lz4/tests/fuzzer.c
Yann Collet da1272979f fix #847
support NULL input
without triggering undefined sanitizer
2020-09-15 14:54:53 -07:00

1673 lines
86 KiB
C

/*
fuzzer.c - Fuzzer test tool for LZ4
Copyright (C) Yann Collet 2012-2017
GPL v2 License
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
You can contact the author at :
- LZ4 homepage : http://www.lz4.org
- LZ4 source repo : https://github.com/lz4/lz4
*/
/*-************************************
* Compiler options
**************************************/
#ifdef _MSC_VER /* Visual Studio */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4146) /* disable: C4146: minus unsigned expression */
# pragma warning(disable : 4310) /* disable: C4310: constant char value > 127 */
#endif
/*-************************************
* Dependencies
**************************************/
#if defined(__unix__) && !defined(_AIX) /* must be included before platform.h for MAP_ANONYMOUS */
# undef _GNU_SOURCE /* in case it's already defined */
# define _GNU_SOURCE /* MAP_ANONYMOUS even in -std=c99 mode */
# include <sys/mman.h> /* mmap */
#endif
#include "platform.h" /* _CRT_SECURE_NO_WARNINGS */
#include "util.h" /* U32 */
#include <stdlib.h>
#include <stdio.h> /* fgets, sscanf */
#include <string.h> /* strcmp */
#include <time.h> /* clock_t, clock, CLOCKS_PER_SEC */
#include <assert.h>
#include <limits.h> /* INT_MAX */
#if defined(_AIX)
# include <sys/mman.h> /* mmap */
#endif
#define LZ4_DISABLE_DEPRECATE_WARNINGS /* LZ4_decompress_fast */
#define LZ4_STATIC_LINKING_ONLY
#include "lz4.h"
#define LZ4_HC_STATIC_LINKING_ONLY
#include "lz4hc.h"
#define XXH_STATIC_LINKING_ONLY
#include "xxhash.h"
/*-************************************
* Basic Types
**************************************/
#if !defined(__cplusplus) && !(defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
typedef size_t uintptr_t; /* true on most systems, except OpenVMS-64 (which doesn't need address overflow test) */
#endif
/*-************************************
* Constants
**************************************/
#define NB_ATTEMPTS (1<<16)
#define COMPRESSIBLE_NOISE_LENGTH (1 << 21)
#define FUZ_MAX_BLOCK_SIZE (1 << 17)
#define FUZ_MAX_DICT_SIZE (1 << 15)
#define FUZ_COMPRESSIBILITY_DEFAULT 60
#define PRIME1 2654435761U
#define PRIME2 2246822519U
#define PRIME3 3266489917U
#define KB *(1U<<10)
#define MB *(1U<<20)
#define GB *(1U<<30)
/*-***************************************
* Macros
*****************************************/
#define DISPLAY(...) fprintf(stdout, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); }
static int g_displayLevel = 2;
#define MIN(a,b) ( (a) < (b) ? (a) : (b) )
/*-*******************************************************
* Fuzzer functions
*********************************************************/
static clock_t FUZ_GetClockSpan(clock_t clockStart)
{
return clock() - clockStart; /* works even if overflow; max span ~ 30mn */
}
static void FUZ_displayUpdate(unsigned testNb)
{
static clock_t g_time = 0;
static const clock_t g_refreshRate = CLOCKS_PER_SEC / 5;
if ((FUZ_GetClockSpan(g_time) > g_refreshRate) || (g_displayLevel>=4)) {
g_time = clock();
DISPLAY("\r%5u ", testNb);
fflush(stdout);
}
}
static U32 FUZ_rotl32(U32 u32, U32 nbBits)
{
return ((u32 << nbBits) | (u32 >> (32 - nbBits)));
}
static U32 FUZ_highbit32(U32 v32)
{
unsigned nbBits = 0;
if (v32==0) return 0;
while (v32) { v32 >>= 1; nbBits++; }
return nbBits;
}
static U32 FUZ_rand(U32* src)
{
U32 rand32 = *src;
rand32 *= PRIME1;
rand32 ^= PRIME2;
rand32 = FUZ_rotl32(rand32, 13);
*src = rand32;
return rand32;
}
#define FUZ_RAND15BITS ((FUZ_rand(seed) >> 3) & 32767)
#define FUZ_RANDLENGTH ( ((FUZ_rand(seed) >> 7) & 3) ? (FUZ_rand(seed) % 15) : (FUZ_rand(seed) % 510) + 15)
static void FUZ_fillCompressibleNoiseBuffer(void* buffer, size_t bufferSize, double proba, U32* seed)
{
BYTE* const BBuffer = (BYTE*)buffer;
size_t pos = 0;
U32 const P32 = (U32)(32768 * proba);
/* First Bytes */
while (pos < 20)
BBuffer[pos++] = (BYTE)(FUZ_rand(seed));
while (pos < bufferSize) {
/* Select : Literal (noise) or copy (within 64K) */
if (FUZ_RAND15BITS < P32) {
/* Copy (within 64K) */
size_t const length = (size_t)FUZ_RANDLENGTH + 4;
size_t const d = MIN(pos+length, bufferSize);
size_t match;
size_t offset = (size_t)FUZ_RAND15BITS + 1;
while (offset > pos) offset >>= 1;
match = pos - offset;
while (pos < d) BBuffer[pos++] = BBuffer[match++];
} else {
/* Literal (noise) */
size_t const length = FUZ_RANDLENGTH;
size_t const d = MIN(pos+length, bufferSize);
while (pos < d) BBuffer[pos++] = (BYTE)(FUZ_rand(seed) >> 5);
}
}
}
#define MAX_NB_BUFF_I134 150
#define BLOCKSIZE_I134 (32 MB)
/*! FUZ_AddressOverflow() :
* Aggressively pushes memory allocation limits,
* and generates patterns which create address space overflow.
* only possible in 32-bits mode */
static int FUZ_AddressOverflow(void)
{
char* buffers[MAX_NB_BUFF_I134+1];
int nbBuff=0;
int highAddress = 0;
DISPLAY("Overflow tests : ");
/* Only possible in 32-bits */
if (sizeof(void*)==8) {
DISPLAY("64 bits mode : no overflow \n");
fflush(stdout);
return 0;
}
buffers[0] = (char*)malloc(BLOCKSIZE_I134);
buffers[1] = (char*)malloc(BLOCKSIZE_I134);
if ((!buffers[0]) || (!buffers[1])) {
free(buffers[0]); free(buffers[1]);
DISPLAY("not enough memory for tests \n");
return 0;
}
for (nbBuff=2; nbBuff < MAX_NB_BUFF_I134; nbBuff++) {
DISPLAY("%3i \b\b\b\b", nbBuff); fflush(stdout);
buffers[nbBuff] = (char*)malloc(BLOCKSIZE_I134);
if (buffers[nbBuff]==NULL) goto _endOfTests;
if (((uintptr_t)buffers[nbBuff] > (uintptr_t)0x80000000) && (!highAddress)) {
DISPLAY("high address detected : ");
fflush(stdout);
highAddress=1;
}
{ size_t const sizeToGenerateOverflow = (size_t)(- ((uintptr_t)buffers[nbBuff-1]) + 512);
int const nbOf255 = (int)((sizeToGenerateOverflow / 255) + 1);
char* const input = buffers[nbBuff-1];
char* output = buffers[nbBuff];
int r;
input[0] = (char)0xF0; /* Literal length overflow */
input[1] = (char)0xFF;
input[2] = (char)0xFF;
input[3] = (char)0xFF;
{ int u; for(u = 4; u <= nbOf255+4; u++) input[u] = (char)0xff; }
r = LZ4_decompress_safe(input, output, nbOf255+64, BLOCKSIZE_I134);
if (r>0) { DISPLAY("LZ4_decompress_safe = %i \n", r); goto _overflowError; }
input[0] = (char)0x1F; /* Match length overflow */
input[1] = (char)0x01;
input[2] = (char)0x01;
input[3] = (char)0x00;
r = LZ4_decompress_safe(input, output, nbOf255+64, BLOCKSIZE_I134);
if (r>0) { DISPLAY("LZ4_decompress_safe = %i \n", r); goto _overflowError; }
output = buffers[nbBuff-2]; /* Reverse in/out pointer order */
input[0] = (char)0xF0; /* Literal length overflow */
input[1] = (char)0xFF;
input[2] = (char)0xFF;
input[3] = (char)0xFF;
r = LZ4_decompress_safe(input, output, nbOf255+64, BLOCKSIZE_I134);
if (r>0) goto _overflowError;
input[0] = (char)0x1F; /* Match length overflow */
input[1] = (char)0x01;
input[2] = (char)0x01;
input[3] = (char)0x00;
r = LZ4_decompress_safe(input, output, nbOf255+64, BLOCKSIZE_I134);
if (r>0) goto _overflowError;
}
}
nbBuff++;
_endOfTests:
{ int i; for (i=0 ; i<nbBuff; i++) free(buffers[i]); }
if (!highAddress) DISPLAY("high address not possible \n");
else DISPLAY("all overflows correctly detected \n");
return 0;
_overflowError:
DISPLAY("Address space overflow error !! \n");
exit(1);
}
#ifdef __unix__ /* is expected to be triggered on linux+gcc */
static void* FUZ_createLowAddr(size_t size)
{
void* const lowBuff = mmap((void*)(0x1000), size,
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
DISPLAYLEVEL(2, "generating low buffer at address %p \n", lowBuff);
return lowBuff;
}
static void FUZ_freeLowAddr(void* buffer, size_t size)
{
if (munmap(buffer, size)) {
perror("fuzzer: freeing low address buffer");
abort();
}
}
#else
static void* FUZ_createLowAddr(size_t size)
{
return malloc(size);
}
static void FUZ_freeLowAddr(void* buffer, size_t size)
{
(void)size;
free(buffer);
}
#endif
/*! FUZ_findDiff() :
* find the first different byte between buff1 and buff2.
