|
|
if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
}
|
|
|
|
/* Now do the last digit... */
|
|
d = *db;
|
|
|
|
while(d) {
|
|
if(d & 1) {
|
|
if((res = s_mp_mul(&s, &x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
d >>= 1;
|
|
|
|
if((res = s_mp_sqr(&x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
s_mp_exch(&s, c);
|
|
|
|
CLEANUP:
|
|
mp_clear(&mu);
|
|
MU:
|
|
mp_clear(&x);
|
|
X:
|
|
mp_clear(&s);
|
|
|
|
return res;
|
|
|
|
} /* end mp_exptmod() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_exptmod_d(a, d, m, c) */
|
|
|
|
mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c)
|
|
{
|
|
mp_int s, x;
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && c != NULL, MP_BADARG);
|
|
|
|
if((res = mp_init(&s)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_init_copy(&x, a)) != MP_OKAY)
|
|
goto X;
|
|
|
|
mp_set(&s, 1);
|
|
|
|
while(d != 0) {
|
|
if(d & 1) {
|
|
if((res = s_mp_mul(&s, &x)) != MP_OKAY ||
|
|
(res = mp_mod(&s, m, &s)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
d /= 2;
|
|
|
|
if((res = s_mp_sqr(&x)) != MP_OKAY ||
|
|
(res = mp_mod(&x, m, &x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
s_mp_exch(&s, c);
|
|
|
|
CLEANUP:
|
|
mp_clear(&x);
|
|
X:
|
|
mp_clear(&s);
|
|
|
|
return res;
|
|
|
|
} /* end mp_exptmod_d() */
|
|
|
|
/* }}} */
|
|
#endif /* if MP_MODARITH */
|
|
|
|
/* }}} */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* {{{ Comparison functions */
|
|
|
|
/* {{{ mp_cmp_z(a) */
|
|
|
|
/*
|
|
mp_cmp_z(a)
|
|
|
|
Compare a <=> 0. Returns <0 if a<0, 0 if a=0, >0 if a>0.
|
|
*/
|
|
|
|
int mp_cmp_z(mp_int *a)
|
|
{
|
|
if(SIGN(a) == MP_NEG)
|
|
return MP_LT;
|
|
else if(USED(a) == 1 && DIGIT(a, 0) == 0)
|
|
return MP_EQ;
|
|
else
|
|
return MP_GT;
|
|
|
|
} /* end mp_cmp_z() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_cmp_d(a, d) */
|
|
|
|
/*
|
|
mp_cmp_d(a, d)
|
|
|
|
Compare a <=> d. Returns <0 if a<d, 0 if a=d, >0 if a>d
|
|
*/
|
|
|
|
int mp_cmp_d(mp_int *a, mp_digit d)
|
|
{
|
|
ARGCHK(a != NULL, MP_EQ);
|
|
|
|
if(SIGN(a) == MP_NEG)
|
|
return MP_LT;
|
|
|
|
return s_mp_cmp_d(a, d);
|
|
|
|
} /* end mp_cmp_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_cmp(a, b) */
|
|
|
|
int mp_cmp(mp_int *a, mp_int *b)
|
|
{
|
|
ARGCHK(a != NULL && b != NULL, MP_EQ);
|
|
|
|
if(SIGN(a) == SIGN(b)) {
|
|
int mag;
|
|
|
|
if((mag = s_mp_cmp(a, b)) == MP_EQ)
|
|
return MP_EQ;
|
|
|
|
if(SIGN(a) == MP_ZPOS)
|
|
return mag;
|
|
else
|
|
return -mag;
|
|
|
|
} else if(SIGN(a) == MP_ZPOS) {
|
|
return MP_GT;
|
|
} else {
|
|
return MP_LT;
|
|
}
|
|
|
|
} /* end mp_cmp() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_cmp_mag(a, b) */
|
|
|
|
/*
|
|
mp_cmp_mag(a, b)
|
|
|
|
Compares |a| <=> |b|, and returns an appropriate comparison result
|
|
*/
|
|
|
|
int mp_cmp_mag(mp_int *a, mp_int *b)
|
|
{
|
|
ARGCHK(a != NULL && b != NULL, MP_EQ);
|
|
|
|
return s_mp_cmp(a, b);
|
|
|
|
} /* end mp_cmp_mag() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_cmp_int(a, z) */
|
|
|
|
/*
|
|
This just converts z to an mp_int, and uses the existing comparison
|
|
routines. This is sort of inefficient, but it's not clear to me how
|
|
frequently this wil get used anyway. For small positive constants,
|
|
you can always use mp_cmp_d(), and for zero, there is mp_cmp_z().
|
|
*/
|
|
int mp_cmp_int(mp_int *a, long z)
|
|
{
|
|
mp_int tmp;
|
|
int out;
|
|
|
|
ARGCHK(a != NULL, MP_EQ);
|
|
|
|
mp_init(&tmp); mp_set_int(&tmp, z);
|
|
out = mp_cmp(a, &tmp);
|
|
mp_clear(&tmp);
|
|
|
|
return out;
|
|
|
|
} /* end mp_cmp_int() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_isodd(a) */
|
|
|
|
/*
|
|
mp_isodd(a)
|
|
|
|
Returns a true (non-zero) value if a is odd, false (zero) otherwise.
|
|
*/
|
|
int mp_isodd(mp_int *a)
|
|
{
|
|
ARGCHK(a != NULL, 0);
|
|
|
|
return (DIGIT(a, 0) & 1);
|
|
|
|
} /* end mp_isodd() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_iseven(a) */
|
|
|
|
int mp_iseven(mp_int *a)
|
|
{
|
|
return !mp_isodd(a);
|
|
|
|
} /* end mp_iseven() */
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* {{{ Number theoretic functions */
|
|
|
|
#if MP_NUMTH
|
|
/* {{{ mp_gcd(a, b, c) */
|
|
|
|
/*
|
|
Like the old mp_gcd() function, except computes the GCD using the
|
|
binary algorithm due to Josef Stein in 1961 (via Knuth).
|
|
*/
|
|
mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
|
|
{
|
|
mp_err res;
|
|
mp_int u, v, t;
|
|
mp_size k = 0;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ)
|
|
return MP_RANGE;
|
|
if(mp_cmp_z(a) == MP_EQ) {
|
|
return mp_copy(b, c);
|
|
} else if(mp_cmp_z(b) == MP_EQ) {
|
|
return mp_copy(a, c);
|
|
}
|
|
|
|
if((res = mp_init(&t)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_init_copy(&u, a)) != MP_OKAY)
|
|
goto U;
|
|
if((res = mp_init_copy(&v, b)) != MP_OKAY)
|
|
goto V;
|
|
|
|
SIGN(&u) = MP_ZPOS;
|
|
SIGN(&v) = MP_ZPOS;
|
|
|
|
/* Divide out common factors of 2 until at least 1 of a, b is even */
|
|
while(mp_iseven(&u) && mp_iseven(&v)) {
|
|
s_mp_div_2(&u);
|
|
s_mp_div_2(&v);
|
|
++k;
|
|
}
|
|
|
|
/* Initialize t */
|
|
if(mp_isodd(&u)) {
|
|
if((res = mp_copy(&v, &t)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
/* t = -v */
|
|
if(SIGN(&v) == MP_ZPOS)
|
|
SIGN(&t) = MP_NEG;
|
|
else
|
|
SIGN(&t) = MP_ZPOS;
|
|
|
|
} else {
|
|
if((res = mp_copy(&u, &t)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
}
|
|
|
|
for(;;) {
|
|
while(mp_iseven(&t)) {
|
|
s_mp_div_2(&t);
|
|
}
|
|
|
|
if(mp_cmp_z(&t) == MP_GT) {
|
|
if((res = mp_copy(&t, &u)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
} else {
|
|
if((res = mp_copy(&t, &v)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
/* v = -t */
|
|
if(SIGN(&t) == MP_ZPOS)
|
|
SIGN(&v) = MP_NEG;
|
|
else
|
|
SIGN(&v) = MP_ZPOS;
|
|
}
|
|
|
|
if((res = mp_sub(&u, &v, &t)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
if(s_mp_cmp_d(&t, 0) == MP_EQ)
|
|
break;
|
|
}
|
|
|
|
s_mp_2expt(&v, k); /* v = 2^k */
|
|
res = mp_mul(&u, &v, c); /* c = u * v */
|
|
|
|
CLEANUP:
|
|
mp_clear(&v);
|
|
V:
|
|
mp_clear(&u);
|
|
U:
|
|
mp_clear(&t);
|
|
|
|
return res;
|
|
|
|
} /* end mp_bgcd() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_lcm(a, b, c) */
|
|
|
|
/* We compute the least common multiple using the rule:
|
|
|
|
ab = [a, b](a, b)
|
|
|
|
... by computing the product, and dividing out the gcd.
