1711 lines
49 KiB
C
1711 lines
49 KiB
C
#include "shared.h"
|
|
|
|
static int test_trivial_stuff(void)
|
|
{
|
|
mp_int a, b, c, d;
|
|
if (mp_init_multi(&a, &b, &c, &d, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* a: 0->5 */
|
|
mp_set_int(&a, 5uL);
|
|
/* a: 5-> b: -5 */
|
|
mp_neg(&a, &b);
|
|
if (mp_cmp(&a, &b) != MP_GT) {
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_cmp(&b, &a) != MP_LT) {
|
|
goto LBL_ERR;
|
|
}
|
|
/* a: 5-> a: -5 */
|
|
mp_neg(&a, &a);
|
|
if (mp_cmp(&b, &a) != MP_EQ) {
|
|
goto LBL_ERR;
|
|
}
|
|
/* a: -5-> b: 5 */
|
|
mp_abs(&a, &b);
|
|
if (mp_isneg(&b) != MP_NO) {
|
|
goto LBL_ERR;
|
|
}
|
|
/* a: -5-> b: -4 */
|
|
mp_add_d(&a, 1uL, &b);
|
|
if (mp_isneg(&b) != MP_YES) {
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_get_int(&b) != 4) {
|
|
goto LBL_ERR;
|
|
}
|
|
/* a: -5-> b: 1 */
|
|
mp_add_d(&a, 6uL, &b);
|
|
if (mp_get_int(&b) != 1) {
|
|
goto LBL_ERR;
|
|
}
|
|
/* a: -5-> a: 1 */
|
|
mp_add_d(&a, 6uL, &a);
|
|
if (mp_get_int(&a) != 1) {
|
|
goto LBL_ERR;
|
|
}
|
|
mp_zero(&a);
|
|
/* a: 0-> a: 6 */
|
|
mp_add_d(&a, 6uL, &a);
|
|
if (mp_get_int(&a) != 6) {
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
mp_set_int(&a, 42uL);
|
|
mp_set_int(&b, 1uL);
|
|
mp_neg(&b, &b);
|
|
mp_set_int(&c, 1uL);
|
|
mp_exptmod(&a, &b, &c, &d);
|
|
|
|
mp_set_int(&c, 7uL);
|
|
mp_exptmod(&a, &b, &c, &d);
|
|
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_jacobi(void)
|
|
{
|
|
struct mp_jacobi_st {
|
|
unsigned long n;
|
|
int c[16];
|
|
};
|
|
|
|
static struct mp_jacobi_st jacobi[] = {
|
|
{ 3, { 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1 } },
|
|
{ 5, { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0 } },
|
|
{ 7, { 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1 } },
|
|
{ 9, { -1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 } },
|
|
};
|
|
|
|
int i, n, err, should, cnt;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
mp_set_int(&a, 0uL);
|
|
mp_set_int(&b, 1uL);
|
|
if ((err = mp_jacobi(&a, &b, &i)) != MP_OKAY) {
|
|
printf("Failed executing mp_jacobi(0 | 1) %s.\n", mp_error_to_string(err));
|
|
goto LBL_ERR;
|
|
}
|
|
if (i != 1) {
|
|
printf("Failed trivial mp_jacobi(0 | 1) %d != 1\n", i);
|
|
goto LBL_ERR;
|
|
}
|
|
for (cnt = 0; cnt < (int)(sizeof(jacobi)/sizeof(jacobi[0])); ++cnt) {
|
|
mp_set_int(&b, jacobi[cnt].n);
|
|
/* only test positive values of a */
|
|
for (n = -5; n <= 10; ++n) {
|
|
mp_set_int(&a, abs(n));
|
|
should = MP_OKAY;
|
|
if (n < 0) {
|
|
mp_neg(&a, &a);
|
|
/* Until #44 is fixed the negative a's must fail */
|
|
should = MP_VAL;
|
|
}
|
|
if ((err = mp_jacobi(&a, &b, &i)) != should) {
|
|
printf("Failed executing mp_jacobi(%d | %lu) %s.\n", n, jacobi[cnt].n, mp_error_to_string(err));
|
|
goto LBL_ERR;
|
|
}
|
|
if ((err == MP_OKAY) && (i != jacobi[cnt].c[n + 5])) {
|
|
printf("Failed trivial mp_jacobi(%d | %lu) %d != %d\n", n, jacobi[cnt].n, i, jacobi[cnt].c[n + 5]);
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_kronecker(void)
|
|
{
|
|
struct mp_kronecker_st {
|
|
long n;
|
|
int c[21];
|
|
};
|
|
static struct mp_kronecker_st kronecker[] = {
|
|
/*-10, -9, -8, -7,-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10*/
|
|
{ -10, { 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 1, 0, 1, 0 } },
|
|
{ -9, { -1, 0, -1, 1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, -1, 1, 0, 1 } },
|
|
{ -8, { 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0 } },
|
|
{ -7, { 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1 } },
|
|
{ -6, { 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0 } },
|
|
{ -5, { 0, -1, 1, -1, 1, 0, -1, -1, 1, -1, 0, 1, -1, 1, 1, 0, -1, 1, -1, 1, 0 } },
|
|
{ -4, { 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0 } },
|
|
{ -3, { -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1 } },
|
|
{ -2, { 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0 } },
|
|
{ -1, { -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1 } },
|
|
{ 0, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
|
|
{ 1, { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } },
|
|
{ 2, { 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0 } },
|
|
{ 3, { 1, 0, -1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -1, 0, 1, -1, 0, -1, -1, 0, 1 } },
|
|
{ 4, { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 } },
|
|
{ 5, { 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0 } },
|
|
{ 6, { 0, 0, 0, -1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0 } },
|
|
{ 7, { -1, 1, 1, 0, 1, -1, 1, 1, 1, 1, 0, 1, 1, 1, 1, -1, 1, 0, 1, 1, -1 } },
|
|
{ 8, { 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0 } },
|
|
{ 9, { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 } },
|
|
{ 10, { 0, 1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, -1, 0, 1, 0 } }
|
|
};
|
|
|
|
long k, m;
|
|
int i, err, cnt;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
mp_set_int(&a, 0uL);
|
|
mp_set_int(&b, 1uL);
|
|
if ((err = mp_kronecker(&a, &b, &i)) != MP_OKAY) {
|
|
printf("Failed executing mp_kronecker(0 | 1) %s.\n", mp_error_to_string(err));
|
|
goto LBL_ERR;
|
|
}
|
|
if (i != 1) {
|
|
printf("Failed trivial mp_kronecker(0 | 1) %d != 1\n", i);
|
|
goto LBL_ERR;
|
|
}
|
|
for (cnt = 0; cnt < (int)(sizeof(kronecker)/sizeof(kronecker[0])); ++cnt) {
|
|
k = kronecker[cnt].n;
|
|
if (k < 0) {
|
|
mp_set_int(&a, (unsigned long)(-k));
|
|
mp_neg(&a, &a);
|
|
} else {
|
|
mp_set_int(&a, (unsigned long) k);
|
|
}
|
|
/* only test positive values of a */
|
|
for (m = -10; m <= 10; m++) {
|
|
if (m < 0) {
|
|
mp_set_int(&b,(unsigned long)(-m));
|
|