* presumes buff1 != buff2.
* presumes a difference exists before end of either buffer.
* Typically invoked after a checksum mismatch.
*/
static void FUZ_findDiff(const void* buff1, const void* buff2)
{
const BYTE* const b1 = (const BYTE*)buff1;
const BYTE* const b2 = (const BYTE*)buff2;
size_t u = 0;
while (b1[u]==b2[u]) u++;
DISPLAY("\nWrong Byte at position %u \n", (unsigned)u);
}
static int FUZ_test(U32 seed, U32 nbCycles, const U32 startCycle, const double compressibility, U32 duration_s)
{
unsigned long long bytes = 0;
unsigned long long cbytes = 0;
unsigned long long hcbytes = 0;
unsigned long long ccbytes = 0;
void* const CNBuffer = malloc(COMPRESSIBLE_NOISE_LENGTH);
size_t const compressedBufferSize = (size_t)LZ4_compressBound(FUZ_MAX_BLOCK_SIZE);
char* const compressedBuffer = (char*)malloc(compressedBufferSize);
char* const decodedBuffer = (char*)malloc(FUZ_MAX_DICT_SIZE + FUZ_MAX_BLOCK_SIZE);
size_t const labSize = 96 KB;
void* const lowAddrBuffer = FUZ_createLowAddr(labSize);
void* const stateLZ4 = malloc((size_t)LZ4_sizeofState());
void* const stateLZ4HC = malloc((size_t)LZ4_sizeofStateHC());
LZ4_stream_t LZ4dictBody;
LZ4_streamHC_t* LZ4dictHC = LZ4_createStreamHC();
U32 coreRandState = seed;
clock_t const clockStart = clock();
clock_t const clockDuration = (clock_t)duration_s * CLOCKS_PER_SEC;
int result = 0;
unsigned cycleNb;
# define EXIT_MSG(...) { \
printf("Test %u : ", testNb); printf(__VA_ARGS__); \
printf(" (seed %u, cycle %u) \n", seed, cycleNb); \
exit(1); \
}
# define FUZ_CHECKTEST(cond, ...) { if (cond) { EXIT_MSG(__VA_ARGS__) } }
# define FUZ_DISPLAYTEST(...) { \
testNb++; \
if (g_displayLevel>=4) { \
printf("\r%4u - %2u :", cycleNb, testNb); \
printf(" " __VA_ARGS__); \
printf(" "); \
fflush(stdout); \
} }
/* init */
if(!CNBuffer || !compressedBuffer || !decodedBuffer || !LZ4dictHC) {
DISPLAY("Not enough memory to start fuzzer tests");
exit(1);
}
if ( LZ4_initStream(&LZ4dictBody, sizeof(LZ4dictBody)) == NULL) abort();
{ U32 randState = coreRandState ^ PRIME3;
FUZ_fillCompressibleNoiseBuffer(CNBuffer, COMPRESSIBLE_NOISE_LENGTH, compressibility, &randState);
}
/* move to startCycle */
for (cycleNb = 0; cycleNb < startCycle; cycleNb++)
(void) FUZ_rand(&coreRandState); /* sync coreRandState */
/* Main test loop */
for (cycleNb = startCycle;
(cycleNb < nbCycles) || (FUZ_GetClockSpan(clockStart) < clockDuration);
cycleNb++) {
U32 testNb = 0;
U32 randState = FUZ_rand(&coreRandState) ^ PRIME3;
int const blockSize = (FUZ_rand(&randState) % (FUZ_MAX_BLOCK_SIZE-1)) + 1;
int const blockStart = (int)(FUZ_rand(&randState) % (U32)(COMPRESSIBLE_NOISE_LENGTH - blockSize - 1)) + 1;
int const dictSizeRand = FUZ_rand(&randState) % FUZ_MAX_DICT_SIZE;
int const dictSize = MIN(dictSizeRand, blockStart - 1);
int const compressionLevel = FUZ_rand(&randState) % (LZ4HC_CLEVEL_MAX+1);
const char* block = ((char*)CNBuffer) + blockStart;
const char* dict = block - dictSize;
int compressedSize, HCcompressedSize;
int blockContinueCompressedSize;
U32 const crcOrig = XXH32(block, (size_t)blockSize, 0);
int ret;
FUZ_displayUpdate(cycleNb);
/* Compression tests */
if ( ((FUZ_rand(&randState) & 63) == 2)
&& ((size_t)blockSize < labSize) ) {
memcpy(lowAddrBuffer, block, blockSize);
block = (const char*)lowAddrBuffer;
}
/* Test compression destSize */
FUZ_DISPLAYTEST("test LZ4_compress_destSize()");
{ int cSize, srcSize = blockSize;
int const targetSize = srcSize * (int)((FUZ_rand(&randState) & 127)+1) >> 7;
char const endCheck = (char)(FUZ_rand(&randState) & 255);
compressedBuffer[targetSize] = endCheck;
cSize = LZ4_compress_destSize(block, compressedBuffer, &srcSize, targetSize);
FUZ_CHECKTEST(cSize > targetSize, "LZ4_compress_destSize() result larger than dst buffer !");
FUZ_CHECKTEST(compressedBuffer[targetSize] != endCheck, "LZ4_compress_destSize() overwrite dst buffer !");
FUZ_CHECKTEST(srcSize > blockSize, "LZ4_compress_destSize() read more than src buffer !");
DISPLAYLEVEL(5, "destSize : %7i/%7i; content%7i/%7i ", cSize, targetSize, srcSize, blockSize);
if (targetSize>0) {
/* check correctness */
U32 const crcBase = XXH32(block, (size_t)srcSize, 0);
char const canary = (char)(FUZ_rand(&randState) & 255);
FUZ_CHECKTEST((cSize==0), "LZ4_compress_destSize() compression failed");
FUZ_DISPLAYTEST();
decodedBuffer[srcSize] = canary;
{ int const dSize = LZ4_decompress_safe(compressedBuffer, decodedBuffer, cSize, srcSize);
FUZ_CHECKTEST(dSize<0, "LZ4_decompress_safe() failed on data compressed by LZ4_compress_destSize");
FUZ_CHECKTEST(dSize!=srcSize, "LZ4_decompress_safe() failed : did not fully decompressed data");
}
FUZ_CHECKTEST(decodedBuffer[srcSize] != canary, "LZ4_decompress_safe() overwrite dst buffer !");
{ U32 const crcDec = XXH32(decodedBuffer, (size_t)srcSize, 0);
FUZ_CHECKTEST(crcDec!=crcBase, "LZ4_decompress_safe() corrupted decoded data");
} }
DISPLAYLEVEL(5, " OK \n");
}
/* Test compression HC destSize */
FUZ_DISPLAYTEST("test LZ4_compress_HC_destSize()");
{ int cSize, srcSize = blockSize;
int const targetSize = srcSize * (int)((FUZ_rand(&randState) & 127)+1) >> 7;
char const endCheck = (char)(FUZ_rand(&randState) & 255);
void* const ctx = LZ4_createHC(block);
FUZ_CHECKTEST(ctx==NULL, "LZ4_createHC() allocation failed");
compressedBuffer[targetSize] = endCheck;
cSize = LZ4_compress_HC_destSize(ctx, block, compressedBuffer, &srcSize, targetSize, compressionLevel);
DISPLAYLEVEL(5, "LZ4_compress_HC_destSize(%i): destSize : %7i/%7i; content%7i/%7i ",
compressionLevel, cSize, targetSize, srcSize, blockSize);
LZ4_freeHC(ctx);
FUZ_CHECKTEST(cSize > targetSize, "LZ4_compress_HC_destSize() result larger than dst buffer !");
FUZ_CHECKTEST(compressedBuffer[targetSize] != endCheck, "LZ4_compress_HC_destSize() overwrite dst buffer !");
FUZ_CHECKTEST(srcSize > blockSize, "LZ4_compress_HC_destSize() fed more than src buffer !");
if (targetSize>0) {
/* check correctness */
U32 const crcBase = XXH32(block, (size_t)srcSize, 0);
char const canary = (char)(FUZ_rand(&randState) & 255);
FUZ_CHECKTEST((cSize==0), "LZ4_compress_HC_destSize() compression failed");
FUZ_DISPLAYTEST();
decodedBuffer[srcSize] = canary;
{ int const dSize = LZ4_decompress_safe(compressedBuffer, decodedBuffer, cSize, srcSize);
FUZ_CHECKTEST(dSize<0, "LZ4_decompress_safe() failed on data compressed by LZ4_compressHC_destSize");
FUZ_CHECKTEST(dSize!=srcSize, "LZ4_decompress_safe() failed : did not fully decompressed data");
}
FUZ_CHECKTEST(decodedBuffer[srcSize] != canary, "LZ4_decompress_safe() overwrite dst buffer !");