|
|
*/
|
|
|
|
mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c)
|
|
{
|
|
mp_int gcd, prod;
|
|
mp_err res;
|
|
|
|
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
|
|
|
|
/* Set up temporaries */
|
|
if((res = mp_init(&gcd)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_init(&prod)) != MP_OKAY)
|
|
goto GCD;
|
|
|
|
if((res = mp_mul(a, b, &prod)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
if((res = mp_gcd(a, b, &gcd)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
res = mp_div(&prod, &gcd, c, NULL);
|
|
|
|
CLEANUP:
|
|
mp_clear(&prod);
|
|
GCD:
|
|
mp_clear(&gcd);
|
|
|
|
return res;
|
|
|
|
} /* end mp_lcm() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_xgcd(a, b, g, x, y) */
|
|
|
|
/*
|
|
mp_xgcd(a, b, g, x, y)
|
|
|
|
Compute g = (a, b) and values x and y satisfying Bezout's identity
|
|
(that is, ax + by = g). This uses the extended binary GCD algorithm
|
|
based on the Stein algorithm used for mp_gcd()
|
|
*/
|
|
|
|
mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y)
|
|
{
|
|
mp_int gx, xc, yc, u, v, A, B, C, D;
|
|
mp_int *clean[9];
|
|
mp_err res;
|
|
int last = -1;
|
|
|
|
if(mp_cmp_z(b) == 0)
|
|
return MP_RANGE;
|
|
|
|
/* Initialize all these variables we need */
|
|
if((res = mp_init(&u)) != MP_OKAY) goto CLEANUP;
|
|
clean[++last] = &u;
|
|
if((res = mp_init(&v)) != MP_OKAY) goto CLEANUP;
|
|
clean[++last] = &v;
|
|
if((res = mp_init(&gx)) != MP_OKAY) goto CLEANUP;
|
|
clean[++last] = &gx;
|
|
if((res = mp_init(&A)) != MP_OKAY) goto CLEANUP;
|
|
clean[++last] = &A;
|
|
if((res = mp_init(&B)) != MP_OKAY) goto CLEANUP;
|
|
clean[++last] = &B;
|
|
if((res = mp_init(&C)) != MP_OKAY) goto CLEANUP;
|
|
clean[++last] = &C;
|
|
if((res = mp_init(&D)) != MP_OKAY) goto CLEANUP;
|
|
clean[++last] = &D;
|
|
if((res = mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP;
|
|
clean[++last] = &xc;
|
|
mp_abs(&xc, &xc);
|
|
if((res = mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP;
|
|
clean[++last] = &yc;
|
|
mp_abs(&yc, &yc);
|
|
|
|
mp_set(&gx, 1);
|
|
|
|
/* Divide by two until at least one of them is even */
|
|
while(mp_iseven(&xc) && mp_iseven(&yc)) {
|
|
s_mp_div_2(&xc);
|
|
s_mp_div_2(&yc);
|
|
if((res = s_mp_mul_2(&gx)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
mp_copy(&xc, &u);
|
|
mp_copy(&yc, &v);
|
|
mp_set(&A, 1); mp_set(&D, 1);
|
|
|
|
/* Loop through binary GCD algorithm */
|
|
for(;;) {
|
|
while(mp_iseven(&u)) {
|
|
s_mp_div_2(&u);
|
|
|
|
if(mp_iseven(&A) && mp_iseven(&B)) {
|
|
s_mp_div_2(&A); s_mp_div_2(&B);
|
|
} else {
|
|
if((res = mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP;
|
|
s_mp_div_2(&A);
|
|
if((res = mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP;
|
|
s_mp_div_2(&B);
|
|
}
|
|
}
|
|
|
|
while(mp_iseven(&v)) {
|
|
s_mp_div_2(&v);
|
|
|
|
if(mp_iseven(&C) && mp_iseven(&D)) {
|
|
s_mp_div_2(&C); s_mp_div_2(&D);
|
|
} else {
|
|
if((res = mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP;
|
|
s_mp_div_2(&C);
|
|
if((res = mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP;
|
|
s_mp_div_2(&D);
|
|
}
|
|
}
|
|
|
|
if(mp_cmp(&u, &v) >= 0) {
|
|
if((res = mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP;
|
|
if((res = mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP;
|
|
if((res = mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP;
|
|
|
|
} else {
|
|
if((res = mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP;
|
|
if((res = mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP;
|
|
if((res = mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP;
|
|
|
|
}
|
|
|
|
/* If we're done, copy results to output */
|
|
if(mp_cmp_z(&u) == 0) {
|
|
if(x)
|
|
if((res = mp_copy(&C, x)) != MP_OKAY) goto CLEANUP;
|
|
|
|
if(y)
|
|
if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP;
|
|
|
|
if(g)
|
|
if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
CLEANUP:
|
|
while(last >= 0)
|
|
mp_clear(clean[last--]);
|
|
|
|
return res;
|
|
|
|
} /* end mp_xgcd() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_invmod(a, m, c) */
|
|
|
|
/*
|
|
mp_invmod(a, m, c)
|
|
|
|
Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
|
|
This is equivalent to the question of whether (a, m) = 1. If not,
|
|
MP_UNDEF is returned, and there is no inverse.
|
|
*/
|
|
|
|
mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c)
|
|
{
|
|
mp_int g, x;
|
|
mp_err res;
|
|
|
|
ARGCHK(a && m && c, MP_BADARG);
|
|
|
|
if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
|
|
return MP_RANGE;
|
|
|
|
if((res = mp_init(&g)) != MP_OKAY)
|
|
return res;
|
|
if((res = mp_init(&x)) != MP_OKAY)
|
|
goto X;
|
|
|
|
if((res = mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
if(mp_cmp_d(&g, 1) != MP_EQ) {
|
|
res = MP_UNDEF;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
res = mp_mod(&x, m, c);
|
|
SIGN(c) = SIGN(a);
|
|
|
|
CLEANUP:
|
|
mp_clear(&x);
|
|
X:
|
|
mp_clear(&g);
|
|
|
|
return res;
|
|
|
|
} /* end mp_invmod() */
|
|
|
|
/* }}} */
|
|
#endif /* if MP_NUMTH */
|
|
|
|
/* }}} */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* {{{ mp_print(mp, ofp) */
|
|
|
|
#if MP_IOFUNC
|
|
/*
|
|
mp_print(mp, ofp)
|
|
|
|
Print a textual representation of the given mp_int on the output
|
|
stream 'ofp'. Output is generated using the internal radix.