mp_neg(&b, &b);
|
|
} else {
|
|
mp_set_int(&b, (unsigned long) m);
|
|
}
|
|
if ((err = mp_kronecker(&a, &b, &i)) != MP_OKAY) {
|
|
printf("Failed executing mp_kronecker(%ld | %ld) %s.\n", kronecker[cnt].n, m, mp_error_to_string(err));
|
|
goto LBL_ERR;
|
|
}
|
|
if ((err == MP_OKAY) && (i != kronecker[cnt].c[m + 10])) {
|
|
printf("Failed trivial mp_kronecker(%ld | %ld) %d != %d\n", kronecker[cnt].n, m, i, kronecker[cnt].c[m + 10]);
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_complement(void)
|
|
{
|
|
int i;
|
|
|
|
mp_int a, b, c;
|
|
if (mp_init_multi(&a, &b, &c, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
int l = (rand() * rand() + 1) * (rand() % 1 ? -1 : 1);
|
|
mp_set_int(&a, labs(l));
|
|
if (l < 0)
|
|
mp_neg(&a, &a);
|
|
mp_complement(&a, &b);
|
|
|
|
l = ~l;
|
|
mp_set_int(&c, labs(l));
|
|
if (l < 0)
|
|
mp_neg(&c, &c);
|
|
|
|
if (mp_cmp(&b, &c) != MP_EQ) {
|
|
printf("\nmp_complement() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_tc_div_2d(void)
|
|
{
|
|
int i;
|
|
|
|
mp_int a, b, d;
|
|
if (mp_init_multi(&a, &b, &d, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
int l, em;
|
|
|
|
l = (rand() * rand() + 1) * (rand() % 1 ? -1 : 1);
|
|
mp_set_int(&a, labs(l));
|
|
if (l < 0)
|
|
mp_neg(&a, &a);
|
|
|
|
em = rand() % 32;
|
|
|
|
mp_set_int(&d, labs(l >> em));
|
|
if ((l >> em) < 0)
|
|
mp_neg(&d, &d);
|
|
|
|
mp_tc_div_2d(&a, em, &b);
|
|
if (mp_cmp(&b, &d) != MP_EQ) {
|
|
printf("\nmp_tc_div_2d() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &d, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &d, NULL);
|
|
return EXIT_FAILURE;
|
|
|
|
}
|
|
|
|
static int test_mp_tc_xor(void)
|
|
{
|
|
int i;
|
|
|
|
mp_int a, b, c, d;
|
|
if (mp_init_multi(&a, &b, &c, &d, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
int l, em;
|
|
|
|
l = (rand() * rand() + 1) * (rand() % 1 ? -1 : 1);
|
|
mp_set_int(&a, labs(l));
|
|
if (l < 0)
|
|
mp_neg(&a, &a);
|
|
|
|
em = (rand() * rand() + 1) * (rand() % 1 ? -1 : 1);
|
|
mp_set_int(&b, labs(em));
|
|
if (em < 0)
|
|
mp_neg(&b, &b);
|
|
|
|
mp_set_int(&d, labs(l ^ em));
|
|
if ((l ^ em) < 0)
|
|
mp_neg(&d, &d);
|
|
|
|
mp_tc_xor(&a, &b, &c);
|
|
if (mp_cmp(&c, &d) != MP_EQ) {
|
|
printf("\nmp_tc_xor() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_FAILURE;
|
|
|
|
}
|
|
|
|
static int test_mp_tc_or(void)
|
|
{
|
|
int i;
|
|
|
|
mp_int a, b, c, d;
|
|
if (mp_init_multi(&a, &b, &c, &d, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
int l, em;
|
|
|
|
l = (rand() * rand() + 1) * (rand() % 1 ? -1 : 1);
|
|
mp_set_int(&a, labs(l));
|
|
if (l < 0)
|
|
mp_neg(&a, &a);
|
|
|
|
em = (rand() * rand() + 1) * (rand() % 1 ? -1 : 1);
|
|
mp_set_int(&b, labs(em));
|
|
if (em < 0)
|
|
mp_neg(&b, &b);
|
|
|
|
mp_set_int(&d, labs(l | em));
|
|
if ((l | em) < 0)
|
|
mp_neg(&d, &d);
|
|
|
|
mp_tc_or(&a, &b, &c);
|
|
if (mp_cmp(&c, &d) != MP_EQ) {
|
|
printf("\nmp_tc_or() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_tc_and(void)
|
|
{
|
|
int i;
|
|
|
|
mp_int a, b, c, d;
|
|
if (mp_init_multi(&a, &b, &c, &d, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
int l, em;
|
|
|
|
l = (rand() * rand() + 1) * (rand() % 1 ? -1 : 1);
|
|
mp_set_int(&a, labs(l));
|
|
if (l < 0)
|
|
mp_neg(&a, &a);
|
|
|
|
em = (rand() * rand() + 1) * (rand() % 1 ? -1 : 1);
|
|
mp_set_int(&b, labs(em));
|
|
if (em < 0)
|
|
mp_neg(&b, &b);
|
|
|
|
mp_set_int(&d, labs(l & em));
|
|
if ((l & em) < 0)
|
|
mp_neg(&d, &d);
|
|
|
|
mp_tc_and(&a, &b, &c);
|
|
if (mp_cmp(&c, &d) != MP_EQ) {
|
|
printf("\nmp_tc_and() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_invmod(void)
|
|
{
|
|
mp_int a, b, c, d;
|
|
if (mp_init_multi(&a, &b, &c, &d, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* mp_invmod corner-case of https://github.com/libtom/libtommath/issues/118 */
|
|
{
|
|
const char *a_ = "47182BB8DF0FFE9F61B1F269BACC066B48BA145D35137D426328DC3F88A5EA44";
|
|
const char *b_ = "FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF";
|
|
const char *should_ = "0521A82E10376F8E4FDEF9A32A427AC2A0FFF686E00290D39E3E4B5522409596";
|
|
|
|
if (mp_read_radix(&a, a_, 16) != MP_OKAY) {
|
|
printf("\nmp_read_radix(a) failed!");
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_read_radix(&b, b_, 16) != MP_OKAY) {
|
|
printf("\nmp_read_radix(b) failed!");
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_read_radix(&c, should_, 16) != MP_OKAY) {
|
|
printf("\nmp_read_radix(should) failed!");
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
if (mp_invmod(&a, &b, &d) != MP_OKAY) {
|
|
printf("\nmp_invmod() failed!");
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
if (mp_cmp(&c, &d) != MP_EQ) {
|
|
printf("\nmp_invmod() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_FAILURE;
|
|
|
|
}
|
|
|
|
static int test_mp_set_double(void)
|
|
{
|
|
int i;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* test mp_get_double/mp_set_double */
|
|
#if defined(__STDC_IEC_559__) || defined(__GCC_IEC_559)
|
|
if (mp_set_double(&a, +1.0/0.0) != MP_VAL) {
|
|
printf("\nmp_set_double should return MP_VAL for +inf");
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_set_double(&a, -1.0/0.0) != MP_VAL) {
|
|
printf("\nmp_set_double should return MP_VAL for -inf");
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_set_double(&a, +0.0/0.0) != MP_VAL) {
|
|
printf("\nmp_set_double should return MP_VAL for NaN");
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_set_double(&a, -0.0/0.0) != MP_VAL) {
|
|
printf("\nmp_set_double should return MP_VAL for NaN");
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
int tmp = rand();
|
|