{ U32 const crcDec = XXH32(decodedBuffer, (size_t)srcSize, 0);
FUZ_CHECKTEST(crcDec!=crcBase, "LZ4_decompress_safe() corrupted decoded data");
} }
DISPLAYLEVEL(5, " OK \n");
}
/* Test compression HC */
FUZ_DISPLAYTEST("test LZ4_compress_HC()");
HCcompressedSize = LZ4_compress_HC(block, compressedBuffer, blockSize, (int)compressedBufferSize, compressionLevel);
FUZ_CHECKTEST(HCcompressedSize==0, "LZ4_compress_HC() failed");
/* Test compression HC using external state */
FUZ_DISPLAYTEST("test LZ4_compress_HC_extStateHC()");
{ int const r = LZ4_compress_HC_extStateHC(stateLZ4HC, block, compressedBuffer, blockSize, (int)compressedBufferSize, compressionLevel);
FUZ_CHECKTEST(r==0, "LZ4_compress_HC_extStateHC() failed")
}
/* Test compression HC using fast reset external state */
FUZ_DISPLAYTEST("test LZ4_compress_HC_extStateHC_fastReset()");
{ int const r = LZ4_compress_HC_extStateHC_fastReset(stateLZ4HC, block, compressedBuffer, blockSize, (int)compressedBufferSize, compressionLevel);
FUZ_CHECKTEST(r==0, "LZ4_compress_HC_extStateHC_fastReset() failed");
}
/* Test compression using external state */
FUZ_DISPLAYTEST("test LZ4_compress_fast_extState()");
{ int const r = LZ4_compress_fast_extState(stateLZ4, block, compressedBuffer, blockSize, (int)compressedBufferSize, 8);
FUZ_CHECKTEST(r==0, "LZ4_compress_fast_extState() failed"); }
/* Test compression using fast reset external state*/
FUZ_DISPLAYTEST();
{ int const r = LZ4_compress_fast_extState_fastReset(stateLZ4, block, compressedBuffer, blockSize, (int)compressedBufferSize, 8);
FUZ_CHECKTEST(r==0, "LZ4_compress_fast_extState_fastReset() failed"); }
/* Test compression */
FUZ_DISPLAYTEST("test LZ4_compress_default()");
compressedSize = LZ4_compress_default(block, compressedBuffer, blockSize, (int)compressedBufferSize);
FUZ_CHECKTEST(compressedSize<=0, "LZ4_compress_default() failed");
/* Decompression tests */
/* Test decompress_fast() with input buffer size exactly correct => must not read out of bound */
{ char* const cBuffer_exact = (char*)malloc((size_t)compressedSize);
assert(cBuffer_exact != NULL);
assert(compressedSize <= (int)compressedBufferSize);
memcpy(cBuffer_exact, compressedBuffer, compressedSize);
/* Test decoding with output size exactly correct => must work */
FUZ_DISPLAYTEST("LZ4_decompress_fast() with exact output buffer");
{ int const r = LZ4_decompress_fast(cBuffer_exact, decodedBuffer, blockSize);
FUZ_CHECKTEST(r<0, "LZ4_decompress_fast failed despite correct space");
FUZ_CHECKTEST(r!=compressedSize, "LZ4_decompress_fast failed : did not fully read compressed data");
}
{ U32 const crcCheck = XXH32(decodedBuffer, (size_t)blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_fast corrupted decoded data");
}
/* Test decoding with one byte missing => must fail */
FUZ_DISPLAYTEST("LZ4_decompress_fast() with output buffer 1-byte too short");
decodedBuffer[blockSize-1] = 0;
{ int const r = LZ4_decompress_fast(cBuffer_exact, decodedBuffer, blockSize-1);
FUZ_CHECKTEST(r>=0, "LZ4_decompress_fast should have failed, due to Output Size being too small");
}
FUZ_CHECKTEST(decodedBuffer[blockSize-1]!=0, "LZ4_decompress_fast overrun specified output buffer");
/* Test decoding with one byte too much => must fail */
FUZ_DISPLAYTEST();
{ int const r = LZ4_decompress_fast(cBuffer_exact, decodedBuffer, blockSize+1);
FUZ_CHECKTEST(r>=0, "LZ4_decompress_fast should have failed, due to Output Size being too large");
}
/* Test decoding with output size exactly what's necessary => must work */
FUZ_DISPLAYTEST();
decodedBuffer[blockSize] = 0;
{ int const r = LZ4_decompress_safe(cBuffer_exact, decodedBuffer, compressedSize, blockSize);
FUZ_CHECKTEST(r<0, "LZ4_decompress_safe failed despite sufficient space");
FUZ_CHECKTEST(r!=blockSize, "LZ4_decompress_safe did not regenerate original data");
}
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe overrun specified output buffer size");
{ U32 const crcCheck = XXH32(decodedBuffer, (size_t)blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe corrupted decoded data");
}
/* Test decoding with more than enough output size => must work */
FUZ_DISPLAYTEST();
decodedBuffer[blockSize] = 0;
decodedBuffer[blockSize+1] = 0;
{ int const r = LZ4_decompress_safe(cBuffer_exact, decodedBuffer, compressedSize, blockSize+1);
FUZ_CHECKTEST(r<0, "LZ4_decompress_safe failed despite amply sufficient space");
FUZ_CHECKTEST(r!=blockSize, "LZ4_decompress_safe did not regenerate original data");
}
FUZ_CHECKTEST(decodedBuffer[blockSize+1], "LZ4_decompress_safe overrun specified output buffer size");
{ U32 const crcCheck = XXH32(decodedBuffer, (size_t)blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe corrupted decoded data");
}
/* Test decoding with output size being one byte too short => must fail */
FUZ_DISPLAYTEST();
decodedBuffer[blockSize-1] = 0;
{ int const r = LZ4_decompress_safe(cBuffer_exact, decodedBuffer, compressedSize, blockSize-1);
FUZ_CHECKTEST(r>=0, "LZ4_decompress_safe should have failed, due to Output Size being one byte too short");
}
FUZ_CHECKTEST(decodedBuffer[blockSize-1], "LZ4_decompress_safe overrun specified output buffer size");
/* Test decoding with output size being 10 bytes too short => must fail */
FUZ_DISPLAYTEST();
if (blockSize>10) {
decodedBuffer[blockSize-10] = 0;
{ int const r = LZ4_decompress_safe(cBuffer_exact, decodedBuffer, compressedSize, blockSize-10);
FUZ_CHECKTEST(r>=0, "LZ4_decompress_safe should have failed, due to Output Size being 10 bytes too short");
}
FUZ_CHECKTEST(decodedBuffer[blockSize-10], "LZ4_decompress_safe overrun specified output buffer size");
}
/* noisy src decompression test */
/* insert noise into src */
{ U32 const maxNbBits = FUZ_highbit32((U32)compressedSize);
size_t pos = 0;
for (;;) {
/* keep some original src */
{ U32 const nbBits = FUZ_rand(&randState) % maxNbBits;
size_t const mask = (1<<nbBits) - 1;
size_t const skipLength = FUZ_rand(&randState) & mask;
pos += skipLength;
}
if (pos >= (size_t)compressedSize) break;
/* add noise */
{ U32 const nbBitsCodes = FUZ_rand(&randState) % maxNbBits;
U32 const nbBits = nbBitsCodes ? nbBitsCodes-1 : 0;
size_t const mask = (1<<nbBits) - 1;
size_t const rNoiseLength = (FUZ_rand(&randState) & mask) + 1;
size_t const noiseLength = MIN(rNoiseLength, (size_t)compressedSize-pos);
size_t const noiseStart = FUZ_rand(&randState) % (COMPRESSIBLE_NOISE_LENGTH - noiseLength);
memcpy(cBuffer_exact + pos, (const char*)CNBuffer + noiseStart, noiseLength);
pos += noiseLength;