|
|
*/
|
|
|
|
void mp_print(mp_int *mp, FILE *ofp)
|
|
{
|
|
int ix;
|
|
|
|
if(mp == NULL || ofp == NULL)
|
|
return;
|
|
|
|
fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp);
|
|
|
|
for(ix = USED(mp) - 1; ix >= 0; ix--) {
|
|
fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
|
|
}
|
|
|
|
} /* end mp_print() */
|
|
|
|
#endif /* if MP_IOFUNC */
|
|
|
|
/* }}} */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* {{{ More I/O Functions */
|
|
|
|
/* {{{ mp_read_signed_bin(mp, str, len) */
|
|
|
|
/*
|
|
mp_read_signed_bin(mp, str, len)
|
|
|
|
Read in a raw value (base 256) into the given mp_int
|
|
*/
|
|
|
|
mp_err mp_read_signed_bin(mp_int *mp, unsigned char *str, int len)
|
|
{
|
|
mp_err res;
|
|
|
|
ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
|
|
|
|
if((res = mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) {
|
|
/* Get sign from first byte */
|
|
if(str[0])
|
|
SIGN(mp) = MP_NEG;
|
|
else
|
|
SIGN(mp) = MP_ZPOS;
|
|
}
|
|
|
|
return res;
|
|
|
|
} /* end mp_read_signed_bin() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_signed_bin_size(mp) */
|
|
|
|
int mp_signed_bin_size(mp_int *mp)
|
|
{
|
|
ARGCHK(mp != NULL, 0);
|
|
|
|
return mp_unsigned_bin_size(mp) + 1;
|
|
|
|
} /* end mp_signed_bin_size() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_to_signed_bin(mp, str) */
|
|
|
|
mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str)
|
|
{
|
|
ARGCHK(mp != NULL && str != NULL, MP_BADARG);
|
|
|
|
/* Caller responsible for allocating enough memory (use mp_raw_size(mp)) */
|
|
str[0] = (char)SIGN(mp);
|
|
|
|
return mp_to_unsigned_bin(mp, str + 1);
|
|
|
|
} /* end mp_to_signed_bin() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_read_unsigned_bin(mp, str, len) */
|
|
|
|
/*
|
|
mp_read_unsigned_bin(mp, str, len)
|
|
|
|
Read in an unsigned value (base 256) into the given mp_int
|
|
*/
|
|
|
|
mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len)
|
|
{
|
|
int ix;
|
|
mp_err res;
|
|
|
|
ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
|
|
|
|
mp_zero(mp);
|
|
|
|
for(ix = 0; ix < len; ix++) {
|
|
if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
|
|
return res;
|
|
|
|
if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY)
|
|
return res;
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_read_unsigned_bin() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_unsigned_bin_size(mp) */
|
|
|
|
int mp_unsigned_bin_size(mp_int *mp)
|
|
{
|
|
mp_digit topdig;
|
|
int count;
|
|
|
|
ARGCHK(mp != NULL, 0);
|
|
|
|
/* Special case for the value zero */
|
|
if(USED(mp) == 1 && DIGIT(mp, 0) == 0)
|
|
return 1;
|
|
|
|
count = (USED(mp) - 1) * sizeof(mp_digit);
|
|
topdig = DIGIT(mp, USED(mp) - 1);
|
|
|
|
while(topdig != 0) {
|
|
++count;
|
|
topdig >>= CHAR_BIT;
|
|
}
|
|
|
|
return count;
|
|
|
|
} /* end mp_unsigned_bin_size() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_to_unsigned_bin(mp, str) */
|
|
|
|
mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str)
|
|
{
|
|
mp_digit *dp, *end, d;
|
|
unsigned char *spos;
|
|
|
|
ARGCHK(mp != NULL && str != NULL, MP_BADARG);
|
|
|
|
dp = DIGITS(mp);
|
|
end = dp + USED(mp) - 1;
|
|
spos = str;
|
|
|
|
/* Special case for zero, quick test */
|
|
if(dp == end && *dp == 0) {
|
|
*str = '\0';
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* Generate digits in reverse order */
|
|
while(dp < end) {
|
|
unsigned int ix;
|
|
|
|
d = *dp;
|
|
for(ix = 0; ix < sizeof(mp_digit); ++ix) {
|
|
*spos = d & UCHAR_MAX;
|
|
d >>= CHAR_BIT;
|
|
++spos;
|
|
}
|
|
|
|
++dp;
|
|
}
|
|
|
|
/* Now handle last digit specially, high order zeroes are not written */
|
|
d = *end;
|
|
while(d != 0) {
|
|
*spos = d & UCHAR_MAX;
|
|
d >>= CHAR_BIT;
|
|
++spos;
|
|
}
|
|
|
|
/* Reverse everything to get digits in the correct order */
|
|
while(--spos > str) {
|
|
unsigned char t = *str;
|
|
*str = *spos;
|
|
*spos = t;
|
|
|
|
++str;
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_to_unsigned_bin() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_count_bits(mp) */
|
|
|
|
int mp_count_bits(mp_int *mp)
|
|
{
|
|
int len;
|
|
mp_digit d;
|
|
|
|
ARGCHK(mp != NULL, MP_BADARG);
|
|
|
|
len = DIGIT_BIT * (USED(mp) - 1);
|
|
d = DIGIT(mp, USED(mp) - 1);
|
|
|
|
while(d != 0) {
|
|
++len;
|
|
d >>= 1;
|
|
}
|
|
|
|
return len;
|
|
|
|
} /* end mp_count_bits() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_read_radix(mp, str, radix) */
|
|
|
|
/*
|
|
mp_read_radix(mp, str, radix)
|
|
|
|
Read an integer from the given string, and set mp to the resulting
|
|
value. The input is presumed to be in base 10. Leading non-digit
|
|
characters are ignored, and the function reads until a non-digit
|
|
character or the end of the string.
|
|
*/
|
|
|
|
mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix)
|
|
{
|
|
int ix = 0, val = 0;
|
|
mp_err res;
|
|
mp_sign sig = MP_ZPOS;
|
|
|
|
ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
|
|
MP_BADARG);
|
|
|
|
mp_zero(mp);
|
|
|
|
/* Skip leading non-digit characters until a digit or '-' or '+' */
|
|
while(str[ix] &&
|
|
(s_mp_tovalue(str[ix], radix) < 0) &&
|
|
str[ix] != '-' &&
|
|
str[ix] != '+') {
|
|
++ix;
|
|
}
|
|
|
|
if(str[ix] == '-') {
|
|
sig = MP_NEG;
|
|
++ix;
|
|
} else if(str[ix] == '+') {
|
|
sig = MP_ZPOS; /* this is the default anyway... */
|
|
++ix;
|
|
}
|
|
|
|
while((val = s_mp_tovalue(str[ix], radix)) >= 0) {
|
|
if((res = s_mp_mul_d(mp, radix)) != MP_OKAY)
|
|
return res;
|
|
if((res = s_mp_add_d(mp, val)) != MP_OKAY)
|
|
return res;
|
|
++ix;
|
|
}
|
|
|
|
if(s_mp_cmp_d(mp, 0) == MP_EQ)
|
|
SIGN(mp) = MP_ZPOS;
|
|
else
|
|
SIGN(mp) = sig;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_read_radix() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_radix_size(mp, radix) */
|
|
|
|
int mp_radix_size(mp_int *mp, int radix)
|
|
{
|
|
int len;
|
|
ARGCHK(mp != NULL, 0);
|
|
|
|
len = s_mp_outlen(mp_count_bits(mp), radix) + 1; /* for NUL terminator */
|
|
|
|
if(mp_cmp_z(mp) < 0)
|
|
++len; /* for sign */
|
|
|
|
return len;
|
|
|
|
} /* end mp_radix_size() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_value_radix_size(num, qty, radix) */
|
|
|
|
/* num = number of digits
|
|
qty = number of bits per digit
|
|
radix = target base
|
|
|
|
Return the number of digits in the specified radix that would be
|
|
needed to express 'num' digits of 'qty' bits each.
|
|
*/
|
|
int mp_value_radix_size(int num, int qty, int radix)
|
|
{
|
|
ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0);
|
|
|
|
return s_mp_outlen(num * qty, radix);
|
|
|
|
} /* end mp_value_radix_size() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_toradix(mp, str, radix) */
|
|
|
|
mp_err mp_toradix(mp_int *mp, char *str, int radix)
|
|
{
|
|
int ix, pos = 0;
|
|
|
|
ARGCHK(mp != NULL && str != NULL, MP_BADARG);
|
|
ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);
|
|
|
|
if(mp_cmp_z(mp) == MP_EQ) {
|
|
str[0] = '0';
|
|
str[1] = '\0';
|
|
} else {
|
|
mp_err res;
|
|
mp_int tmp;
|
|
mp_sign sgn;
|
|
mp_digit rem, rdx = (mp_digit)radix;
|
|
char ch;
|
|
|
|
if((res = mp_init_copy(&tmp, mp)) != MP_OKAY)
|
|
return res;
|
|
|
|
/* Save sign for later, and take absolute value */
|
|
sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS;
|
|
|
|
/* Generate output digits in reverse order */
|
|
while(mp_cmp_z(&tmp) != 0) {
|
|
if((res = s_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) {
|
|
mp_clear(&tmp);
|
|
return res;
|
|
}
|
|
|
|
/* Generate digits, use capital letters */
|
|
ch = s_mp_todigit(rem, radix, 0);
|
|
|
|
str[pos++] = ch;
|
|
}
|
|
|
|
/* Add - sign if original value was negative */
|
|
if(sgn == MP_NEG)
|
|
str[pos++] = '-';
|
|
|
|
/* Add trailing NUL to end the string */
|
|
str[pos--] = '\0';
|
|
|
|
/* Reverse the digits and sign indicator */
|
|
ix = 0;
|
|
while(ix < pos) {
|
|
char _tmp = str[ix];
|
|
|
|
str[ix] = str[pos];
|
|
str[pos] = _tmp;
|
|
++ix;
|
|
--pos;
|
|
}
|
|
|
|
mp_clear(&tmp);
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end mp_toradix() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_char2value(ch, r) */
|
|
|
|
int mp_char2value(char ch, int r)
|
|
{
|
|
return s_mp_tovalue(ch, r);
|
|
|
|
} /* end mp_tovalue() */
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_strerror(ec) */
|
|
|
|
/*
|
|
mp_strerror(ec)
|
|
|
|
Return a string describing the meaning of error code 'ec'. The
|
|
string returned is allocated in static memory, so the caller should
|
|
not attempt to modify or free the memory associated with this
|
|
string.