double dbl = (double)tmp * rand() + 1;
|
|
if (mp_set_double(&a, dbl) != MP_OKAY) {
|
|
printf("\nmp_set_double() failed");
|
|
goto LBL_ERR;
|
|
}
|
|
if (dbl != mp_get_double(&a)) {
|
|
printf("\nmp_get_double() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_set_double(&a, -dbl) != MP_OKAY) {
|
|
printf("\nmp_set_double() failed");
|
|
goto LBL_ERR;
|
|
}
|
|
if (-dbl != mp_get_double(&a)) {
|
|
printf("\nmp_get_double() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
|
|
}
|
|
|
|
static int test_mp_get_int(void)
|
|
{
|
|
unsigned long t;
|
|
int i;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
t = (unsigned long)(rand() * rand() + 1) & 0xFFFFFFFFuL;
|
|
mp_set_int(&a, t);
|
|
if (t != mp_get_int(&a)) {
|
|
printf("\nmp_get_int() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
mp_set_int(&a, 0uL);
|
|
if (mp_get_int(&a) != 0) {
|
|
printf("\nmp_get_int() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
mp_set_int(&a, 0xFFFFFFFFuL);
|
|
if (mp_get_int(&a) != 0xFFFFFFFFuL) {
|
|
printf("\nmp_get_int() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_get_long(void)
|
|
{
|
|
unsigned long s, t;
|
|
int i;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < ((int)(sizeof(unsigned long)*CHAR_BIT) - 1); ++i) {
|
|
t = (1ULL << (i+1)) - 1;
|
|
if (!t)
|
|
t = -1;
|
|
printf(" t = 0x%lx i = %d\r", t, i);
|
|
do {
|
|
if (mp_set_long(&a, t) != MP_OKAY) {
|
|
printf("\nmp_set_long() error!");
|
|
goto LBL_ERR;
|
|
}
|
|
s = mp_get_long(&a);
|
|
if (s != t) {
|
|
printf("\nmp_get_long() bad result! 0x%lx != 0x%lx", s, t);
|
|
goto LBL_ERR;
|
|
}
|
|
t <<= 1;
|
|
} while (t != 0uL);
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_get_long_long(void)
|
|
{
|
|
unsigned long long q, r;
|
|
int i;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < ((int)(sizeof(unsigned long long)*CHAR_BIT) - 1); ++i) {
|
|
r = (1ULL << (i+1)) - 1;
|
|
if (!r)
|
|
r = -1;
|
|
printf(" r = 0x%llx i = %d\r", r, i);
|
|
do {
|
|
if (mp_set_long_long(&a, r) != MP_OKAY) {
|
|
printf("\nmp_set_long_long() error!");
|
|
goto LBL_ERR;
|
|
}
|
|
q = mp_get_long_long(&a);
|
|
if (q != r) {
|
|
printf("\nmp_get_long_long() bad result! 0x%llx != 0x%llx", q, r);
|
|
goto LBL_ERR;
|
|
}
|
|
r <<= 1;
|
|
} while (r != 0uLL);
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
|
|
}
|
|
|
|
static int test_mp_sqrt(void)
|
|
{
|
|
int i, n;
|
|
|
|
mp_int a, b, c, d;
|
|
if (mp_init_multi(&a, &b, &c, &d, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
printf("%6d\r", i);
|
|
fflush(stdout);
|
|
n = (rand() & 15) + 1;
|
|
mp_rand(&a, n);
|
|
if (mp_sqrt(&a, &b) != MP_OKAY) {
|
|
printf("\nmp_sqrt() error!");
|
|
goto LBL_ERR;
|
|
}
|
|
mp_n_root_ex(&a, 2uL, &c, 0);
|
|
mp_n_root_ex(&a, 2uL, &d, 1);
|
|
if (mp_cmp_mag(&c, &d) != MP_EQ) {
|
|
printf("\nmp_n_root_ex() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_cmp_mag(&b, &c) != MP_EQ) {
|
|
printf("mp_sqrt() bad result!\n");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_is_square(void)
|
|
{
|
|
int i, n;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < 1000; ++i) {
|
|
printf("%6d\r", i);
|
|
fflush(stdout);
|
|
|
|
/* test mp_is_square false negatives */
|
|
n = (rand() & 7) + 1;
|
|
mp_rand(&a, n);
|
|
mp_sqr(&a, &a);
|
|
if (mp_is_square(&a, &n) != MP_OKAY) {
|
|
printf("\nfn:mp_is_square() error!");
|
|
goto LBL_ERR;
|
|
}
|
|
if (n == 0) {
|
|
printf("\nfn:mp_is_square() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
/* test for false positives */
|
|
mp_add_d(&a, 1uL, &a);
|
|
if (mp_is_square(&a, &n) != MP_OKAY) {
|
|
printf("\nfp:mp_is_square() error!");
|
|
goto LBL_ERR;
|
|
}
|
|
if (n == 1) {
|
|
printf("\nfp:mp_is_square() bad result!");
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
}
|
|
printf("\n\n");
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_sqrtmod_prime(void)
|
|
{
|
|
struct mp_sqrtmod_prime_st {
|
|
unsigned long p;
|
|
unsigned long n;
|
|
mp_digit r;
|
|
};
|
|
|
|
static struct mp_sqrtmod_prime_st sqrtmod_prime[] = {
|
|
{ 5, 14, 3 },
|
|
{ 7, 9, 4 },
|
|
{ 113, 2, 62 }
|
|
};
|
|
int i;
|
|
|
|
mp_int a, b, c;
|
|
if (mp_init_multi(&a, &b, &c, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* r^2 = n (mod p) */
|
|
for (i = 0; i < (int)(sizeof(sqrtmod_prime)/sizeof(sqrtmod_prime[0])); ++i) {
|
|
mp_set_int(&a, sqrtmod_prime[i].p);
|
|
mp_set_int(&b, sqrtmod_prime[i].n);
|
|
if (mp_sqrtmod_prime(&b, &a, &c) != MP_OKAY) {
|
|
printf("Failed executing %d. mp_sqrtmod_prime\n", (i+1));
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_cmp_d(&c, sqrtmod_prime[i].r) != MP_EQ) {
|
|
printf("Failed %d. trivial mp_sqrtmod_prime\n", (i+1));
|
|
ndraw(&c, "r");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
#if defined(LTM_DEMO_REAL_RAND) && !defined(_WIN32)
|
|
static FILE *fd_urandom = 0;
|
|
#endif
|
|
|
|
static int myrng(unsigned char *dst, int len, void *dat)
|
|
{
|
|
int x;
|
|
(void)dat;
|
|
#if defined(LTM_DEMO_REAL_RAND) && !defined(_WIN32)
|
|
if (!fd_urandom) {
|
|
fprintf(stderr, "\nno /dev/urandom\n");
|
|
} else {
|
|
return fread(dst, 1uL, len, fd_urandom);
|
|
}
|
|
#endif
|
|
for (x = 0; x < len;) {
|
|
unsigned int r = (unsigned int)rand();
|
|
do {
|
|
dst[x++] = r & 0xFFu;
|
|
r >>= 8;
|
|
} while ((r != 0u) && (x < len));
|
|
}
|
|
return len;
|
|
}
|
|
|
|
static int test_mp_prime_random_ex(void)
|
|
{
|
|
int ix, err;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* test for size */
|
|
for (ix = 10; ix < 128; ix++) {
|
|
printf("Testing (not safe-prime): %9d bits \r", ix);
|
|
fflush(stdout);
|
|
err = mp_prime_random_ex(&a, 8, ix,
|
|
(rand() & 1) ? 0 : LTM_PRIME_2MSB_ON, myrng,