} } }
/* decompress noisy source */
FUZ_DISPLAYTEST("decompress noisy source ");
{ U32 const endMark = 0xA9B1C3D6;
memcpy(decodedBuffer+blockSize, &endMark, sizeof(endMark));
{ int const decompressResult = LZ4_decompress_safe(cBuffer_exact, decodedBuffer, compressedSize, blockSize);
/* result *may* be an unlikely success, but even then, it must strictly respect dst buffer boundaries */
FUZ_CHECKTEST(decompressResult > blockSize, "LZ4_decompress_safe on noisy src : result is too large : %u > %u (dst buffer)", (unsigned)decompressResult, (unsigned)blockSize);
}
{ U32 endCheck; memcpy(&endCheck, decodedBuffer+blockSize, sizeof(endCheck));
FUZ_CHECKTEST(endMark!=endCheck, "LZ4_decompress_safe on noisy src : dst buffer overflow");
} } /* noisy src decompression test */
free(cBuffer_exact);
}
/* Test decoding with input size being one byte too short => must fail */
FUZ_DISPLAYTEST();
{ int const r = LZ4_decompress_safe(compressedBuffer, decodedBuffer, compressedSize-1, blockSize);
FUZ_CHECKTEST(r>=0, "LZ4_decompress_safe should have failed, due to input size being one byte too short (blockSize=%i, result=%i, compressedSize=%i)", blockSize, r, compressedSize);
}
/* Test decoding with input size being one byte too large => must fail */
FUZ_DISPLAYTEST();
decodedBuffer[blockSize] = 0;
{ int const r = LZ4_decompress_safe(compressedBuffer, decodedBuffer, compressedSize+1, blockSize);
FUZ_CHECKTEST(r>=0, "LZ4_decompress_safe should have failed, due to input size being too large");
}
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe overrun specified output buffer size");
/* Test partial decoding => must work */
FUZ_DISPLAYTEST("test LZ4_decompress_safe_partial");
{ size_t const missingOutBytes = FUZ_rand(&randState) % (unsigned)blockSize;
int const targetSize = (int)((size_t)blockSize - missingOutBytes);
size_t const extraneousInBytes = FUZ_rand(&randState) % 2;
int const inCSize = (int)((size_t)compressedSize + extraneousInBytes);
char const sentinel = decodedBuffer[targetSize] = block[targetSize] ^ 0x5A;
int const decResult = LZ4_decompress_safe_partial(compressedBuffer, decodedBuffer, inCSize, targetSize, blockSize);
FUZ_CHECKTEST(decResult<0, "LZ4_decompress_safe_partial failed despite valid input data (error:%i)", decResult);
FUZ_CHECKTEST(decResult != targetSize, "LZ4_decompress_safe_partial did not regenerated required amount of data (%i < %i <= %i)", decResult, targetSize, blockSize);
FUZ_CHECKTEST(decodedBuffer[targetSize] != sentinel, "LZ4_decompress_safe_partial overwrite beyond requested size (though %i <= %i <= %i)", decResult, targetSize, blockSize);
FUZ_CHECKTEST(memcmp(block, decodedBuffer, (size_t)targetSize), "LZ4_decompress_safe_partial: corruption detected in regenerated data");
}
/* Test Compression with limited output size */
/* Test compression with output size being exactly what's necessary (should work) */
FUZ_DISPLAYTEST("test LZ4_compress_default() with output buffer just the right size");
ret = LZ4_compress_default(block, compressedBuffer, blockSize, compressedSize);
FUZ_CHECKTEST(ret==0, "LZ4_compress_default() failed despite sufficient space");
/* Test compression with output size being exactly what's necessary and external state (should work) */
FUZ_DISPLAYTEST("test LZ4_compress_fast_extState() with output buffer just the right size");
ret = LZ4_compress_fast_extState(stateLZ4, block, compressedBuffer, blockSize, compressedSize, 1);
FUZ_CHECKTEST(ret==0, "LZ4_compress_fast_extState() failed despite sufficient space");
/* Test HC compression with output size being exactly what's necessary (should work) */
FUZ_DISPLAYTEST("test LZ4_compress_HC() with output buffer just the right size");
ret = LZ4_compress_HC(block, compressedBuffer, blockSize, HCcompressedSize, compressionLevel);
FUZ_CHECKTEST(ret==0, "LZ4_compress_HC() failed despite sufficient space");
/* Test HC compression with output size being exactly what's necessary (should work) */
FUZ_DISPLAYTEST("test LZ4_compress_HC_extStateHC() with output buffer just the right size");
ret = LZ4_compress_HC_extStateHC(stateLZ4HC, block, compressedBuffer, blockSize, HCcompressedSize, compressionLevel);
FUZ_CHECKTEST(ret==0, "LZ4_compress_HC_extStateHC() failed despite sufficient space");
/* Test compression with missing bytes into output buffer => must fail */
FUZ_DISPLAYTEST("test LZ4_compress_default() with output buffer a bit too short");
{ int missingBytes = (FUZ_rand(&randState) % 0x3F) + 1;
if (missingBytes >= compressedSize) missingBytes = compressedSize-1;
missingBytes += !missingBytes; /* avoid special case missingBytes==0 */
compressedBuffer[compressedSize-missingBytes] = 0;
{ int const cSize = LZ4_compress_default(block, compressedBuffer, blockSize, compressedSize-missingBytes);
FUZ_CHECKTEST(cSize, "LZ4_compress_default should have failed (output buffer too small by %i byte)", missingBytes);
}
FUZ_CHECKTEST(compressedBuffer[compressedSize-missingBytes], "LZ4_compress_default overran output buffer ! (%i missingBytes)", missingBytes)
}
/* Test HC compression with missing bytes into output buffer => must fail */
FUZ_DISPLAYTEST("test LZ4_compress_HC() with output buffer a bit too short");
{ int missingBytes = (FUZ_rand(&randState) % 0x3F) + 1;
if (missingBytes >= HCcompressedSize) missingBytes = HCcompressedSize-1;
missingBytes += !missingBytes; /* avoid special case missingBytes==0 */
compressedBuffer[HCcompressedSize-missingBytes] = 0;
{ int const hcSize = LZ4_compress_HC(block, compressedBuffer, blockSize, HCcompressedSize-missingBytes, compressionLevel);
FUZ_CHECKTEST(hcSize, "LZ4_compress_HC should have failed (output buffer too small by %i byte)", missingBytes);
}
FUZ_CHECKTEST(compressedBuffer[HCcompressedSize-missingBytes], "LZ4_compress_HC overran output buffer ! (%i missingBytes)", missingBytes)
}
/*-******************/
/* Dictionary tests */
/*-******************/
/* Compress using dictionary */
FUZ_DISPLAYTEST("test LZ4_compress_fast_continue() with dictionary of size %i", dictSize);
{ LZ4_stream_t LZ4_stream;
LZ4_initStream(&LZ4_stream, sizeof(LZ4_stream));
LZ4_compress_fast_continue (&LZ4_stream, dict, compressedBuffer, dictSize, (int)compressedBufferSize, 1); /* Just to fill hash tables */
blockContinueCompressedSize = LZ4_compress_fast_continue (&LZ4_stream, block, compressedBuffer, blockSize, (int)compressedBufferSize, 1);
FUZ_CHECKTEST(blockContinueCompressedSize==0, "LZ4_compress_fast_continue failed");
}
/* Decompress with dictionary as prefix */