|
|
*/
|
|
const char *mp_strerror(mp_err ec)
|
|
{
|
|
int aec = (ec < 0) ? -ec : ec;
|
|
|
|
/* Code values are negative, so the senses of these comparisons
|
|
are accurate */
|
|
if(ec < MP_LAST_CODE || ec > MP_OKAY) {
|
|
return mp_err_string[0]; /* unknown error code */
|
|
} else {
|
|
return mp_err_string[aec + 1];
|
|
}
|
|
|
|
} /* end mp_strerror() */
|
|
|
|
/* }}} */
|
|
|
|
/*========================================================================*/
|
|
/*------------------------------------------------------------------------*/
|
|
/* Static function definitions (internal use only) */
|
|
|
|
/* {{{ Memory management */
|
|
|
|
/* {{{ s_mp_grow(mp, min) */
|
|
|
|
/* Make sure there are at least 'min' digits allocated to mp */
|
|
mp_err s_mp_grow(mp_int *mp, mp_size min)
|
|
{
|
|
if(min > ALLOC(mp)) {
|
|
mp_digit *tmp;
|
|
|
|
/* Set min to next nearest default precision block size */
|
|
min = ((min + (s_mp_defprec - 1)) / s_mp_defprec) * s_mp_defprec;
|
|
|
|
if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL)
|
|
return MP_MEM;
|
|
|
|
s_mp_copy(DIGITS(mp), tmp, USED(mp));
|
|
|
|
#if MP_CRYPTO
|
|
s_mp_setz(DIGITS(mp), ALLOC(mp));
|
|
#endif
|
|
s_mp_free(DIGITS(mp));
|
|
DIGITS(mp) = tmp;
|
|
ALLOC(mp) = min;
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_grow() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_pad(mp, min) */
|
|
|
|
/* Make sure the used size of mp is at least 'min', growing if needed */
|
|
mp_err s_mp_pad(mp_int *mp, mp_size min)
|
|
{
|
|
if(min > USED(mp)) {
|
|
mp_err res;
|
|
|
|
/* Make sure there is room to increase precision */
|
|
if(min > ALLOC(mp) && (res = s_mp_grow(mp, min)) != MP_OKAY)
|
|
return res;
|
|
|
|
/* Increase precision; should already be 0-filled */
|
|
USED(mp) = min;
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_pad() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_setz(dp, count) */
|
|
|
|
#if MP_MACRO == 0
|
|
/* Set 'count' digits pointed to by dp to be zeroes */
|
|
void s_mp_setz(mp_digit *dp, mp_size count)
|
|
{
|
|
#if MP_MEMSET == 0
|
|
int ix;
|
|
|
|
for(ix = 0; ix < count; ix++)
|
|
dp[ix] = 0;
|
|
#else
|
|
memset(dp, 0, count * sizeof(mp_digit));
|
|
#endif
|
|
|
|
} /* end s_mp_setz() */
|
|
#endif
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_copy(sp, dp, count) */
|
|
|
|
#if MP_MACRO == 0
|
|
/* Copy 'count' digits from sp to dp */
|
|
void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count)
|
|
{
|
|
#if MP_MEMCPY == 0
|
|
int ix;
|
|
|
|
for(ix = 0; ix < count; ix++)
|
|
dp[ix] = sp[ix];
|
|
#else
|
|
memcpy(dp, sp, count * sizeof(mp_digit));
|
|
#endif
|
|
|
|
} /* end s_mp_copy() */
|
|
#endif
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_alloc(nb, ni) */
|
|
|
|
#if MP_MACRO == 0
|
|
/* Allocate ni records of nb bytes each, and return a pointer to that */
|
|
void *s_mp_alloc(size_t nb, size_t ni)
|
|
{
|
|
return calloc(nb, ni);
|
|
|
|
} /* end s_mp_alloc() */
|
|
#endif
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_free(ptr) */
|
|
|
|
#if MP_MACRO == 0
|
|
/* Free the memory pointed to by ptr */
|
|
void s_mp_free(void *ptr)
|
|
{
|
|
if(ptr)
|
|
free(ptr);
|
|
|
|
} /* end s_mp_free() */
|
|
#endif
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_clamp(mp) */
|
|
|
|
/* Remove leading zeroes from the given value */
|
|
void s_mp_clamp(mp_int *mp)
|
|
{
|
|
mp_size du = USED(mp);
|
|
mp_digit *zp = DIGITS(mp) + du - 1;
|
|
|
|
while(du > 1 && !*zp--)
|
|
--du;
|
|
|
|
USED(mp) = du;
|
|
|
|
} /* end s_mp_clamp() */
|
|
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_exch(a, b) */
|
|
|
|
/* Exchange the data for a and b; (b, a) = (a, b) */
|
|
void s_mp_exch(mp_int *a, mp_int *b)
|
|
{
|
|
mp_int tmp;
|
|
|
|
tmp = *a;
|
|
*a = *b;
|
|
*b = tmp;
|
|
|
|
} /* end s_mp_exch() */
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ Arithmetic helpers */
|
|
|
|
/* {{{ s_mp_lshd(mp, p) */
|
|
|
|
/*
|
|
Shift mp leftward by p digits, growing if needed, and zero-filling
|
|
the in-shifted digits at the right end. This is a convenient
|
|
alternative to multiplication by powers of the radix
|
|
*/
|
|
|
|
mp_err s_mp_lshd(mp_int *mp, mp_size p)
|
|
{
|
|
mp_err res;
|
|
mp_size pos;
|
|
mp_digit *dp;
|
|
int ix;
|
|
|
|
if(p == 0)
|
|
return MP_OKAY;
|
|
|
|
if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
|
|
return res;
|
|
|
|
pos = USED(mp) - 1;
|
|
dp = DIGITS(mp);
|
|
|
|
/* Shift all the significant figures over as needed */
|
|
for(ix = pos - p; ix >= 0; ix--)
|
|
dp[ix + p] = dp[ix];
|
|
|
|
/* Fill the bottom digits with zeroes */
|
|
for(ix = 0; (unsigned)ix < p; ix++)
|
|
dp[ix] = 0;
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_lshd() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_rshd(mp, p) */
|
|
|
|
/*
|
|
Shift mp rightward by p digits. Maintains the invariant that
|
|
digits above the precision are all zero. Digits shifted off the
|
|
end are lost. Cannot fail.