|
|
NULL);
|
|
if (err != MP_OKAY) {
|
|
printf("\nfailed with error: %s\n", mp_error_to_string(err));
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_count_bits(&a) != ix) {
|
|
printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
printf("\n");
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_prime_is_prime(void)
|
|
{
|
|
int ix, err, cnt;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* strong Miller-Rabin pseudoprime to the first 200 primes (F. Arnault) */
|
|
puts("Testing mp_prime_is_prime() with Arnault's pseudoprime 803...901 \n");
|
|
mp_read_radix(&a,
|
|
"91xLNF3roobhzgTzoFIG6P13ZqhOVYSN60Fa7Cj2jVR1g0k89zdahO9/kAiRprpfO1VAp1aBHucLFV/qLKLFb+zonV7R2Vxp1K13ClwUXStpV0oxTNQVjwybmFb5NBEHImZ6V7P6+udRJuH8VbMEnS0H8/pSqQrg82OoQQ2fPpAk6G1hkjqoCv5s/Yr",
|
|
64);
|
|
mp_prime_is_prime(&a, 8, &cnt);
|
|
if (cnt == MP_YES) {
|
|
printf("Arnault's pseudoprime is not prime but mp_prime_is_prime says it is.\n");
|
|
goto LBL_ERR;
|
|
}
|
|
/* About the same size as Arnault's pseudoprime */
|
|
puts("Testing mp_prime_is_prime() with certified prime 2^1119 + 53\n");
|
|
mp_set(&a, 1uL);
|
|
mp_mul_2d(&a,1119,&a);
|
|
mp_add_d(&a, 53uL, &a);
|
|
err = mp_prime_is_prime(&a, 8, &cnt);
|
|
/* small problem */
|
|
if (err != MP_OKAY) {
|
|
printf("\nfailed with error: %s\n", mp_error_to_string(err));
|
|
}
|
|
/* large problem */
|
|
if (cnt == MP_NO) {
|
|
printf("A certified prime is a prime but mp_prime_is_prime says it is not.\n");
|
|
}
|
|
if ((err != MP_OKAY) || (cnt == MP_NO)) {
|
|
printf("prime tested was: ");
|
|
mp_fwrite(&a,16,stdout);
|
|
putchar('\n');
|
|
goto LBL_ERR;
|
|
}
|
|
for (ix = 16; ix < 128; ix++) {
|
|
printf("Testing ( safe-prime): %9d bits \r", ix);
|
|
fflush(stdout);
|
|
err = mp_prime_random_ex(
|
|
&a, 8, ix, ((rand() & 1) ? 0 : LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE,
|
|
myrng, NULL);
|
|
if (err != MP_OKAY) {
|
|
printf("\nfailed with error: %s\n", mp_error_to_string(err));
|
|
goto LBL_ERR;
|
|
}
|
|
if (mp_count_bits(&a) != ix) {
|
|
printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
|
|
goto LBL_ERR;
|
|
}
|
|
/* let's see if it's really a safe prime */
|
|
mp_sub_d(&a, 1uL, &b);
|
|
mp_div_2(&b, &b);
|
|
err = mp_prime_is_prime(&b, 8, &cnt);
|
|
/* small problem */
|
|
if (err != MP_OKAY) {
|
|
printf("\nfailed with error: %s\n", mp_error_to_string(err));
|
|
}
|
|
/* large problem */
|
|
if (cnt == MP_NO) {
|
|
printf("\nsub is not prime!\n");
|
|
}
|
|
if ((err != MP_OKAY) || (cnt == MP_NO)) {
|
|
printf("prime tested was: ");
|
|
mp_fwrite(&a,16,stdout);
|
|
putchar('\n');
|
|
printf("sub tested was: ");
|
|
mp_fwrite(&b,16,stdout);
|
|
putchar('\n');
|
|
goto LBL_ERR;
|
|
}
|
|
|
|
}
|
|
/* Check regarding problem #143 */
|
|
#ifndef MP_8BIT
|
|
mp_read_radix(&a,
|
|
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A63A3620FFFFFFFFFFFFFFFF",
|
|
16);
|
|
err = mp_prime_strong_lucas_selfridge(&a, &cnt);
|
|
/* small problem */
|
|
if (err != MP_OKAY) {
|
|
printf("\nmp_prime_strong_lucas_selfridge failed with error: %s\n", mp_error_to_string(err));
|
|
}
|
|
/* large problem */
|
|
if (cnt == MP_NO) {
|
|
printf("\n\nissue #143 - mp_prime_strong_lucas_selfridge FAILED!\n");
|
|
}
|
|
if ((err != MP_OKAY) || (cnt == MP_NO)) {
|
|
printf("prime tested was: ");
|
|
mp_fwrite(&a,16,stdout);
|
|
putchar('\n');
|
|
goto LBL_ERR;
|
|
}
|
|
#endif
|
|
|
|
printf("\n\n");
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
|
|
}
|
|
|
|
static int test_mp_montgomery_reduce(void)
|
|
{
|
|
mp_digit mp;
|
|
int ix, i, n;
|
|
char buf[4096];
|
|
|
|
mp_int a, b, c, d, e;
|
|
if (mp_init_multi(&a, &b, &c, &d, &e, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* test montgomery */
|
|
for (i = 1; i <= 10; i++) {
|
|
if (i == 10)
|
|
i = 1000;
|
|
printf(" digit size: %2d\r", i);
|
|
fflush(stdout);
|
|
for (n = 0; n < 1000; n++) {
|
|
mp_rand(&a, i);
|
|
a.dp[0] |= 1;
|
|
|
|
/* let's see if R is right */
|
|
mp_montgomery_calc_normalization(&b, &a);
|
|
mp_montgomery_setup(&a, &mp);
|
|
|
|
/* now test a random reduction */
|
|
for (ix = 0; ix < 100; ix++) {
|
|
mp_rand(&c, 1 + abs(rand()) % (2*i));
|
|
mp_copy(&c, &d);
|
|
mp_copy(&c, &e);
|
|
|
|
mp_mod(&d, &a, &d);
|
|
mp_montgomery_reduce(&c, &a, mp);
|
|
mp_mulmod(&c, &b, &a, &c);
|
|
|
|
if (mp_cmp(&c, &d) != MP_EQ) {
|
|
/* *INDENT-OFF* */
|
|
printf("d = e mod a, c = e MOD a\n");
|
|
mp_todecimal(&a, buf); printf("a = %s\n", buf);
|
|
mp_todecimal(&e, buf); printf("e = %s\n", buf);
|
|
mp_todecimal(&d, buf); printf("d = %s\n", buf);
|
|
mp_todecimal(&c, buf); printf("c = %s\n", buf);
|
|
printf("compare no compare!\n"); goto LBL_ERR;
|
|
/* *INDENT-ON* */
|
|
}
|
|
/* only one big montgomery reduction */
|
|
if (i > 10) {
|
|
n = 1000;
|
|
ix = 100;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
printf("\n\n");
|
|
|
|
mp_clear_multi(&a, &b, &c, &d, &e, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, &d, &e, NULL);
|
|
return EXIT_FAILURE;
|
|
|
|
}
|
|
|
|
static int test_mp_read_radix(void)
|
|
{
|
|
char buf[4096];
|
|
|
|
mp_int a;
|
|
if (mp_init_multi(&a, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
mp_read_radix(&a, "123456", 10);
|
|
mp_toradix_n(&a, buf, 10, 3);
|
|
printf("a == %s\n", buf);
|
|
mp_toradix_n(&a, buf, 10, 4);
|
|
printf("a == %s\n", buf);
|
|
mp_toradix_n(&a, buf, 10, 30);
|
|
printf("a == %s\n", buf);
|
|
|
|
#if 0
|
|
for (;;) {
|
|
fgets(buf, sizeof(buf), stdin);
|
|
mp_read_radix(&a, buf, 10);
|
|
mp_prime_next_prime(&a, 5, 1);
|
|
mp_toradix(&a, buf, 10);
|
|
printf("%s, %lu\n", buf, a.dp[0] & 3);
|
|
}
|
|
#endif