FUZ_DISPLAYTEST("test LZ4_decompress_fast_usingDict() with dictionary as prefix");
memcpy(decodedBuffer, dict, dictSize);
ret = LZ4_decompress_fast_usingDict(compressedBuffer, decodedBuffer+dictSize, blockSize, decodedBuffer, dictSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_decompress_fast_usingDict did not read all compressed block input");
{ U32 const crcCheck = XXH32(decodedBuffer+dictSize, (size_t)blockSize, 0);
if (crcCheck!=crcOrig) {
FUZ_findDiff(block, decodedBuffer);
EXIT_MSG("LZ4_decompress_fast_usingDict corrupted decoded data (dict %i)", dictSize);
} }
FUZ_DISPLAYTEST("test LZ4_decompress_safe_usingDict()");
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer+dictSize, blockContinueCompressedSize, blockSize, decodedBuffer, dictSize);
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe_usingDict did not regenerate original data");
{ U32 const crcCheck = XXH32(decodedBuffer+dictSize, (size_t)blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe_usingDict corrupted decoded data");
}
/* Compress using External dictionary */
FUZ_DISPLAYTEST("test LZ4_compress_fast_continue(), with non-contiguous dictionary");
dict -= (size_t)(FUZ_rand(&randState) & 0xF) + 1; /* create space, so now dictionary is an ExtDict */
if (dict < (char*)CNBuffer) dict = (char*)CNBuffer;
LZ4_loadDict(&LZ4dictBody, dict, dictSize);
blockContinueCompressedSize = LZ4_compress_fast_continue(&LZ4dictBody, block, compressedBuffer, blockSize, (int)compressedBufferSize, 1);
FUZ_CHECKTEST(blockContinueCompressedSize==0, "LZ4_compress_fast_continue failed");
FUZ_DISPLAYTEST("LZ4_compress_fast_continue() with dictionary and output buffer too short by one byte");
LZ4_loadDict(&LZ4dictBody, dict, dictSize);
ret = LZ4_compress_fast_continue(&LZ4dictBody, block, compressedBuffer, blockSize, blockContinueCompressedSize-1, 1);
FUZ_CHECKTEST(ret>0, "LZ4_compress_fast_continue using ExtDict should fail : one missing byte for output buffer : %i written, %i buffer", ret, blockContinueCompressedSize);
FUZ_DISPLAYTEST("test LZ4_compress_fast_continue() with dictionary loaded with LZ4_loadDict()");
DISPLAYLEVEL(5, " compress %i bytes from buffer(%p) into dst(%p) using dict(%p) of size %i \n",
blockSize, (const void *)block, (void *)decodedBuffer, (const void *)dict, dictSize);
LZ4_loadDict(&LZ4dictBody, dict, dictSize);
ret = LZ4_compress_fast_continue(&LZ4dictBody, block, compressedBuffer, blockSize, blockContinueCompressedSize, 1);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_compress_limitedOutput_compressed size is different (%i != %i)", ret, blockContinueCompressedSize);
FUZ_CHECKTEST(ret<=0, "LZ4_compress_fast_continue should work : enough size available within output buffer");
/* Decompress with dictionary as external */
FUZ_DISPLAYTEST("test LZ4_decompress_fast_usingDict() with dictionary as extDict");
DISPLAYLEVEL(5, " decoding %i bytes from buffer(%p) using dict(%p) of size %i \n",
blockSize, (void *)decodedBuffer, (const void *)dict, dictSize);
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_fast_usingDict(compressedBuffer, decodedBuffer, blockSize, dict, dictSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_decompress_fast_usingDict did not read all compressed block input");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_fast_usingDict overrun specified output buffer size");
{ U32 const crcCheck = XXH32(decodedBuffer, (size_t)blockSize, 0);
if (crcCheck!=crcOrig) {
FUZ_findDiff(block, decodedBuffer);
EXIT_MSG("LZ4_decompress_fast_usingDict corrupted decoded data (dict %i)", dictSize);
} }
FUZ_DISPLAYTEST();
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize, dict, dictSize);
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe_usingDict did not regenerate original data");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe_usingDict overrun specified output buffer size");
{ U32 const crcCheck = XXH32(decodedBuffer, (size_t)blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe_usingDict corrupted decoded data");
}
FUZ_DISPLAYTEST();
decodedBuffer[blockSize-1] = 0;
ret = LZ4_decompress_fast_usingDict(compressedBuffer, decodedBuffer, blockSize-1, dict, dictSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_fast_usingDict should have failed : wrong original size (-1 byte)");
FUZ_CHECKTEST(decodedBuffer[blockSize-1], "LZ4_decompress_fast_usingDict overrun specified output buffer size");
FUZ_DISPLAYTEST();
decodedBuffer[blockSize-1] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize-1, dict, dictSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe_usingDict should have failed : not enough output size (-1 byte)");
FUZ_CHECKTEST(decodedBuffer[blockSize-1], "LZ4_decompress_safe_usingDict overrun specified output buffer size");
FUZ_DISPLAYTEST();
{ int const missingBytes = (FUZ_rand(&randState) & 0xF) + 2;
if (blockSize > missingBytes) {
decodedBuffer[blockSize-missingBytes] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize-missingBytes, dict, dictSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe_usingDict should have failed : output buffer too small (-%i byte)", missingBytes);
FUZ_CHECKTEST(decodedBuffer[blockSize-missingBytes], "LZ4_decompress_safe_usingDict overrun specified output buffer size (-%i byte) (blockSize=%i)", missingBytes, blockSize);
} }
/* Compress using external dictionary stream */
{ LZ4_stream_t LZ4_stream;
int expectedSize;
U32 expectedCrc;
FUZ_DISPLAYTEST("LZ4_compress_fast_continue() after LZ4_loadDict()");
LZ4_loadDict(&LZ4dictBody, dict, dictSize);
expectedSize = LZ4_compress_fast_continue(&LZ4dictBody, block, compressedBuffer, blockSize, (int)compressedBufferSize, 1);
FUZ_CHECKTEST(expectedSize<=0, "LZ4_compress_fast_continue reference compression for extDictCtx should have succeeded");
expectedCrc = XXH32(compressedBuffer, (size_t)expectedSize, 0);
FUZ_DISPLAYTEST("LZ4_compress_fast_continue() after LZ4_attach_dictionary()");
LZ4_loadDict(&LZ4dictBody, dict, dictSize);
LZ4_initStream(&LZ4_stream, sizeof(LZ4_stream));
LZ4_attach_dictionary(&LZ4_stream, &LZ4dictBody);
blockContinueCompressedSize = LZ4_compress_fast_continue(&LZ4_stream, block, compressedBuffer, blockSize, (int)compressedBufferSize, 1);
FUZ_CHECKTEST(blockContinueCompressedSize==0, "LZ4_compress_fast_continue using extDictCtx failed");
/* In the future, it might be desirable to let extDictCtx mode's
* output diverge from the output generated by regular extDict mode.
* Until that time, this comparison serves as a good regression
* test.