|
|
*/
|
|
|
|
void s_mp_rshd(mp_int *mp, mp_size p)
|
|
{
|
|
mp_size ix;
|
|
mp_digit *dp;
|
|
|
|
if(p == 0)
|
|
return;
|
|
|
|
/* Shortcut when all digits are to be shifted off */
|
|
if(p >= USED(mp)) {
|
|
s_mp_setz(DIGITS(mp), ALLOC(mp));
|
|
USED(mp) = 1;
|
|
SIGN(mp) = MP_ZPOS;
|
|
return;
|
|
}
|
|
|
|
/* Shift all the significant figures over as needed */
|
|
dp = DIGITS(mp);
|
|
for(ix = p; ix < USED(mp); ix++)
|
|
dp[ix - p] = dp[ix];
|
|
|
|
/* Fill the top digits with zeroes */
|
|
ix -= p;
|
|
while(ix < USED(mp))
|
|
dp[ix++] = 0;
|
|
|
|
/* Strip off any leading zeroes */
|
|
s_mp_clamp(mp);
|
|
|
|
} /* end s_mp_rshd() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_div_2(mp) */
|
|
|
|
/* Divide by two -- take advantage of radix properties to do it fast */
|
|
void s_mp_div_2(mp_int *mp)
|
|
{
|
|
s_mp_div_2d(mp, 1);
|
|
|
|
} /* end s_mp_div_2() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_mul_2(mp) */
|
|
|
|
mp_err s_mp_mul_2(mp_int *mp)
|
|
{
|
|
unsigned int ix;
|
|
mp_digit kin = 0, kout, *dp = DIGITS(mp);
|
|
mp_err res;
|
|
|
|
/* Shift digits leftward by 1 bit */
|
|
for(ix = 0; ix < USED(mp); ix++) {
|
|
kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1;
|
|
dp[ix] = (dp[ix] << 1) | kin;
|
|
|
|
kin = kout;
|
|
}
|
|
|
|
/* Deal with rollover from last digit */
|
|
if(kin) {
|
|
if(ix >= ALLOC(mp)) {
|
|
if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
|
|
return res;
|
|
dp = DIGITS(mp);
|
|
}
|
|
|
|
dp[ix] = kin;
|
|
USED(mp) += 1;
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_mul_2() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_mod_2d(mp, d) */
|
|
|
|
/*
|
|
Remainder the integer by 2^d, where d is a number of bits. This
|
|
amounts to a bitwise AND of the value, and does not require the full
|
|
division code
|
|
*/
|
|
void s_mp_mod_2d(mp_int *mp, mp_digit d)
|
|
{
|
|
unsigned int ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
|
|
unsigned int ix;
|
|
mp_digit dmask, *dp = DIGITS(mp);
|
|
|
|
if(ndig >= USED(mp))
|
|
return;
|
|
|
|
/* Flush all the bits above 2^d in its digit */
|
|
dmask = (1 << nbit) - 1;
|
|
dp[ndig] &= dmask;
|
|
|
|
/* Flush all digits above the one with 2^d in it */
|
|
for(ix = ndig + 1; ix < USED(mp); ix++)
|
|
dp[ix] = 0;
|
|
|
|
s_mp_clamp(mp);
|
|
|
|
} /* end s_mp_mod_2d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_mul_2d(mp, d) */
|
|
|
|
/*
|
|
Multiply by the integer 2^d, where d is a number of bits. This
|
|
amounts to a bitwise shift of the value, and does not require the
|
|
full multiplication code.
|
|
*/
|
|
mp_err s_mp_mul_2d(mp_int *mp, mp_digit d)
|
|
{
|
|
mp_err res;
|
|
mp_digit save, next, mask, *dp;
|
|
mp_size used;
|
|
unsigned int ix;
|
|
|
|
if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY)
|
|
return res;
|
|
|
|
dp = DIGITS(mp); used = USED(mp);
|
|
d %= DIGIT_BIT;
|
|
|
|
mask = (1 << d) - 1;
|
|
|
|
/* If the shift requires another digit, make sure we've got one to
|
|
work with */
|
|
if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) {
|
|
if((res = s_mp_grow(mp, used + 1)) != MP_OKAY)
|
|
return res;
|
|
dp = DIGITS(mp);
|
|
}
|
|
|
|
/* Do the shifting... */
|
|
save = 0;
|
|
for(ix = 0; ix < used; ix++) {
|
|
next = (dp[ix] >> (DIGIT_BIT - d)) & mask;
|
|
dp[ix] = (dp[ix] << d) | save;
|
|
save = next;
|
|
}
|
|
|
|
/* If, at this point, we have a nonzero carryout into the next
|
|
digit, we'll increase the size by one digit, and store it...
|
|
*/
|
|
if(save) {
|
|
dp[used] = save;
|
|
USED(mp) += 1;
|
|
}
|
|
|
|
s_mp_clamp(mp);
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_mul_2d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_div_2d(mp, d) */
|
|
|
|
/*
|
|
Divide the integer by 2^d, where d is a number of bits. This
|
|
amounts to a bitwise shift of the value, and does not require the
|
|
full division code (used in Barrett reduction, see below)
|
|
*/
|
|
void s_mp_div_2d(mp_int *mp, mp_digit d)
|
|
{
|
|
int ix;
|
|
mp_digit save, next, mask, *dp = DIGITS(mp);
|
|
|
|
s_mp_rshd(mp, d / DIGIT_BIT);
|
|
d %= DIGIT_BIT;
|
|
|
|
mask = (1 << d) - 1;
|
|
|
|
save = 0;
|
|
for(ix = USED(mp) - 1; ix >= 0; ix--) {
|
|
next = dp[ix] & mask;
|
|
dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d));
|
|
save = next;
|
|
}
|
|
|
|
s_mp_clamp(mp);
|
|
|
|
} /* end s_mp_div_2d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_norm(a, b) */
|
|
|
|
/*
|
|
s_mp_norm(a, b)
|
|
|
|
Normalize a and b for division, where b is the divisor. In order
|
|
that we might make good guesses for quotient digits, we want the
|
|
leading digit of b to be at least half the radix, which we
|
|
accomplish by multiplying a and b by a constant. This constant is
|
|
returned (so that it can be divided back out of the remainder at the
|
|
end of the division process).
|
|
|
|
We multiply by the smallest power of 2 that gives us a leading digit
|
|
at least half the radix. By choosing a power of 2, we simplify the
|
|
multiplication and division steps to simple shifts.
|
|
*/
|
|
mp_digit s_mp_norm(mp_int *a, mp_int *b)
|
|
{
|
|
mp_digit t, d = 0;
|
|
|
|
t = DIGIT(b, USED(b) - 1);
|
|
while(t < (RADIX / 2)) {
|
|
t <<= 1;
|
|
++d;
|
|
}
|
|
|
|
if(d != 0) {
|
|
s_mp_mul_2d(a, d);
|
|
s_mp_mul_2d(b, d);
|
|
}
|
|
|
|
return d;
|
|
|
|
} /* end s_mp_norm() */
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ Primitive digit arithmetic */
|
|
|
|
/* {{{ s_mp_add_d(mp, d) */
|
|
|
|
/* Add d to |mp| in place */
|
|
mp_err s_mp_add_d(mp_int *mp, mp_digit d) /* unsigned digit addition */
|
|
{
|
|
mp_word w, k = 0;
|
|
mp_size ix = 1, used = USED(mp);
|
|
mp_digit *dp = DIGITS(mp);
|
|
|
|
w = dp[0] + d;
|
|
dp[0] = ACCUM(w);
|
|
k = CARRYOUT(w);
|
|
|
|
while(ix < used && k) {
|
|
w = dp[ix] + k;
|
|
dp[ix] = ACCUM(w);
|
|
k = CARRYOUT(w);
|
|
++ix;
|
|
}
|
|
|
|
if(k != 0) {
|
|
mp_err res;
|
|
|
|
if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
|
|
return res;
|
|
|
|
DIGIT(mp, ix) = k;
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_add_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_sub_d(mp, d) */
|
|
|
|
/* Subtract d from |mp| in place, assumes |mp| > d */
|
|
mp_err s_mp_sub_d(mp_int *mp, mp_digit d) /* unsigned digit subtract */
|
|
{
|
|
mp_word w, b = 0;
|
|
mp_size ix = 1, used = USED(mp);
|
|
mp_digit *dp = DIGITS(mp);
|
|
|
|
/* Compute initial subtraction */
|
|
w = (RADIX + dp[0]) - d;
|
|
b = CARRYOUT(w) ? 0 : 1;
|
|
dp[0] = ACCUM(w);
|
|
|
|
/* Propagate borrows leftward */
|
|
while(b && ix < used) {
|
|
w = (RADIX + dp[ix]) - b;
|
|
b = CARRYOUT(w) ? 0 : 1;
|
|
dp[ix] = ACCUM(w);
|
|
++ix;
|
|
}
|
|
|
|
/* Remove leading zeroes */
|
|
s_mp_clamp(mp);
|
|
|
|
/* If we have a borrow out, it's a violation of the input invariant */
|
|
if(b)
|
|
return MP_RANGE;
|
|
else
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_sub_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_mul_d(a, d) */
|
|
|
|
/* Compute a = a * d, single digit multiplication */
|
|
mp_err s_mp_mul_d(mp_int *a, mp_digit d)
|
|
{
|
|
mp_word w, k = 0;
|
|
mp_size ix, max;
|
|
mp_err res;
|
|
mp_digit *dp = DIGITS(a);
|
|
|
|
/*
|
|
Single-digit multiplication will increase the precision of the
|
|
output by at most one digit. However, we can detect when this
|
|
will happen -- if the high-order digit of a, times d, gives a
|
|
two-digit result, then the precision of the result will increase;
|
|
otherwise it won't. We use this fact to avoid calling s_mp_pad()
|
|
unless absolutely necessary.
