libtommath/bn_mp_n_root_ex.c
2019-04-07 17:26:31 +02:00

181 lines
4.4 KiB
C

#include "tommath_private.h"
#ifdef BN_MP_N_ROOT_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* find the n'th root of an integer
*
* Result found such that (c)**b <= a and (c+1)**b > a
*
* This algorithm uses Newton's approximation
* x[i+1] = x[i] - f(x[i])/f'(x[i])
* which will find the root in log(N) time where
* each step involves a fair bit.
*/
int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
{
mp_int t1, t2, t3, a_;
int res, cmp;
int ilog2;
/* input must be positive if b is even */
if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
return MP_VAL;
}
if ((res = mp_init(&t1)) != MP_OKAY) {
return res;
}
if ((res = mp_init(&t2)) != MP_OKAY) {
goto LBL_T1;
}
if ((res = mp_init(&t3)) != MP_OKAY) {
goto LBL_T2;
}
/* if a is negative fudge the sign but keep track */
a_ = *a;
a_.sign = MP_ZPOS;
/* Compute seed: 2^(log_2(n)/b + 2)*/
ilog2 = mp_count_bits(a);
/*
GCC and clang do not understand the sizeof(bla) tests and complain,
icc (the Intel compiler) seems to understand, at least it doesn't complain.
2 of 3 say these macros are necessary, so there they are.
*/
#if ( !(defined MP_8BIT) && !(defined MP_16BIT) )
/*
The type of mp_digit might be larger than an int.
If "b" is larger than INT_MAX it is also larger than
log_2(n) because the bit-length of the "n" is measured
with an int and hence the root is always < 2 (two).
*/
if (sizeof(mp_digit) >= sizeof(int)) {
if (b > (mp_digit)(INT_MAX/2)) {
mp_set(c, 1uL);
c->sign = a->sign;
res = MP_OKAY;
goto LBL_T3;
}
}
#endif
/* "b" is smaller than INT_MAX, we can cast safely */
if (ilog2 < (int)b) {
mp_set(c, 1uL);
c->sign = a->sign;
res = MP_OKAY;
goto LBL_T3;
}
ilog2 = ilog2 / ((int)b);
if (ilog2 == 0) {
mp_set(c, 1uL);
c->sign = a->sign;
res = MP_OKAY;
goto LBL_T3;
}
/* Start value must be larger than root */
ilog2 += 2;
if ((res = mp_2expt(&t2,ilog2)) != MP_OKAY) {
goto LBL_T3;
}
do {
/* t1 = t2 */
if ((res = mp_copy(&t2, &t1)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((res = mp_expt_d_ex(&t1, b - 1u, &t3, fast)) != MP_OKAY) {
goto LBL_T3;
}
/* numerator */
/* t2 = t1**b */
if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1**b - a */
if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* denominator */
/* t3 = t1**(b-1) * b */
if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) {
goto LBL_T3;
}
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) {
goto LBL_T3;
}
if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/*
Number of rounds is at most log_2(root). If it is more it
got stuck, so break out of the loop and do the rest manually.
*/
if (ilog2-- == 0) {
break;
}
} while (mp_cmp(&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
/* Loop beneath can overshoot by one if found root is smaller than actual root */
for (;;) {
if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
goto LBL_T3;
}
cmp = mp_cmp(&t2, &a_);
if (cmp == MP_EQ) {
res = MP_OKAY;
goto LBL_T3;
}
if (cmp == MP_LT) {
if ((res = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) {
goto LBL_T3;
}
} else {
break;
}
}
/* correct overshoot from above or from recurrence */
for (;;) {
if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
goto LBL_T3;
}
if (mp_cmp(&t2, &a_) == MP_GT) {
if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) {
goto LBL_T3;
}
} else {
break;
}
}
/* set the result */
mp_exch(&t1, c);
/* set the sign of the result */
c->sign = a->sign;
res = MP_OKAY;
LBL_T3:
mp_clear(&t3);
LBL_T2:
mp_clear(&t2);
LBL_T1:
mp_clear(&t1);
return res;
}
#endif