*/
FUZ_CHECKTEST(blockContinueCompressedSize != expectedSize, "LZ4_compress_fast_continue using extDictCtx produced different-sized output (%d expected vs %d actual)", expectedSize, blockContinueCompressedSize);
FUZ_CHECKTEST(XXH32(compressedBuffer, (size_t)blockContinueCompressedSize, 0) != expectedCrc, "LZ4_compress_fast_continue using extDictCtx produced different output");
FUZ_DISPLAYTEST("LZ4_compress_fast_continue() after LZ4_attach_dictionary(), but output buffer is 1 byte too short");
LZ4_resetStream_fast(&LZ4_stream);
LZ4_attach_dictionary(&LZ4_stream, &LZ4dictBody);
ret = LZ4_compress_fast_continue(&LZ4_stream, block, compressedBuffer, blockSize, blockContinueCompressedSize-1, 1);
FUZ_CHECKTEST(ret>0, "LZ4_compress_fast_continue using extDictCtx should fail : one missing byte for output buffer : %i written, %i buffer", ret, blockContinueCompressedSize);
/* note : context is no longer dirty after a failed compressed block */
FUZ_DISPLAYTEST();
LZ4_resetStream_fast(&LZ4_stream);
LZ4_attach_dictionary(&LZ4_stream, &LZ4dictBody);
ret = LZ4_compress_fast_continue(&LZ4_stream, block, compressedBuffer, blockSize, blockContinueCompressedSize, 1);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_compress_limitedOutput_compressed size is different (%i != %i)", ret, blockContinueCompressedSize);
FUZ_CHECKTEST(ret<=0, "LZ4_compress_fast_continue using extDictCtx should work : enough size available within output buffer");
FUZ_CHECKTEST(ret != expectedSize, "LZ4_compress_fast_continue using extDictCtx produced different-sized output");
FUZ_CHECKTEST(XXH32(compressedBuffer, (size_t)ret, 0) != expectedCrc, "LZ4_compress_fast_continue using extDictCtx produced different output");
FUZ_DISPLAYTEST();
LZ4_resetStream_fast(&LZ4_stream);
LZ4_attach_dictionary(&LZ4_stream, &LZ4dictBody);
ret = LZ4_compress_fast_continue(&LZ4_stream, block, compressedBuffer, blockSize, blockContinueCompressedSize, 1);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_compress_limitedOutput_compressed size is different (%i != %i)", ret, blockContinueCompressedSize);
FUZ_CHECKTEST(ret<=0, "LZ4_compress_fast_continue using extDictCtx with re-used context should work : enough size available within output buffer");
FUZ_CHECKTEST(ret != expectedSize, "LZ4_compress_fast_continue using extDictCtx produced different-sized output");
FUZ_CHECKTEST(XXH32(compressedBuffer, (size_t)ret, 0) != expectedCrc, "LZ4_compress_fast_continue using extDictCtx produced different output");
}
/* Decompress with dictionary as external */
FUZ_DISPLAYTEST();
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_fast_usingDict(compressedBuffer, decodedBuffer, blockSize, dict, dictSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_decompress_fast_usingDict did not read all compressed block input");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_fast_usingDict overrun specified output buffer size");
{ U32 const crcCheck = XXH32(decodedBuffer, (size_t)blockSize, 0);
if (crcCheck!=crcOrig) {
FUZ_findDiff(block, decodedBuffer);
EXIT_MSG("LZ4_decompress_fast_usingDict corrupted decoded data (dict %i)", dictSize);
} }
FUZ_DISPLAYTEST();
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize, dict, dictSize);
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe_usingDict did not regenerate original data");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe_usingDict overrun specified output buffer size");
{ U32 const crcCheck = XXH32(decodedBuffer, (size_t)blockSize, 0);
FUZ_CHECKTEST(crcCheck!=crcOrig, "LZ4_decompress_safe_usingDict corrupted decoded data");
}
FUZ_DISPLAYTEST();
decodedBuffer[blockSize-1] = 0;
ret = LZ4_decompress_fast_usingDict(compressedBuffer, decodedBuffer, blockSize-1, dict, dictSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_fast_usingDict should have failed : wrong original size (-1 byte)");
FUZ_CHECKTEST(decodedBuffer[blockSize-1], "LZ4_decompress_fast_usingDict overrun specified output buffer size");
FUZ_DISPLAYTEST();
decodedBuffer[blockSize-1] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize-1, dict, dictSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe_usingDict should have failed : not enough output size (-1 byte)");
FUZ_CHECKTEST(decodedBuffer[blockSize-1], "LZ4_decompress_safe_usingDict overrun specified output buffer size");
FUZ_DISPLAYTEST("LZ4_decompress_safe_usingDict with a too small output buffer");
{ int const missingBytes = (FUZ_rand(&randState) & 0xF) + 2;
if (blockSize > missingBytes) {
decodedBuffer[blockSize-missingBytes] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize-missingBytes, dict, dictSize);
FUZ_CHECKTEST(ret>=0, "LZ4_decompress_safe_usingDict should have failed : output buffer too small (-%i byte)", missingBytes);
FUZ_CHECKTEST(decodedBuffer[blockSize-missingBytes], "LZ4_decompress_safe_usingDict overrun specified output buffer size (-%i byte) (blockSize=%i)", missingBytes, blockSize);
} }
/* Compress HC using External dictionary */
FUZ_DISPLAYTEST("LZ4_compress_HC_continue with an external dictionary");
dict -= (FUZ_rand(&randState) & 7); /* even bigger separation */
if (dict < (char*)CNBuffer) dict = (char*)CNBuffer;
LZ4_loadDictHC(LZ4dictHC, dict, dictSize);
LZ4_setCompressionLevel (LZ4dictHC, compressionLevel);
blockContinueCompressedSize = LZ4_compress_HC_continue(LZ4dictHC, block, compressedBuffer, blockSize, (int)compressedBufferSize);
FUZ_CHECKTEST(blockContinueCompressedSize==0, "LZ4_compress_HC_continue failed");
FUZ_CHECKTEST(LZ4dictHC->internal_donotuse.dirty, "Context should be clean");
FUZ_DISPLAYTEST("LZ4_compress_HC_continue with same external dictionary, but output buffer 1 byte too short");
LZ4_loadDictHC(LZ4dictHC, dict, dictSize);
ret = LZ4_compress_HC_continue(LZ4dictHC, block, compressedBuffer, blockSize, blockContinueCompressedSize-1);
FUZ_CHECKTEST(ret>0, "LZ4_compress_HC_continue using ExtDict should fail : one missing byte for output buffer (expected %i, but result=%i)", blockContinueCompressedSize, ret);
/* note : context is no longer dirty after a failed compressed block */
FUZ_DISPLAYTEST("LZ4_compress_HC_continue with same external dictionary, and output buffer exactly the right size");
LZ4_loadDictHC(LZ4dictHC, dict, dictSize);
ret = LZ4_compress_HC_continue(LZ4dictHC, block, compressedBuffer, blockSize, blockContinueCompressedSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_compress_HC_continue size is different : ret(%i) != expected(%i)", ret, blockContinueCompressedSize);
FUZ_CHECKTEST(ret<=0, "LZ4_compress_HC_continue should work : enough size available within output buffer");
FUZ_CHECKTEST(LZ4dictHC->internal_donotuse.dirty, "Context should be clean");
FUZ_DISPLAYTEST();
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize, dict, dictSize);
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe_usingDict did not regenerate original data");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe_usingDict overrun specified output buffer size");