|
|
*/
|
|
max = USED(a);
|
|
w = dp[max - 1] * d;
|
|
if(CARRYOUT(w) != 0) {
|
|
if((res = s_mp_pad(a, max + 1)) != MP_OKAY)
|
|
return res;
|
|
dp = DIGITS(a);
|
|
}
|
|
|
|
for(ix = 0; ix < max; ix++) {
|
|
w = (dp[ix] * d) + k;
|
|
dp[ix] = ACCUM(w);
|
|
k = CARRYOUT(w);
|
|
}
|
|
|
|
/* If there is a precision increase, take care of it here; the above
|
|
test guarantees we have enough storage to do this safely.
|
|
*/
|
|
if(k) {
|
|
dp[max] = k;
|
|
USED(a) = max + 1;
|
|
}
|
|
|
|
s_mp_clamp(a);
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_mul_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_div_d(mp, d, r) */
|
|
|
|
/*
|
|
s_mp_div_d(mp, d, r)
|
|
|
|
Compute the quotient mp = mp / d and remainder r = mp mod d, for a
|
|
single digit d. If r is null, the remainder will be discarded.
|
|
*/
|
|
|
|
mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r)
|
|
{
|
|
mp_word w = 0, t;
|
|
mp_int quot;
|
|
mp_err res;
|
|
mp_digit *dp = DIGITS(mp), *qp;
|
|
int ix;
|
|
|
|
if(d == 0)
|
|
return MP_RANGE;
|
|
|
|
/* Make room for the quotient */
|
|
if((res = mp_init_size(", USED(mp))) != MP_OKAY)
|
|
return res;
|
|
|
|
USED(") = USED(mp); /* so clamping will work below */
|
|
qp = DIGITS(");
|
|
|
|
/* Divide without subtraction */
|
|
for(ix = USED(mp) - 1; ix >= 0; ix--) {
|
|
w = (w << DIGIT_BIT) | dp[ix];
|
|
|
|
if(w >= d) {
|
|
t = w / d;
|
|
w = w % d;
|
|
} else {
|
|
t = 0;
|
|
}
|
|
|
|
qp[ix] = t;
|
|
}
|
|
|
|
/* Deliver the remainder, if desired */
|
|
if(r)
|
|
*r = w;
|
|
|
|
s_mp_clamp(");
|
|
mp_exch(", mp);
|
|
mp_clear(");
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_div_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ Primitive full arithmetic */
|
|
|
|
/* {{{ s_mp_add(a, b) */
|
|
|
|
/* Compute a = |a| + |b| */
|
|
mp_err s_mp_add(mp_int *a, mp_int *b) /* magnitude addition */
|
|
{
|
|
mp_word w = 0;
|
|
mp_digit *pa, *pb;
|
|
mp_size ix, used = USED(b);
|
|
mp_err res;
|
|
|
|
/* Make sure a has enough precision for the output value */
|
|
if((used > USED(a)) && (res = s_mp_pad(a, used)) != MP_OKAY)
|
|
return res;
|
|
|
|
/*
|
|
Add up all digits up to the precision of b. If b had initially
|
|
the same precision as a, or greater, we took care of it by the
|
|
padding step above, so there is no problem. If b had initially
|
|
less precision, we'll have to make sure the carry out is duly
|
|
propagated upward among the higher-order digits of the sum.
|
|
*/
|
|
pa = DIGITS(a);
|
|
pb = DIGITS(b);
|
|
for(ix = 0; ix < used; ++ix) {
|
|
w += *pa + *pb++;
|
|
*pa++ = ACCUM(w);
|
|
w = CARRYOUT(w);
|
|
}
|
|
|
|
/* If we run out of 'b' digits before we're actually done, make
|
|
sure the carries get propagated upward...
|
|
*/
|
|
used = USED(a);
|
|
while(w && ix < used) {
|
|
w += *pa;
|
|
*pa++ = ACCUM(w);
|
|
w = CARRYOUT(w);
|
|
++ix;
|
|
}
|
|
|
|
/* If there's an overall carry out, increase precision and include
|
|
it. We could have done this initially, but why touch the memory
|
|
allocator unless we're sure we have to?
|
|
*/
|
|
if(w) {
|
|
if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
|
|
return res;
|
|
|
|
DIGIT(a, ix) = w; /* pa may not be valid after s_mp_pad() call */
|
|
}
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_add() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_sub(a, b) */
|
|
|
|
/* Compute a = |a| - |b|, assumes |a| >= |b| */
|
|
mp_err s_mp_sub(mp_int *a, mp_int *b) /* magnitude subtract */
|
|
{
|
|
mp_word w = 0;
|
|
mp_digit *pa, *pb;
|
|
mp_size ix, used = USED(b);
|
|
|
|
/*
|
|
Subtract and propagate borrow. Up to the precision of b, this
|
|
accounts for the digits of b; after that, we just make sure the
|
|
carries get to the right place. This saves having to pad b out to
|
|
the precision of a just to make the loops work right...
|
|
*/
|
|
pa = DIGITS(a);
|
|
pb = DIGITS(b);
|
|
|
|
for(ix = 0; ix < used; ++ix) {
|
|
w = (RADIX + *pa) - w - *pb++;
|
|
*pa++ = ACCUM(w);
|
|
w = CARRYOUT(w) ? 0 : 1;
|
|
}
|
|
|
|
used = USED(a);
|
|
while(ix < used) {
|
|
w = RADIX + *pa - w;
|
|
*pa++ = ACCUM(w);
|
|
w = CARRYOUT(w) ? 0 : 1;
|
|
++ix;
|
|
}
|
|
|
|
/* Clobber any leading zeroes we created */
|
|
s_mp_clamp(a);
|
|
|
|
/*
|
|
If there was a borrow out, then |b| > |a| in violation
|
|
of our input invariant. We've already done the work,
|
|
but we'll at least complain about it...