|
|
|
|
mp_clear_multi(&a, NULL);
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
static int test_mp_cnt_lsb(void)
|
|
{
|
|
int ix;
|
|
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
mp_set(&a, 1uL);
|
|
for (ix = 0; ix < 1024; ix++) {
|
|
if (mp_cnt_lsb(&a) != ix) {
|
|
printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a));
|
|
goto LBL_ERR;
|
|
}
|
|
mp_mul_2(&a, &a);
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
|
|
}
|
|
|
|
static int test_mp_reduce_2k(void)
|
|
{
|
|
int ix, cnt;
|
|
|
|
mp_int a, b, c, d;
|
|
if (mp_init_multi(&a, &b, &c, &d, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* test mp_reduce_2k */
|
|
for (cnt = 3; cnt <= 128; ++cnt) {
|
|
mp_digit tmp;
|
|
|
|
mp_2expt(&a, cnt);
|
|
mp_sub_d(&a, 2uL, &a); /* a = 2**cnt - 2 */
|
|
|
|
printf("\r %4d bits", cnt);
|
|
printf("(%d)", mp_reduce_is_2k(&a));
|
|
mp_reduce_2k_setup(&a, &tmp);
|
|
printf("(%lu)", (unsigned long) tmp);
|
|
for (ix = 0; ix < 1000; ix++) {
|
|
if (!(ix & 127)) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
}
|
|
mp_rand(&b, (cnt / DIGIT_BIT + 1) * 2);
|
|
mp_copy(&c, &b);
|
|
mp_mod(&c, &a, &c);
|
|
mp_reduce_2k(&b, &a, 2uL);
|
|
if (mp_cmp(&c, &b) != MP_EQ) {
|
|
printf("FAILED\n");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, &d, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_div_3(void)
|
|
{
|
|
int cnt;
|
|
|
|
mp_int a, b, c, d, e;
|
|
if (mp_init_multi(&a, &b, &c, &d, &e, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* test mp_div_3 */
|
|
mp_set(&d, 3uL);
|
|
for (cnt = 0; cnt < 10000;) {
|
|
mp_digit r2;
|
|
|
|
if (!(++cnt & 127)) {
|
|
printf("%9d\r", cnt);
|
|
fflush(stdout);
|
|
}
|
|
mp_rand(&a, abs(rand()) % 128 + 1);
|
|
mp_div(&a, &d, &b, &e);
|
|
mp_div_3(&a, &c, &r2);
|
|
|
|
if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) {
|
|
printf("\nmp_div_3 => Failure\n");
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
printf("\nPassed div_3 testing");
|
|
|
|
mp_clear_multi(&a, &b, &c, &d, &e, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, &d, &e, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_dr_reduce(void)
|
|
{
|
|
mp_digit mp;
|
|
int cnt;
|
|
unsigned rr;
|
|
int ix;
|
|
|
|
mp_int a, b, c;
|
|
if (mp_init_multi(&a, &b, &c, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/* test the DR reduction */
|
|
for (cnt = 2; cnt < 32; cnt++) {
|
|
printf("\r%d digit modulus", cnt);
|
|
mp_grow(&a, cnt);
|
|
mp_zero(&a);
|
|
for (ix = 1; ix < cnt; ix++) {
|
|
a.dp[ix] = MP_MASK;
|
|
}
|
|
a.used = cnt;
|
|
a.dp[0] = 3;
|
|
|
|
mp_rand(&b, cnt - 1);
|
|
mp_copy(&b, &c);
|
|
|
|
rr = 0;
|
|
do {
|
|
if (!(rr & 127)) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
}
|
|
mp_sqr(&b, &b);
|
|
mp_add_d(&b, 1uL, &b);
|
|
mp_copy(&b, &c);
|
|
|
|
mp_mod(&b, &a, &b);
|
|
mp_dr_setup(&a, &mp);
|
|
mp_dr_reduce(&c, &a, mp);
|
|
|
|
if (mp_cmp(&b, &c) != MP_EQ) {
|
|
printf("Failed on trial %u\n", rr);
|
|
goto LBL_ERR;
|
|
}
|
|
} while (++rr < 500);
|
|
printf(" passed");
|
|
fflush(stdout);
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, &c, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_reduce_2k_l(void)
|
|
{
|
|
# if LTM_DEMO_TEST_REDUCE_2K_L
|
|
mp_int a, b;
|
|
if (mp_init_multi(&a, &b, NULL)!= MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
/* test the mp_reduce_2k_l code */
|
|
# if LTM_DEMO_TEST_REDUCE_2K_L == 1
|
|
/* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */
|
|
mp_2expt(&a, 1024);
|
|
mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16);
|
|
mp_sub(&a, &b, &a);
|
|
# elif LTM_DEMO_TEST_REDUCE_2K_L == 2
|
|
/* p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F */
|
|
mp_2expt(&a, 2048);
|
|
mp_read_radix(&b,
|
|
"1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F",
|
|
16);
|
|
mp_sub(&a, &b, &a);
|
|
# else
|
|
# error oops
|
|
# endif
|
|
|
|
mp_todecimal(&a, buf);
|
|
printf("\n\np==%s\n", buf);
|
|
/* now mp_reduce_is_2k_l() should return */
|
|
if (mp_reduce_is_2k_l(&a) != 1) {
|
|
printf("mp_reduce_is_2k_l() return 0, should be 1\n");
|
|
goto LBL_ERR;
|
|
}
|
|
mp_reduce_2k_setup_l(&a, &d);
|
|
/* now do a million square+1 to see if it varies */
|
|
mp_rand(&b, 64);
|
|
mp_mod(&b, &a, &b);
|
|
mp_copy(&b, &c);
|
|
printf("Testing: mp_reduce_2k_l...");
|
|
fflush(stdout);
|
|
for (cnt = 0; cnt < (int)(1UL << 20); cnt++) {
|
|
mp_sqr(&b, &b);
|
|
mp_add_d(&b, 1uL, &b);
|
|
mp_reduce_2k_l(&b, &a, &d);
|
|
mp_sqr(&c, &c);
|
|
mp_add_d(&c, 1uL, &c);
|
|
mp_mod(&c, &a, &c);
|
|
if (mp_cmp(&b, &c) != MP_EQ) {
|
|
printf("mp_reduce_2k_l() failed at step %d\n", cnt);
|
|
mp_tohex(&b, buf);
|
|
printf("b == %s\n", buf);
|
|
mp_tohex(&c, buf);
|
|
printf("c == %s\n", buf);
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LBL_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
#else
|
|
return EXIT_SUCCESS;
|
|
# endif /* LTM_DEMO_TEST_REDUCE_2K_L */
|
|
}
|
|
|
|
static int test_mp_incr(void)
|
|
{
|
|
mp_int a, b;
|
|
int e = MP_OKAY;
|
|
|
|
if ((e = mp_init_multi(&a, &b, NULL)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
/* Does it increment inside the limits of a MP_xBIT limb? */
|
|
mp_set(&a, MP_MASK/2);
|
|
if ((e = mp_incr(&a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if (mp_cmp_d(&a, (MP_MASK/2uL) + 1uL) != MP_EQ) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
/* Does it increment outside of the limits of a MP_xBIT limb? */
|
|
mp_set(&a, MP_MASK);
|
|
mp_set(&b, MP_MASK);
|
|
if ((e = mp_incr(&a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if ((e = mp_add_d(&b, 1uL, &b)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if (mp_cmp(&a, &b) != MP_EQ) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