{ U32 const crcCheck = XXH32(decodedBuffer, (size_t)blockSize, 0);
if (crcCheck!=crcOrig) {
FUZ_findDiff(block, decodedBuffer);
EXIT_MSG("LZ4_decompress_safe_usingDict corrupted decoded data");
} }
/* Compress HC using external dictionary stream */
FUZ_DISPLAYTEST();
{ LZ4_streamHC_t* const LZ4_streamHC = LZ4_createStreamHC();
LZ4_loadDictHC(LZ4dictHC, dict, dictSize);
LZ4_attach_HC_dictionary(LZ4_streamHC, LZ4dictHC);
LZ4_setCompressionLevel (LZ4_streamHC, compressionLevel);
blockContinueCompressedSize = LZ4_compress_HC_continue(LZ4_streamHC, block, compressedBuffer, blockSize, (int)compressedBufferSize);
FUZ_CHECKTEST(blockContinueCompressedSize==0, "LZ4_compress_HC_continue with ExtDictCtx failed");
FUZ_CHECKTEST(LZ4_streamHC->internal_donotuse.dirty, "Context should be clean");
FUZ_DISPLAYTEST();
LZ4_resetStreamHC_fast (LZ4_streamHC, compressionLevel);
LZ4_attach_HC_dictionary(LZ4_streamHC, LZ4dictHC);
ret = LZ4_compress_HC_continue(LZ4_streamHC, block, compressedBuffer, blockSize, blockContinueCompressedSize-1);
FUZ_CHECKTEST(ret>0, "LZ4_compress_HC_continue using ExtDictCtx should fail : one missing byte for output buffer (%i != %i)", ret, blockContinueCompressedSize);
/* note : context is no longer dirty after a failed compressed block */
FUZ_DISPLAYTEST();
LZ4_resetStreamHC_fast (LZ4_streamHC, compressionLevel);
LZ4_attach_HC_dictionary(LZ4_streamHC, LZ4dictHC);
ret = LZ4_compress_HC_continue(LZ4_streamHC, block, compressedBuffer, blockSize, blockContinueCompressedSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_compress_HC_continue using ExtDictCtx size is different (%i != %i)", ret, blockContinueCompressedSize);
FUZ_CHECKTEST(ret<=0, "LZ4_compress_HC_continue using ExtDictCtx should work : enough size available within output buffer");
FUZ_CHECKTEST(LZ4_streamHC->internal_donotuse.dirty, "Context should be clean");
FUZ_DISPLAYTEST();
LZ4_resetStreamHC_fast (LZ4_streamHC, compressionLevel);
LZ4_attach_HC_dictionary(LZ4_streamHC, LZ4dictHC);
ret = LZ4_compress_HC_continue(LZ4_streamHC, block, compressedBuffer, blockSize, blockContinueCompressedSize);
FUZ_CHECKTEST(ret!=blockContinueCompressedSize, "LZ4_compress_HC_continue using ExtDictCtx and fast reset size is different (%i != %i)", ret, blockContinueCompressedSize);
FUZ_CHECKTEST(ret<=0, "LZ4_compress_HC_continue using ExtDictCtx and fast reset should work : enough size available within output buffer");
FUZ_CHECKTEST(LZ4_streamHC->internal_donotuse.dirty, "Context should be clean");
LZ4_freeStreamHC(LZ4_streamHC);
}
FUZ_DISPLAYTEST();
decodedBuffer[blockSize] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, blockSize, dict, dictSize);
FUZ_CHECKTEST(ret!=blockSize, "LZ4_decompress_safe_usingDict did not regenerate original data");
FUZ_CHECKTEST(decodedBuffer[blockSize], "LZ4_decompress_safe_usingDict overrun specified output buffer size");
{ U32 const crcCheck = XXH32(decodedBuffer, (size_t)blockSize, 0);
if (crcCheck!=crcOrig) {
FUZ_findDiff(block, decodedBuffer);
EXIT_MSG("LZ4_decompress_safe_usingDict corrupted decoded data");
} }
/* Compress HC continue destSize */
FUZ_DISPLAYTEST();
{ int const availableSpace = (int)(FUZ_rand(&randState) % (U32)blockSize) + 5;
int consumedSize = blockSize;
FUZ_DISPLAYTEST();
LZ4_loadDictHC(LZ4dictHC, dict, dictSize);
LZ4_setCompressionLevel(LZ4dictHC, compressionLevel);
blockContinueCompressedSize = LZ4_compress_HC_continue_destSize(LZ4dictHC, block, compressedBuffer, &consumedSize, availableSpace);
DISPLAYLEVEL(5, " LZ4_compress_HC_continue_destSize : compressed %6i/%6i into %6i/%6i at cLevel=%i\n", consumedSize, blockSize, blockContinueCompressedSize, availableSpace, compressionLevel);
FUZ_CHECKTEST(blockContinueCompressedSize==0, "LZ4_compress_HC_continue_destSize failed");
FUZ_CHECKTEST(blockContinueCompressedSize > availableSpace, "LZ4_compress_HC_continue_destSize write overflow");
FUZ_CHECKTEST(consumedSize > blockSize, "LZ4_compress_HC_continue_destSize read overflow");
FUZ_DISPLAYTEST();
decodedBuffer[consumedSize] = 0;
ret = LZ4_decompress_safe_usingDict(compressedBuffer, decodedBuffer, blockContinueCompressedSize, consumedSize, dict, dictSize);
FUZ_CHECKTEST(ret!=consumedSize, "LZ4_decompress_safe_usingDict did not regenerate original data");
FUZ_CHECKTEST(decodedBuffer[consumedSize], "LZ4_decompress_safe_usingDict overrun specified output buffer size")
{ U32 const crcSrc = XXH32(block, (size_t)consumedSize, 0);
U32 const crcDst = XXH32(decodedBuffer, (size_t)consumedSize, 0);
if (crcSrc!=crcDst) {
FUZ_findDiff(block, decodedBuffer);
EXIT_MSG("LZ4_decompress_safe_usingDict corrupted decoded data");
} }
}
/* ***** End of tests *** */
/* Fill stats */
assert(blockSize >= 0);
bytes += (unsigned)blockSize;
assert(compressedSize >= 0);
cbytes += (unsigned)compressedSize;
assert(HCcompressedSize >= 0);
hcbytes += (unsigned)HCcompressedSize;
assert(blockContinueCompressedSize >= 0);
ccbytes += (unsigned)blockContinueCompressedSize;
}
if (nbCycles<=1) nbCycles = cycleNb; /* end by time */
bytes += !bytes; /* avoid division by 0 */
printf("\r%7u /%7u - ", cycleNb, nbCycles);
printf("all tests completed successfully \n");
printf("compression ratio: %0.3f%%\n", (double)cbytes/bytes*100);
printf("HC compression ratio: %0.3f%%\n", (double)hcbytes/bytes*100);
printf("ratio with dict: %0.3f%%\n", (double)ccbytes/bytes*100);
/* release memory */
free(CNBuffer);
free(compressedBuffer);
free(decodedBuffer);
FUZ_freeLowAddr(lowAddrBuffer, labSize);
LZ4_freeStreamHC(LZ4dictHC);
free(stateLZ4);
free(stateLZ4HC);
return result;
}
#define testInputSize (196 KB)
#define testCompressedSize (130 KB)
#define ringBufferSize (8 KB)
static void FUZ_unitTests(int compressionLevel)
{
const unsigned testNb = 0;
const unsigned seed = 0;
const unsigned cycleNb= 0;
char* testInput = (char*)malloc(testInputSize);
char* testCompressed = (char*)malloc(testCompressedSize);
char* testVerify = (char*)malloc(testInputSize);
char ringBuffer[ringBufferSize] = {0};
U32 randState = 1;
/* Init */
if (!testInput || !testCompressed || !testVerify) {
EXIT_MSG("not enough memory for FUZ_unitTests");
}
FUZ_fillCompressibleNoiseBuffer(testInput, testInputSize, 0.50, &randState);
/* 32-bits address space overflow test */
FUZ_AddressOverflow();
/* Test decoding with empty input */
DISPLAYLEVEL(3, "LZ4_decompress_safe() with empty input \n");
LZ4_decompress_safe(testCompressed, testVerify, 0, testInputSize);
/* Test decoding with a one byte input */
DISPLAYLEVEL(3, "LZ4_decompress_safe() with one byte input \n");
{ char const tmp = (char)0xFF;
LZ4_decompress_safe(&tmp, testVerify, 1, testInputSize);
}
/* Test decoding shortcut edge case */
DISPLAYLEVEL(3, "LZ4_decompress_safe() with shortcut edge case \n");
{ char tmp[17];
/* 14 bytes of literals, followed by a 14 byte match.
* Should not read beyond the end of the buffer.
