18355de625
[skip ci]
157 lines
4.3 KiB
C
157 lines
4.3 KiB
C
#include "tommath_private.h"
|
|
#ifdef BN_MP_PRIME_NEXT_PRIME_C
|
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
|
*
|
|
* LibTomMath is a library that provides multiple-precision
|
|
* integer arithmetic as well as number theoretic functionality.
|
|
*
|
|
* The library was designed directly after the MPI library by
|
|
* Michael Fromberger but has been written from scratch with
|
|
* additional optimizations in place.
|
|
*
|
|
* SPDX-License-Identifier: Unlicense
|
|
*/
|
|
|
|
/* finds the next prime after the number "a" using "t" trials
|
|
* of Miller-Rabin.
|
|
*
|
|
* bbs_style = 1 means the prime must be congruent to 3 mod 4
|
|
*/
|
|
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
|
|
{
|
|
int err, res = MP_NO, x, y;
|
|
mp_digit res_tab[PRIME_SIZE], step, kstep;
|
|
mp_int b;
|
|
|
|
/* force positive */
|
|
a->sign = MP_ZPOS;
|
|
|
|
/* simple algo if a is less than the largest prime in the table */
|
|
if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
|
|
/* find which prime it is bigger than */
|
|
for (x = PRIME_SIZE - 2; x >= 0; x--) {
|
|
if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
|
|
if (bbs_style == 1) {
|
|
/* ok we found a prime smaller or
|
|
* equal [so the next is larger]
|
|
*
|
|
* however, the prime must be
|
|
* congruent to 3 mod 4
|
|
*/
|
|
if ((ltm_prime_tab[x + 1] & 3u) != 3u) {
|
|
/* scan upwards for a prime congruent to 3 mod 4 */
|
|
for (y = x + 1; y < PRIME_SIZE; y++) {
|
|
if ((ltm_prime_tab[y] & 3u) == 3u) {
|
|
mp_set(a, ltm_prime_tab[y]);
|
|
return MP_OKAY;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
mp_set(a, ltm_prime_tab[x + 1]);
|
|
return MP_OKAY;
|
|
}
|
|
}
|
|
}
|
|
/* at this point a maybe 1 */
|
|
if (mp_cmp_d(a, 1uL) == MP_EQ) {
|
|
mp_set(a, 2uL);
|
|
return MP_OKAY;
|
|
}
|
|
/* fall through to the sieve */
|
|
}
|
|
|
|
/* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
|
|
if (bbs_style == 1) {
|
|
kstep = 4;
|
|
} else {
|
|
kstep = 2;
|
|
}
|
|
|
|
/* at this point we will use a combination of a sieve and Miller-Rabin */
|
|
|
|
if (bbs_style == 1) {
|
|
/* if a mod 4 != 3 subtract the correct value to make it so */
|
|
if ((a->dp[0] & 3u) != 3u) {
|
|
if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
|
|
return err;
|
|
};
|
|
}
|
|
} else {
|
|
if (mp_iseven(a) == MP_YES) {
|
|
/* force odd */
|
|
if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* generate the restable */
|
|
for (x = 1; x < PRIME_SIZE; x++) {
|
|
if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
/* init temp used for Miller-Rabin Testing */
|
|
if ((err = mp_init(&b)) != MP_OKAY) {
|
|
return err;
|
|
}
|
|
|
|
for (;;) {
|
|
/* skip to the next non-trivially divisible candidate */
|
|
step = 0;
|
|
do {
|
|
/* y == 1 if any residue was zero [e.g. cannot be prime] */
|
|
y = 0;
|
|
|
|
/* increase step to next candidate */
|
|
step += kstep;
|
|
|
|
/* compute the new residue without using division */
|
|
for (x = 1; x < PRIME_SIZE; x++) {
|
|
/* add the step to each residue */
|
|
res_tab[x] += kstep;
|
|
|
|
/* subtract the modulus [instead of using division] */
|
|
if (res_tab[x] >= ltm_prime_tab[x]) {
|
|
res_tab[x] -= ltm_prime_tab[x];
|
|
}
|
|
|
|
/* set flag if zero */
|
|
if (res_tab[x] == 0u) {
|
|
y = 1;
|
|
}
|
|
}
|
|
} while ((y == 1) && (step < (((mp_digit)1 << DIGIT_BIT) - kstep)));
|
|
|
|
/* add the step */
|
|
if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
/* if didn't pass sieve and step == MAX then skip test */
|
|
if ((y == 1) && (step >= (((mp_digit)1 << DIGIT_BIT) - kstep))) {
|
|
continue;
|
|
}
|
|
|
|
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
}
|
|
if (res == MP_YES) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
err = MP_OKAY;
|
|
LBL_ERR:
|
|
mp_clear(&b);
|
|
return err;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* ref: $Format:%D$ */
|
|
/* git commit: $Format:%H$ */
|
|
/* commit time: $Format:%ai$ */
|