/* Does it increment from -1 to 0? */
|
|
mp_set(&a, 1uL);
|
|
a.sign = MP_NEG;
|
|
if ((e = mp_incr(&a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if (mp_cmp_d(&a, 0uL) != MP_EQ) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
/* Does it increment from -(MP_MASK + 1) to -MP_MASK? */
|
|
mp_set(&a, MP_MASK);
|
|
if ((e = mp_add_d(&a, 1uL, &a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
a.sign = MP_NEG;
|
|
if ((e = mp_incr(&a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if (a.sign != MP_NEG) {
|
|
goto LTM_ERR;
|
|
}
|
|
a.sign = MP_ZPOS;
|
|
if (mp_cmp_d(&a, MP_MASK) != MP_EQ) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LTM_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_decr(void)
|
|
{
|
|
mp_int a, b;
|
|
int e = MP_OKAY;
|
|
|
|
if ((e = mp_init_multi(&a, &b, NULL)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
/* Does it decrement inside the limits of a MP_xBIT limb? */
|
|
mp_set(&a, MP_MASK/2);
|
|
if ((e = mp_decr(&a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if (mp_cmp_d(&a, (MP_MASK/2uL) - 1uL) != MP_EQ) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
/* Does it decrement outside of the limits of a MP_xBIT limb? */
|
|
mp_set(&a, MP_MASK);
|
|
if ((e = mp_add_d(&a, 1uL, &a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if ((e = mp_decr(&a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if (mp_cmp_d(&a, MP_MASK) != MP_EQ) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
/* Does it decrement from 0 to -1? */
|
|
mp_zero(&a);
|
|
if ((e = mp_decr(&a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if (a.sign == MP_NEG) {
|
|
a.sign = MP_ZPOS;
|
|
if (mp_cmp_d(&a, 1uL) != MP_EQ) {
|
|
goto LTM_ERR;
|
|
}
|
|
} else {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
|
|
/* Does it decrement from -MP_MASK to -(MP_MASK + 1)? */
|
|
mp_set(&a, MP_MASK);
|
|
a.sign = MP_NEG;
|
|
mp_set(&b, MP_MASK);
|
|
b.sign = MP_NEG;
|
|
if ((e = mp_sub_d(&b, 1uL, &b)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if ((e = mp_decr(&a)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if (mp_cmp(&a, &b) != MP_EQ) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_SUCCESS;
|
|
LTM_ERR:
|
|
mp_clear_multi(&a, &b, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
/*
|
|
Cannot test mp_exp(_d) without mp_n_root and vice versa.
|
|
So one of the two has to be tested from scratch.
|
|
|
|
Numbers generated by
|
|
for i in {1..10}
|
|
do
|
|
seed=$(head -c 10000 /dev/urandom | tr -dc '[:digit:]' | head -c 120);
|
|
echo $seed;
|
|
convertbase $seed 10 64;
|
|
done
|
|
|
|
(The program "convertbase" uses libtommath's to/from_radix functions)
|
|
|
|
Roots were precalculated with Pari/GP
|
|
|
|
default(realprecision,1000);
|
|
for(n=3,100,r = floor(a^(1/n));printf("\"" r "\", "))
|
|
|
|
All numbers as strings to simplifiy things, especially for the
|
|
low-mp branch.
|
|
*/
|
|
static int test_mp_n_root(void)
|
|
{
|
|
mp_int a, c, r;
|
|
int e;
|
|
int i, j;
|
|
|
|
const char *input[] = {
|
|
"4n9cbk886QtLQmofprid3l2Q0GD8Yv979Lh8BdZkFE8g2pDUUSMBET/+M/YFyVZ3mBp",
|
|
"5NlgzHhmIX05O5YoW5yW5reAlVNtRAlIcN2dfoATnNdc1Cw5lHZUTwNthmK6/ZLKfY6",
|
|
"3gweiHDX+ji5utraSe46IJX+uuh7iggs63xIpMP5MriU4Np+LpHI5are8RzS9pKh9xP",
|
|
"5QOJUSKMrfe7LkeyJOlupS8h7bjT+TXmZkDzOjZtfj7mdA7cbg0lRX3CuafhjIrpK8S",
|
|
"4HtYFldVkyVbrlg/s7kmaA7j45PvLQm+1bbn6ehgP8tVoBmGbv2yDQI1iQQze4AlHyN",
|
|
"3bwCUx79NAR7c68OPSp5ZabhZ9aBEr7rWNTO2oMY7zhbbbw7p6shSMxqE9K9nrTNucf",
|
|
"4j5RGb78TfuYSzrXn0z6tiAoWiRI81hGY3el9AEa9S+gN4x/AmzotHT2Hvj6lyBpE7q",
|
|
"4lwg30SXqZhEHNsl5LIXdyu7UNt0VTWebP3m7+WUL+hsnFW9xJe7UnzYngZsvWh14IE",
|
|
"1+tcqFeRuGqjRADRoRUJ8gL4UUSFQVrVVoV6JpwVcKsuBq5G0pABn0dLcQQQMViiVRj",
|
|
"hXwxuFySNSFcmbrs/coz4FUAaUYaOEt+l4V5V8vY71KyBvQPxRq/6lsSrG2FHvWDax"
|
|
};
|
|
/* roots 3-100 of the above */
|
|
const char *root[10][100] = {
|
|
{
|
|
"9163694094944489658600517465135586130944",
|
|
"936597377180979771960755204040", "948947857956884030956907",
|
|
"95727185767390496595", "133844854039712620", "967779611885360",
|
|
"20926191452627", "974139547476", "79203891950", "9784027073",
|
|
"1667309744", "365848129", "98268452", "31109156", "11275351",
|
|
"4574515", "2040800", "986985", "511525", "281431", "163096",
|
|
"98914", "62437", "40832", "27556", "19127", "13614", "9913",
|
|
"7367", "5577", "4294", "3357", "2662", "2138", "1738", "1428",
|
|
"1185", "993", "839", "715", "613", "530", "461", "403", "355",
|
|
"314", "279", "249", "224", "202", "182", "166", "151", "138",
|
|
"126", "116", "107", "99", "92", "85", "79", "74", "69", "65", "61",
|
|
"57", "54", "51", "48", "46", "43", "41", "39", "37", "36", "34",
|
|
"32", "31", "30", "28", "27", "26", "25", "24", "23", "23", "22",
|
|
"21", "20", "20", "19", "18", "18", "17", "17", "16", "16", "15"
|
|
}, {
|
|
"9534798256755061606359588498764080011382",
|
|
"964902943621813525741417593772", "971822399862464674540423",
|
|
"97646291566833512831", "136141536090599560", "982294733581430",
|
|
"21204945933335", "985810529393", "80066084985", "9881613813",
|
|
"1682654547", "368973625", "99051783", "31341581", "11354620",
|
|
"4604882", "2053633", "992879", "514434", "282959", "163942",
|
|
"99406", "62736", "41020", "27678", "19208", "13670", "9952",
|
|
"7395", "5598", "4310", "3369", "2671", "2145", "1744", "1433",
|
|
"1189", "996", "842", "717", "615", "531", "462", "404", "356",
|
|
"315", "280", "250", "224", "202", "183", "166", "151", "138",
|
|
"127", "116", "107", "99", "92", "85", "80", "74", "70", "65", "61",
|
|