|
|
*/
|
|
if(w)
|
|
return MP_RANGE;
|
|
else
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_sub() */
|
|
|
|
/* }}} */
|
|
|
|
mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
|
|
{
|
|
mp_int q;
|
|
mp_err res;
|
|
mp_size um = USED(m);
|
|
|
|
if((res = mp_init_copy(&q, x)) != MP_OKAY)
|
|
return res;
|
|
|
|
s_mp_rshd(&q, um - 1); /* q1 = x / b^(k-1) */
|
|
s_mp_mul(&q, mu); /* q2 = q1 * mu */
|
|
s_mp_rshd(&q, um + 1); /* q3 = q2 / b^(k+1) */
|
|
|
|
/* x = x mod b^(k+1), quick (no division) */
|
|
s_mp_mod_2d(x, (mp_digit)(DIGIT_BIT * (um + 1)));
|
|
|
|
/* q = q * m mod b^(k+1), quick (no division), uses the short multiplier */
|
|
#ifndef SHRT_MUL
|
|
s_mp_mul(&q, m);
|
|
s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1)));
|
|
#else
|
|
s_mp_mul_dig(&q, m, um + 1);
|
|
#endif
|
|
|
|
/* x = x - q */
|
|
if((res = mp_sub(x, &q, x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
/* If x < 0, add b^(k+1) to it */
|
|
if(mp_cmp_z(x) < 0) {
|
|
mp_set(&q, 1);
|
|
if((res = s_mp_lshd(&q, um + 1)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
if((res = mp_add(x, &q, x)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* Back off if it's too big */
|
|
while(mp_cmp(x, m) >= 0) {
|
|
if((res = s_mp_sub(x, m)) != MP_OKAY)
|
|
break;
|
|
}
|
|
|
|
CLEANUP:
|
|
mp_clear(&q);
|
|
|
|
return res;
|
|
|
|
} /* end s_mp_reduce() */
|
|
|
|
|
|
|
|
/* {{{ s_mp_mul(a, b) */
|
|
|
|
/* Compute a = |a| * |b| */
|
|
mp_err s_mp_mul(mp_int *a, mp_int *b)
|
|
{
|
|
mp_word w, k = 0;
|
|
mp_int tmp;
|
|
mp_err res;
|
|
mp_size ix, jx, ua = USED(a), ub = USED(b);
|
|
mp_digit *pa, *pb, *pt, *pbt;
|
|
|
|
if((res = mp_init_size(&tmp, ua + ub)) != MP_OKAY)
|
|
return res;
|
|
|
|
/* This has the effect of left-padding with zeroes... */
|
|
USED(&tmp) = ua + ub;
|
|
|
|
/* We're going to need the base value each iteration */
|
|
pbt = DIGITS(&tmp);
|
|
|
|
/* Outer loop: Digits of b */
|
|
|
|
pb = DIGITS(b);
|
|
for(ix = 0; ix < ub; ++ix, ++pb) {
|
|
if(*pb == 0)
|
|
continue;
|
|
|
|
/* Inner product: Digits of a */
|
|
pa = DIGITS(a);
|
|
for(jx = 0; jx < ua; ++jx, ++pa) {
|
|
pt = pbt + ix + jx;
|
|
w = *pb * *pa + k + *pt;
|
|
*pt = ACCUM(w);
|
|
k = CARRYOUT(w);
|
|
}
|
|
|
|
pbt[ix + jx] = k;
|
|
k = 0;
|
|
}
|
|
|
|
s_mp_clamp(&tmp);
|
|
s_mp_exch(&tmp, a);
|
|
|
|
mp_clear(&tmp);
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_mul() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_kmul(a, b, out, len) */
|
|
|
|
#if 0
|
|
void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len)
|
|
{
|
|
mp_word w, k = 0;
|
|
mp_size ix, jx;
|
|
mp_digit *pa, *pt;
|
|
|
|
for(ix = 0; ix < len; ++ix, ++b) {
|
|
if(*b == 0)
|
|
continue;
|
|
|
|
pa = a;
|
|
for(jx = 0; jx < len; ++jx, ++pa) {
|
|
pt = out + ix + jx;
|
|
w = *b * *pa + k + *pt;
|
|
*pt = ACCUM(w);
|
|
k = CARRYOUT(w);
|
|
}
|
|
|
|
out[ix + jx] = k;
|
|
k = 0;
|
|
}
|
|
|
|
} /* end s_mp_kmul() */
|
|
#endif
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_sqr(a) */
|
|
|
|
/*
|
|
Computes the square of a, in place. This can be done more
|
|
efficiently than a general multiplication, because many of the
|
|
computation steps are redundant when squaring. The inner product
|
|
step is a bit more complicated, but we save a fair number of
|
|
iterations of the multiplication loop.
|
|
*/
|
|
#if MP_SQUARE
|
|
mp_err s_mp_sqr(mp_int *a)
|
|
{
|
|
mp_word w, k = 0;
|
|
mp_int tmp;
|
|
mp_err res;
|
|
mp_size ix, jx, kx, used = USED(a);
|
|
mp_digit *pa1, *pa2, *pt, *pbt;
|
|
|
|
if((res = mp_init_size(&tmp, 2 * used)) != MP_OKAY)
|
|
return res;
|
|
|
|
/* Left-pad with zeroes */
|
|
USED(&tmp) = 2 * used;
|
|
|
|
/* We need the base value each time through the loop */
|
|
pbt = DIGITS(&tmp);
|
|
|
|
pa1 = DIGITS(a);
|
|
for(ix = 0; ix < used; ++ix, ++pa1) {
|
|
if(*pa1 == 0)
|
|
continue;
|
|
|
|
w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1);
|
|
|
|
pbt[ix + ix] = ACCUM(w);
|
|
k = CARRYOUT(w);
|
|
|
|
/*
|
|
The inner product is computed as:
|
|
|
|
(C, S) = t[i,j] + 2 a[i] a[j] + C
|
|
|
|
This can overflow what can be represented in an mp_word, and
|
|
since C arithmetic does not provide any way to check for
|
|
overflow, we have to check explicitly for overflow conditions
|
|
before they happen.
|
|
*/
|
|
for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) {
|
|
mp_word u = 0, v;
|
|
|
|
/* Store this in a temporary to avoid indirections later */
|
|
pt = pbt + ix + jx;
|
|
|
|
/* Compute the multiplicative step */
|
|
w = *pa1 * *pa2;
|
|
|
|
/* If w is more than half MP_WORD_MAX, the doubling will
|
|
overflow, and we need to record a carry out into the next
|
|
word */
|
|
u = (w >> (MP_WORD_BIT - 1)) & 1;
|
|
|
|
/* Double what we've got, overflow will be ignored as defined
|
|
for C arithmetic (we've already noted if it is to occur)
|
|
*/
|
|
w *= 2;
|
|
|
|
/* Compute the additive step */
|
|
v = *pt + k;
|
|
|
|
/* If we do not already have an overflow carry, check to see
|
|
if the addition will cause one, and set the carry out if so
|
|
*/
|
|
u |= ((MP_WORD_MAX - v) < w);
|
|
|
|
/* Add in the rest, again ignoring overflow */
|
|
w += v;
|
|
|
|
/* Set the i,j digit of the output */
|
|
*pt = ACCUM(w);
|
|
|
|
/* Save carry information for the next iteration of the loop.
|
|
This is why k must be an mp_word, instead of an mp_digit */
|
|
k = CARRYOUT(w) | (u << DIGIT_BIT);
|
|
|
|
} /* for(jx ...) */
|
|
|
|
/* Set the last digit in the cycle and reset the carry */
|
|
k = DIGIT(&tmp, ix + jx) + k;
|
|
pbt[ix + jx] = ACCUM(k);
|
|
k = CARRYOUT(k);
|
|
|
|
/* If we are carrying out, propagate the carry to the next digit
|
|
in the output. This may cascade, so we have to be somewhat
|
|
circumspect -- but we will have enough precision in the output
|
|
that we won't overflow
|
|
*/
|
|
kx = 1;
|
|
while(k) {
|
|
k = pbt[ix + jx + kx] + 1;
|
|
pbt[ix + jx + kx] = ACCUM(k);
|
|
k = CARRYOUT(k);
|
|
++kx;
|
|
}
|
|
} /* for(ix ...) */
|
|
|
|
s_mp_clamp(&tmp);
|
|
s_mp_exch(&tmp, a);
|
|
|
|
mp_clear(&tmp);
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_sqr() */
|
|
#endif
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_div(a, b) */
|
|
|
|
/*
|
|
s_mp_div(a, b)
|
|
|
|
Compute a = a / b and b = a mod b. Assumes b > a.
|
|
*/
|
|
|
|
mp_err s_mp_div(mp_int *a, mp_int *b)
|
|
{
|
|
mp_int quot, rem, t;
|
|
mp_word q;
|
|
mp_err res;
|
|
mp_digit d;
|
|
int ix;
|
|
|
|
if(mp_cmp_z(b) == 0)
|
|
return MP_RANGE;
|
|
|
|
/* Shortcut if b is power of two */
|
|
if((ix = s_mp_ispow2(b)) >= 0) {
|
|
mp_copy(a, b); /* need this for remainder */
|
|
s_mp_div_2d(a, (mp_digit)ix);
|
|
s_mp_mod_2d(b, (mp_digit)ix);
|
|
|
|
return MP_OKAY;
|
|
}
|
|
|
|
/* Allocate space to store the quotient */
|
|
if((res = mp_init_size(", USED(a))) != MP_OKAY)
|
|
return res;
|
|
|
|
/* A working temporary for division */
|
|
if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
|
|
goto T;
|
|
|
|
/* Allocate space for the remainder */
|
|
if((res = mp_init_size(&rem, USED(a))) != MP_OKAY)
|
|
goto REM;
|
|
|
|
/* Normalize to optimize guessing */
|
|
d = s_mp_norm(a, b);
|
|
|
|
/* Perform the division itself...woo! */
|
|
ix = USED(a) - 1;
|
|
|
|
while(ix >= 0) {
|
|
/* Find a partial substring of a which is at least b */
|
|
while(s_mp_cmp(&rem, b) < 0 && ix >= 0) {
|
|
if((res = s_mp_lshd(&rem, 1)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
if((res = s_mp_lshd(", 1)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
DIGIT(&rem, 0) = DIGIT(a, ix);
|
|
s_mp_clamp(&rem);
|
|
--ix;
|
|
}
|
|
|
|
/* If we didn't find one, we're finished dividing */
|
|
if(s_mp_cmp(&rem, b) < 0)
|
|
break;
|
|
|
|
/* Compute a guess for the next quotient digit */
|
|
q = DIGIT(&rem, USED(&rem) - 1);
|
|
if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1)
|
|
q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2);
|
|
|
|
q /= DIGIT(b, USED(b) - 1);
|
|
|
|
/* The guess can be as much as RADIX + 1 */
|
|
if(q >= RADIX)
|
|
q = RADIX - 1;
|
|
|
|
/* See what that multiplies out to */
|
|
mp_copy(b, &t);
|
|
if((res = s_mp_mul_d(&t, q)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
/*
|
|
If it's too big, back it off. We should not have to do this
|
|
more than once, or, in rare cases, twice. Knuth describes a
|
|
method by which this could be reduced to a maximum of once, but
|
|
I didn't implement that here.
