libtommath/bn_mp_invmod.c
2010-07-15 17:25:33 +02:00

176 lines
4.0 KiB
C

/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
*/
#include <tommath.h>
/* hac 14.61, pp608 */
int
mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x, y, u, v, A, B, C, D;
int res;
/* b cannot be negative */
if (b->sign == MP_NEG || mp_iszero(b) == 1) {
return MP_VAL;
}
/* if the modulus is odd we can use a faster routine instead */
if (mp_isodd (b) == 1) {
return fast_mp_invmod (a, b, c);
}
/* init temps */
if ((res = mp_init_multi(&x, &y, &u, &v,
&A, &B, &C, &D, NULL)) != MP_OKAY) {
return res;
}
/* x = a, y = b */
if ((res = mp_copy (a, &x)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_copy (b, &y)) != MP_OKAY) {
goto __ERR;
}
/* 2. [modified] if x,y are both even then return an error! */
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
res = MP_VAL;
goto __ERR;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto __ERR;
}
mp_set (&A, 1);
mp_set (&D, 1);
top:
/* 4. while u is even do */
while (mp_iseven (&u) == 1) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __ERR;
}
/* 4.2 if A or B is odd then */
if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
/* A = (A+y)/2, B = (B-x)/2 */
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto __ERR;
}
}
/* A = A/2, B = B/2 */
if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto __ERR;
}
}
/* 5. while v is even do */
while (mp_iseven (&v) == 1) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __ERR;
}
/* 5.2 if C or D is odd then */
if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
/* C = (C+y)/2, D = (D-x)/2 */
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto __ERR;
}
}
/* C = C/2, D = D/2 */
if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto __ERR;
}
}
/* 6. if u >= v then */
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, A = A - C, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto __ERR;
}
} else {
/* v - v - u, C = C - A, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
goto __ERR;
}
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto __ERR;
}
}
/* if not zero goto step 4 */
if (mp_iszero (&u) == 0)
goto top;
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto __ERR;
}
/* if its too low */
while (mp_cmp_d(&C, 0) == MP_LT) {
if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
goto __ERR;
}
}
/* too big */
while (mp_cmp_mag(&C, b) != MP_LT) {
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
goto __ERR;
}
}
/* C is now the inverse */
mp_exch (&C, c);
res = MP_OKAY;
__ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
return res;
}