"58", "54", "51", "48", "46", "43", "41", "39", "37", "36", "34",
|
|
"32", "31", "30", "29", "27", "26", "25", "24", "23", "23", "22",
|
|
"21", "20", "20", "19", "18", "18", "17", "17", "16", "16", "15"
|
|
}, {
|
|
"8398539113202579297642815367509019445624",
|
|
"877309458945432597462853440936", "900579899458998599215071",
|
|
"91643543761699761637", "128935656335800903", "936647990947203",
|
|
"20326748623514", "948988882684", "77342677787", "9573063447",
|
|
"1634096832", "359076114", "96569670", "30604705", "11103188",
|
|
"4508519", "2012897", "974160", "505193", "278105", "161251",
|
|
"97842", "61788", "40423", "27291", "18949", "13492", "9826",
|
|
"7305", "5532", "4260", "3332", "2642", "2123", "1726", "1418",
|
|
"1177", "986", "834", "710", "610", "527", "458", "401", "353",
|
|
"312", "278", "248", "223", "201", "181", "165", "150", "137",
|
|
"126", "116", "107", "99", "91", "85", "79", "74", "69", "65", "61",
|
|
"57", "54", "51", "48", "46", "43", "41", "39", "37", "35", "34",
|
|
"32", "31", "30", "28", "27", "26", "25", "24", "23", "22", "22",
|
|
"21", "20", "20", "19", "18", "18", "17", "17", "16", "16", "15"
|
|
}, {
|
|
"9559098494021810340217797724866627755195",
|
|
"966746709063325235560830083787", "973307706084821682248292",
|
|
"97770642291138756434", "136290128605981259", "983232784778520",
|
|
"21222944848922", "986563584410", "80121684894", "9887903837",
|
|
"1683643206", "369174929", "99102220", "31356542", "11359721",
|
|
"4606836", "2054458", "993259", "514621", "283057", "163997",
|
|
"99437", "62755", "41032", "27686", "19213", "13674", "9955",
|
|
"7397", "5599", "4311", "3370", "2672", "2146", "1744", "1433",
|
|
"1189", "996", "842", "717", "615", "532", "462", "404", "356",
|
|
"315", "280", "250", "224", "202", "183", "166", "151", "138",
|
|
"127", "116", "107", "99", "92", "86", "80", "74", "70", "65", "61",
|
|
"58", "54", "51", "48", "46", "43", "41", "39", "37", "36", "34",
|
|
"32", "31", "30", "29", "27", "26", "25", "24", "23", "23", "22",
|
|
"21", "20", "20", "19", "18", "18", "17", "17", "16", "16", "15"
|
|
}, {
|
|
"8839202025813295923132694443541993309220",
|
|
"911611499784863252820288596270", "928640961450376817534853",
|
|
"94017030509441723821", "131792686685970629", "954783483196511",
|
|
"20676214073400", "963660189823", "78428929840", "9696237956",
|
|
"1653495486", "363032624", "97562430", "30899570", "11203842",
|
|
"4547110", "2029216", "981661", "508897", "280051", "162331",
|
|
"98469", "62168", "40663", "27446", "19053", "13563", "9877",
|
|
"7341", "5558", "4280", "3347", "2654", "2132", "1733", "1424",
|
|
"1182", "990", "837", "713", "612", "529", "460", "402", "354",
|
|
"313", "279", "249", "223", "201", "182", "165", "150", "138",
|
|
"126", "116", "107", "99", "92", "85", "79", "74", "69", "65", "61",
|
|
"57", "54", "51", "48", "46", "43", "41", "39", "37", "36", "34",
|
|
"32", "31", "30", "28", "27", "26", "25", "24", "23", "23", "22",
|
|
"21", "20", "20", "19", "18", "18", "17", "17", "16", "16", "15"
|
|
}, {
|
|
"8338442683973420410660145045849076963795",
|
|
"872596990706967613912664152945", "896707843885562730147307",
|
|
"91315073695274540969", "128539440806486007", "934129001105825",
|
|
"20278149285734", "946946589774", "77191347471", "9555892093",
|
|
"1631391010", "358523975", "96431070", "30563524", "11089126",
|
|
"4503126", "2010616", "973111", "504675", "277833", "161100",
|
|
"97754", "61734", "40390", "27269", "18934", "13482", "9819",
|
|
"7300", "5528", "4257", "3330", "2641", "2122", "1725", "1417",
|
|
"1177", "986", "833", "710", "609", "527", "458", "401", "353",
|
|
"312", "278", "248", "222", "200", "181", "165", "150", "137",
|
|
"126", "116", "107", "99", "91", "85", "79", "74", "69", "65", "61",
|
|
"57", "54", "51", "48", "46", "43", "41", "39", "37", "35", "34",
|
|
"32", "31", "30", "28", "27", "26", "25", "24", "23", "22", "22",
|
|
"21", "20", "20", "19", "18", "18", "17", "17", "16", "16", "15"
|
|
}, {
|
|
"9122818552483814953977703257848970704164",
|
|
"933462289569511464780529972314", "946405863353935713909178",
|
|
"95513446972056321834", "133588658082928446",
|
|
"966158521967027", "20895030642048", "972833934108",
|
|
"79107381638", "9773098125", "1665590516", "365497822",
|
|
"98180628", "31083090", "11266459", "4571108", "2039360",
|
|
"986323", "511198", "281260", "163001", "98858",
|
|
"62404", "40811", "27543", "19117", "13608", "9908",
|
|
"7363", "5575", "4292", "3356", "2661", "2138",
|
|
"1737", "1428", "1185", "993", "839", "714", "613",
|
|
"530", "461", "403", "355", "314", "279", "249",
|
|
"224", "202", "182", "165", "151", "138", "126",
|
|
"116", "107", "99", "92", "85", "79", "74", "69",
|
|
"65", "61", "57", "54", "51", "48", "46", "43",
|
|
"41", "39", "37", "36", "34", "32", "31", "30",
|
|
"28", "27", "26", "25", "24", "23", "23", "22",
|
|
"21", "20", "20", "19", "18", "18", "17", "17",
|
|
"16", "16", "15"
|
|
}, {
|
|
"9151329724083804100369546479681933027521",
|
|
"935649419557299174433860420387", "948179413831316112751907",
|
|
"95662582675170358900", "133767426788182384",
|
|
"967289728859610", "20916775466497", "973745045600",
|
|
"79174731802", "9780725058", "1666790321", "365742295",
|
|
"98241919", "31101281", "11272665", "4573486", "2040365",
|
|
"986785", "511426", "281380", "163067", "98897",
|
|
"62427", "40826", "27552", "19124", "13612", "9911",
|
|
"7366", "5576", "4294", "3357", "2662", "2138",
|
|
"1738", "1428", "1185", "993", "839", "715", "613",
|
|
"530", "461", "403", "355", "314", "279", "249",
|
|
"224", "202", "182", "165", "151", "138", "126",
|
|