|
|
*/
|
|
while(s_mp_cmp(&t, &rem) > 0) {
|
|
--q;
|
|
s_mp_sub(&t, b);
|
|
}
|
|
|
|
/* At this point, q should be the right next digit */
|
|
if((res = s_mp_sub(&rem, &t)) != MP_OKAY)
|
|
goto CLEANUP;
|
|
|
|
/*
|
|
Include the digit in the quotient. We allocated enough memory
|
|
for any quotient we could ever possibly get, so we should not
|
|
have to check for failures here
|
|
*/
|
|
DIGIT(", 0) = q;
|
|
}
|
|
|
|
/* Denormalize remainder */
|
|
if(d != 0)
|
|
s_mp_div_2d(&rem, d);
|
|
|
|
s_mp_clamp(");
|
|
s_mp_clamp(&rem);
|
|
|
|
/* Copy quotient back to output */
|
|
s_mp_exch(", a);
|
|
|
|
/* Copy remainder back to output */
|
|
s_mp_exch(&rem, b);
|
|
|
|
CLEANUP:
|
|
mp_clear(&rem);
|
|
REM:
|
|
mp_clear(&t);
|
|
T:
|
|
mp_clear(");
|
|
|
|
return res;
|
|
|
|
} /* end s_mp_div() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_2expt(a, k) */
|
|
|
|
mp_err s_mp_2expt(mp_int *a, mp_digit k)
|
|
{
|
|
mp_err res;
|
|
mp_size dig, bit;
|
|
|
|
dig = k / DIGIT_BIT;
|
|
bit = k % DIGIT_BIT;
|
|
|
|
mp_zero(a);
|
|
if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
|
|
return res;
|
|
|
|
DIGIT(a, dig) |= (1 << bit);
|
|
|
|
return MP_OKAY;
|
|
|
|
} /* end s_mp_2expt() */
|
|
|
|
/* }}} */
|
|
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ Primitive comparisons */
|
|
|
|
/* {{{ s_mp_cmp(a, b) */
|
|
|
|
/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b */
|
|
int s_mp_cmp(mp_int *a, mp_int *b)
|
|
{
|
|
mp_size ua = USED(a), ub = USED(b);
|
|
|
|
if(ua > ub)
|
|
return MP_GT;
|
|
else if(ua < ub)
|
|
return MP_LT;
|
|
else {
|
|
int ix = ua - 1;
|
|
mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix;
|
|
|
|
while(ix >= 0) {
|
|
if(*ap > *bp)
|
|
return MP_GT;
|
|
else if(*ap < *bp)
|
|
return MP_LT;
|
|
|
|
--ap; --bp; --ix;
|
|
}
|
|
|
|
return MP_EQ;
|
|
}
|
|
|
|
} /* end s_mp_cmp() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_cmp_d(a, d) */
|
|
|
|
/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d */
|
|
int s_mp_cmp_d(mp_int *a, mp_digit d)
|
|
{
|
|
mp_size ua = USED(a);
|
|
mp_digit *ap = DIGITS(a);
|
|
|
|
if(ua > 1)
|
|
return MP_GT;
|
|
|
|
if(*ap < d)
|
|
return MP_LT;
|
|
else if(*ap > d)
|
|
return MP_GT;
|
|
else
|
|
return MP_EQ;
|
|
|
|
} /* end s_mp_cmp_d() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_ispow2(v) */
|
|
|
|
/*
|
|
Returns -1 if the value is not a power of two; otherwise, it returns
|
|
k such that v = 2^k, i.e. lg(v).
|
|
*/
|
|
int s_mp_ispow2(mp_int *v)
|
|
{
|
|
mp_digit d, *dp;
|
|
mp_size uv = USED(v);
|
|
int extra = 0, ix;
|
|
|
|
d = DIGIT(v, uv - 1); /* most significant digit of v */
|
|
|
|
while(d && ((d & 1) == 0)) {
|
|
d >>= 1;
|
|
++extra;
|
|
}
|
|
|
|
if(d == 1) {
|
|
ix = uv - 2;
|
|
dp = DIGITS(v) + ix;
|
|
|
|
while(ix >= 0) {
|
|
if(*dp)
|
|
return -1; /* not a power of two */
|
|
|
|
--dp; --ix;
|
|
}
|
|
|
|
return ((uv - 1) * DIGIT_BIT) + extra;
|
|
}
|
|
|
|
return -1;
|
|
|
|
} /* end s_mp_ispow2() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_ispow2d(d) */
|
|
|
|
int s_mp_ispow2d(mp_digit d)
|
|
{
|
|
int pow = 0;
|
|
|
|
while((d & 1) == 0) {
|
|
++pow; d >>= 1;
|
|
}
|
|
|
|
if(d == 1)
|
|
return pow;
|
|
|
|
return -1;
|
|
|
|
} /* end s_mp_ispow2d() */
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ Primitive I/O helpers */
|
|
|
|
/* {{{ s_mp_tovalue(ch, r) */
|
|
|
|
/*
|
|
Convert the given character to its digit value, in the given radix.
|
|
If the given character is not understood in the given radix, -1 is
|
|
returned. Otherwise the digit's numeric value is returned.
|
|
|
|
The results will be odd if you use a radix < 2 or > 62, you are
|
|
expected to know what you're up to.
|
|
*/
|
|
int s_mp_tovalue(char ch, int r)
|
|
{
|
|
int val, xch;
|
|
|
|
if(r > 36)
|
|
xch = ch;
|
|
else
|
|
xch = toupper(ch);
|
|
|
|
if(isdigit(xch))
|
|
val = xch - '0';
|
|
else if(isupper(xch))
|
|
val = xch - 'A' + 10;
|
|
else if(islower(xch))
|
|
val = xch - 'a' + 36;
|
|
else if(xch == '+')
|
|
val = 62;
|
|
else if(xch == '/')
|
|
val = 63;
|
|
else
|
|
return -1;
|
|
|
|
if(val < 0 || val >= r)
|
|
return -1;
|
|
|
|
return val;
|
|
|
|
} /* end s_mp_tovalue() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_todigit(val, r, low) */
|
|
|
|
/*
|
|
Convert val to a radix-r digit, if possible. If val is out of range
|
|
for r, returns zero. Otherwise, returns an ASCII character denoting
|
|
the value in the given radix.
|
|
|
|
The results may be odd if you use a radix < 2 or > 64, you are
|
|
expected to know what you're doing.
|
|
*/
|
|
|
|
char s_mp_todigit(int val, int r, int low)
|
|
{
|
|
char ch;
|
|
|
|
if(val < 0 || val >= r)
|
|
return 0;
|
|
|
|
ch = s_dmap_1[val];
|
|
|
|
if(r <= 36 && low)
|
|
ch = tolower(ch);
|
|
|
|
return ch;
|
|
|
|
} /* end s_mp_todigit() */
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_mp_outlen(bits, radix) */
|
|
|
|
/*
|
|
Return an estimate for how long a string is needed to hold a radix
|
|
r representation of a number with 'bits' significant bits.
|
|
|
|
Does not include space for a sign or a NUL terminator.
|
|
*/
|
|
int s_mp_outlen(int bits, int r)
|
|
{
|
|
return (int)((double)bits * LOG_V_2(r));
|
|
|
|
} /* end s_mp_outlen() */
|
|
|
|
/* }}} */
|
|
|
|
/* }}} */
|
|
|
|
/*------------------------------------------------------------------------*/
|
|
/* HERE THERE BE DRAGONS */
|
|
/* crc==4242132123, version==2, Sat Feb 02 06:43:52 2002 */
|
|
|
|
/* $Source$ */
|
|
/* $Revision$ */
|
|
/* $Date$ */
|