"116", "107", "99", "92", "85", "79", "74", "69",
|
|
"65", "61", "57", "54", "51", "48", "46", "43",
|
|
"41", "39", "37", "36", "34", "32", "31", "30",
|
|
"28", "27", "26", "25", "24", "23", "23", "22",
|
|
"21", "20", "20", "19", "18", "18", "17", "17",
|
|
"16", "16", "15"
|
|
}, {
|
|
"6839396355168045468586008471269923213531",
|
|
"752078770083218822016981965090", "796178899357307807726034",
|
|
"82700643015444840424", "118072966296549115",
|
|
"867224751770392", "18981881485802", "892288574037",
|
|
"73130030771", "9093989389", "1558462688", "343617470",
|
|
"92683740", "29448679", "10708016", "4356820", "1948676",
|
|
"944610", "490587", "270425", "156989", "95362",
|
|
"60284", "39477", "26675", "18536", "13208", "9627",
|
|
"7161", "5426", "4181", "3272", "2596", "2087",
|
|
"1697", "1395", "1159", "971", "821", "700", "601",
|
|
"520", "452", "396", "348", "308", "274", "245",
|
|
"220", "198", "179", "163", "148", "136", "124",
|
|
"114", "106", "98", "91", "84", "78", "73", "68",
|
|
"64", "60", "57", "53", "50", "48", "45", "43",
|
|
"41", "39", "37", "35", "34", "32", "31", "29",
|
|
"28", "27", "26", "25", "24", "23", "22", "22",
|
|
"21", "20", "19", "19", "18", "18", "17", "17",
|
|
"16", "16", "15"
|
|
}, {
|
|
"4788090721380022347683138981782307670424",
|
|
"575601315594614059890185238256", "642831903229558719812840",
|
|
"69196031110028430211", "101340693763170691",
|
|
"758683936560287", "16854690815260", "801767985909",
|
|
"66353290503", "8318415180", "1435359033", "318340531",
|
|
"86304307", "27544217", "10054988", "4105446", "1841996",
|
|
"895414", "466223", "257591", "149855", "91205",
|
|
"57758", "37886", "25639", "17842", "12730", "9290",
|
|
"6918", "5248", "4048", "3170", "2518", "2026",
|
|
"1649", "1357", "1128", "946", "800", "682", "586",
|
|
"507", "441", "387", "341", "302", "268", "240",
|
|
"215", "194", "176", "160", "146", "133", "122",
|
|
"112", "104", "96", "89", "83", "77", "72", "67",
|
|
"63", "59", "56", "53", "50", "47", "45", "42",
|
|
"40", "38", "36", "35", "33", "32", "30", "29",
|
|
"28", "27", "26", "25", "24", "23", "22", "21",
|
|
"21", "20", "19", "19", "18", "17", "17", "16",
|
|
"16", "15", "15"
|
|
}
|
|
};
|
|
|
|
if ((e = mp_init_multi(&a, &c, &r, NULL)) != MP_OKAY) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
#ifdef MP_8BIT
|
|
for (i = 0; i < 1; i++) {
|
|
#else
|
|
for (i = 0; i < 10; i++) {
|
|
#endif
|
|
mp_read_radix(&a, input[i], 64);
|
|
#ifdef MP_8BIT
|
|
for (j = 3; j < 10; j++) {
|
|
#else
|
|
for (j = 3; j < 100; j++) {
|
|
#endif
|
|
mp_n_root(&a, (mp_digit) j, &c);
|
|
mp_read_radix(&r, root[i][j-3], 10);
|
|
if (mp_cmp(&r, &c) != MP_EQ) {
|
|
fprintf(stderr, "mp_n_root failed at input #%d, root #%d\n", i, j);
|
|
goto LTM_ERR;
|
|
}
|
|
}
|
|
}
|
|
mp_clear_multi(&a, &c, &r, NULL);
|
|
return EXIT_SUCCESS;
|
|
LTM_ERR:
|
|
mp_clear_multi(&a, &c, &r, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
static int test_mp_balance_mul(void)
|
|
{
|
|
mp_int a, b, c;
|
|
int e = MP_OKAY;
|
|
|
|
const char *na =
|
|
"4b0I5uMTujCysw+1OOuOyH2FX2WymrHUqi8BBDb7XpkV/4i7vXTbEYUy/kdIfCKu5jT5JEqYkdmnn3jAYo8XShPzNLxZx9yoLjxYRyptSuOI2B1DspvbIVYXY12sxPZ4/HCJ4Usm2MU5lO/006KnDMxuxiv1rm6YZJZ0eZU";
|
|
const char *nb = "3x9vs0yVi4hIq7poAeVcggC3WoRt0zRLKO";
|
|
const char *nc =
|
|
"HzrSq9WVt1jDTVlwUxSKqxctu2GVD+N8+SVGaPFRqdxyld6IxDBbj27BPJzYUdR96k3sWpkO8XnDBvupGPnehpQe4KlO/KmN1PjFov/UTZYM+LYzkFcBPyV6hkkL8ePC1rlFLAHzgJMBCXVp4mRqtkQrDsZXXlcqlbTFu69wF6zDEysiX2cAtn/kP9ldblJiwYPCD8hG";
|
|
|
|
if ((e = mp_init_multi(&a, &b, &c, NULL)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
if ((e = mp_read_radix(&a, na, 64)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
if ((e = mp_read_radix(&b, nb, 64)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
if ((e = mp_mul(&a, &b, &c)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
if ((e = mp_read_radix(&b, nc, 64)) != MP_OKAY) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
if (mp_cmp(&b, &c) != MP_EQ) {
|
|
goto LTM_ERR;
|
|
}
|
|
|
|
mp_clear_multi(&a, &b, &c, NULL);
|
|
return EXIT_SUCCESS;
|
|
LTM_ERR:
|
|
mp_clear_multi(&a, &b, &c, NULL);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
int unit_tests(void)
|
|
{
|
|
static const struct {
|
|
const char *name;
|
|
int (*fn)(void);
|
|
} test[] = {
|
|
#define T(n) { #n, test_##n }
|
|
T(trivial_stuff),
|
|
T(mp_cnt_lsb),
|
|
T(mp_complement),
|
|
T(mp_div_3),
|
|
T(mp_dr_reduce),
|
|
T(mp_get_int),
|
|
T(mp_get_long),
|
|
T(mp_get_long_long),
|
|
T(mp_invmod),
|
|
T(mp_is_square),
|
|
T(mp_jacobi),
|
|
T(mp_kronecker),
|
|
T(mp_montgomery_reduce),
|
|
T(mp_prime_is_prime),
|
|
T(mp_prime_random_ex),
|
|
T(mp_read_radix),
|
|
T(mp_reduce_2k),
|
|
T(mp_reduce_2k_l),
|
|
T(mp_n_root),
|
|
T(mp_set_double),
|
|
T(mp_sqrt),
|
|
T(mp_sqrtmod_prime),
|
|
T(mp_tc_and),
|
|
T(mp_tc_div_2d),
|
|
T(mp_tc_or),
|
|
T(mp_tc_xor),
|
|
T(mp_incr),
|
|
T(mp_decr),
|
|
T(mp_balance_mul)
|
|
#undef T
|
|
};
|
|
unsigned long i;
|
|
int res = EXIT_SUCCESS;
|
|
|
|
#if defined(LTM_DEMO_REAL_RAND) && !defined(_WIN32)
|
|
fd_urandom = fopen("/dev/urandom", "r");
|
|
if (!fd_urandom) {
|
|
fprintf(stderr, "\ncould not open /dev/urandom\n");
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < sizeof(test) / sizeof(test[0]); ++i) {
|
|
printf("TEST %s\n\n", test[i].name);
|
|
if (test[i].fn() != EXIT_SUCCESS) {
|
|
printf("\n\nFAIL %s\n\n", test[i].name);
|
|
res = EXIT_FAILURE;
|
|
break;
|
|
}
|
|
printf("\n\n");
|
|
}
|
|
|
|
#if defined(LTM_DEMO_REAL_RAND) && !defined(_WIN32)
|
|
if (fd_urandom) {
|
|
fclose(fd_urandom);
|
|
}
|
|
#endif
|
|
return res;
|
|
}
|