* See https://github.com/lz4/lz4/issues/508. */
*tmp = (char)0xEE;
memset(tmp + 1, 0, 14);
tmp[15] = 14;
tmp[16] = 0;
{ int const r = LZ4_decompress_safe(tmp, testVerify, sizeof(tmp), testInputSize);
FUZ_CHECKTEST(r >= 0, "LZ4_decompress_safe() should fail");
} }
/* useful to trigger undefined sanitizer */
DISPLAYLEVEL(3, "LZ4_compress_default() with NULL input \n");
{ int const maxCSize = LZ4_compressBound(0);
int const cSize = LZ4_compress_default(NULL, testCompressed, 0, maxCSize);
FUZ_CHECKTEST(!(cSize==1 && testCompressed[0]==0),
"compressing empty should give byte 0"
" (maxCSize == %u) (cSize == %u)",
(unsigned)maxCSize, (unsigned)cSize);
}
/* in-place compression test */
DISPLAYLEVEL(3, "in-place compression using LZ4_compress_default() :");
{ int const sampleSize = 65 KB;
int const maxCSize = LZ4_COMPRESSBOUND(sampleSize);
int const outSize = LZ4_COMPRESS_INPLACE_BUFFER_SIZE(maxCSize);
int const startInputIndex = outSize - sampleSize;
char* const startInput = testCompressed + startInputIndex;
XXH32_hash_t const crcOrig = XXH32(testInput, sampleSize, 0);
int cSize;
assert(outSize < (int)testCompressedSize);
memcpy(startInput, testInput, sampleSize); /* copy at end of buffer */
/* compress in-place */
cSize = LZ4_compress_default(startInput, testCompressed, sampleSize, maxCSize);
assert(cSize != 0); /* ensure compression is successful */
assert(maxCSize < INT_MAX);
assert(cSize <= maxCSize);
/* decompress and verify */
{ int const dSize = LZ4_decompress_safe(testCompressed, testVerify, cSize, testInputSize);
assert(dSize == sampleSize); /* correct size */
{ XXH32_hash_t const crcCheck = XXH32(testVerify, (size_t)dSize, 0);
assert(crcCheck == crcOrig);
} } }
DISPLAYLEVEL(3, " OK \n");
/* in-place decompression test */
DISPLAYLEVEL(3, "in-place decompression, limit case:");
{ int const sampleSize = 65 KB;
FUZ_fillCompressibleNoiseBuffer(testInput, sampleSize, 0.0, &randState);
memset(testInput, 0, 267); /* calculated exactly so that compressedSize == originalSize-1 */
{ XXH64_hash_t const crcOrig = XXH64(testInput, sampleSize, 0);
int const cSize = LZ4_compress_default(testInput, testCompressed, sampleSize, testCompressedSize);
assert(cSize == sampleSize - 1); /* worst case for in-place decompression */
{ int const bufferSize = LZ4_DECOMPRESS_INPLACE_BUFFER_SIZE(sampleSize);
int const startInputIndex = bufferSize - cSize;
char* const startInput = testVerify + startInputIndex;
memcpy(startInput, testCompressed, cSize);
/* decompress and verify */
{ int const dSize = LZ4_decompress_safe(startInput, testVerify, cSize, sampleSize);
assert(dSize == sampleSize); /* correct size */
{ XXH64_hash_t const crcCheck = XXH64(testVerify, (size_t)dSize, 0);
assert(crcCheck == crcOrig);
} } } } }
DISPLAYLEVEL(3, " OK \n");
/* LZ4 streaming tests */
{ LZ4_stream_t streamingState;
U64 crcOrig;
int result;
/* Allocation test */
{ LZ4_stream_t* const statePtr = LZ4_createStream();
FUZ_CHECKTEST(statePtr==NULL, "LZ4_createStream() allocation failed");
LZ4_freeStream(statePtr);
}
/* simple compression test */
crcOrig = XXH64(testInput, testCompressedSize, 0);
LZ4_initStream(&streamingState, sizeof(streamingState));
result = LZ4_compress_fast_continue(&streamingState, testInput, testCompressed, testCompressedSize, testCompressedSize-1, 1);
FUZ_CHECKTEST(result==0, "LZ4_compress_fast_continue() compression failed!");
result = LZ4_decompress_safe(testCompressed, testVerify, result, testCompressedSize);
FUZ_CHECKTEST(result!=(int)testCompressedSize, "LZ4_decompress_safe() decompression failed");
{ U64 const crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe() decompression corruption"); }
/* ring buffer test */
{ XXH64_state_t xxhOrig;
XXH64_state_t xxhNewSafe, xxhNewFast;
LZ4_streamDecode_t decodeStateSafe, decodeStateFast;
const U32 maxMessageSizeLog = 10;
const U32 maxMessageSizeMask = (1<<maxMessageSizeLog) - 1;
U32 messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
U32 iNext = 0;
U32 rNext = 0;
U32 dNext = 0;
const U32 dBufferSize = ringBufferSize + maxMessageSizeMask;
XXH64_reset(&xxhOrig, 0);
XXH64_reset(&xxhNewSafe, 0);
XXH64_reset(&xxhNewFast, 0);
LZ4_resetStream_fast(&streamingState);
LZ4_setStreamDecode(&decodeStateSafe, NULL, 0);
LZ4_setStreamDecode(&decodeStateFast, NULL, 0);
while (iNext + messageSize < testCompressedSize) {
int compressedSize;
XXH64_update(&xxhOrig, testInput + iNext, messageSize);
crcOrig = XXH64_digest(&xxhOrig);
memcpy (ringBuffer + rNext, testInput + iNext, messageSize);
compressedSize = LZ4_compress_fast_continue(&streamingState, ringBuffer + rNext, testCompressed, (int)messageSize, testCompressedSize-ringBufferSize, 1);
FUZ_CHECKTEST(compressedSize==0, "LZ4_compress_fast_continue() compression failed");
result = LZ4_decompress_safe_continue(&decodeStateSafe, testCompressed, testVerify + dNext, compressedSize, (int)messageSize);
FUZ_CHECKTEST(result!=(int)messageSize, "ringBuffer : LZ4_decompress_safe_continue() test failed");
XXH64_update(&xxhNewSafe, testVerify + dNext, messageSize);
{ U64 const crcNew = XXH64_digest(&xxhNewSafe);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe_continue() decompression corruption"); }
result = LZ4_decompress_fast_continue(&decodeStateFast, testCompressed, testVerify + dNext, (int)messageSize);
FUZ_CHECKTEST(result!=compressedSize, "ringBuffer : LZ4_decompress_fast_continue() test failed");
XXH64_update(&xxhNewFast, testVerify + dNext, messageSize);
{ U64 const crcNew = XXH64_digest(&xxhNewFast);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_fast_continue() decompression corruption"); }
/* prepare next message */
iNext += messageSize;
rNext += messageSize;
dNext += messageSize;
messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
if (rNext + messageSize > ringBufferSize) rNext = 0;
if (dNext + messageSize > dBufferSize) dNext = 0;
}
}
}
/* LZ4 HC streaming tests */
{ LZ4_streamHC_t sHC; /* statically allocated */
U64 crcOrig;
int result;
LZ4_initStreamHC(&sHC, sizeof(sHC));
/* Allocation test */
DISPLAYLEVEL(3, " Basic HC allocation : ");
{ LZ4_streamHC_t* const sp = LZ4_createStreamHC();
FUZ_CHECKTEST(sp==NULL, "LZ4_createStreamHC() allocation failed");
LZ4_freeStreamHC(sp);
}
DISPLAYLEVEL(3, " OK \n");
/* simple HC compression test */
DISPLAYLEVEL(3, " Simple HC round-trip : ");
{ U64 const crc64 = XXH64(testInput, testCompressedSize, 0);
LZ4_setCompressionLevel(&sHC, compressionLevel);
result = LZ4_compress_HC_continue(&sHC, testInput, testCompressed, testCompressedSize, testCompressedSize-1);
FUZ_CHECKTEST(result==0, "LZ4_compressHC_limitedOutput_continue() compression failed");
FUZ_CHECKTEST(sHC.internal_donotuse.dirty, "Context should be clean");
result = LZ4_decompress_safe(testCompressed, testVerify, result, testCompressedSize);
FUZ_CHECKTEST(result!=(int)testCompressedSize, "LZ4_decompress_safe() decompression failed");
{ U64 const crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crc64!=crcNew, "LZ4_decompress_safe() decompression corruption");
} }
DISPLAYLEVEL(3, " OK \n");
/* long sequence test */
DISPLAYLEVEL(3, " Long sequence HC test : ");
{ size_t const blockSize = 1 MB;
size_t const targetSize = 4116; /* size carefully selected to trigger an overflow */
void* const block = malloc(blockSize);
void* const dstBlock = malloc(targetSize+1);
BYTE const sentinel = 101;
int srcSize;
assert(block != NULL); assert(dstBlock != NULL);
memset(block, 0, blockSize);
((char*)dstBlock)[targetSize] = sentinel;
LZ4_resetStreamHC_fast(&sHC, 3);
assert(blockSize < INT_MAX);
srcSize = (int)blockSize;
assert(targetSize < INT_MAX);
result = LZ4_compress_HC_destSize(&sHC, (const char*)block, (char*)dstBlock, &srcSize, (int)targetSize, 3);
DISPLAYLEVEL(4, "cSize=%i; readSize=%i; ", result, srcSize);
FUZ_CHECKTEST(result!=4116, "LZ4_compress_HC_destSize() : compression must fill dstBuffer completely, but no more !");
FUZ_CHECKTEST(((char*)dstBlock)[targetSize] != sentinel, "LZ4_compress_HC_destSize()")
LZ4_resetStreamHC_fast(&sHC, 3); /* make sure the context is clean after the test */
free(block);
free(dstBlock);
}
DISPLAYLEVEL(3, " OK \n");
/* simple dictionary HC compression test */
DISPLAYLEVEL(3, " HC dictionary compression test : ");
{ U64 const crc64 = XXH64(testInput + 64 KB, testCompressedSize, 0);
LZ4_resetStreamHC_fast(&sHC, compressionLevel);
LZ4_loadDictHC(&sHC, testInput, 64 KB);
{ int const cSize = LZ4_compress_HC_continue(&sHC, testInput + 64 KB, testCompressed, testCompressedSize, testCompressedSize-1);
FUZ_CHECKTEST(cSize==0, "LZ4_compressHC_limitedOutput_continue() dictionary compression failed : @return = %i", cSize);
FUZ_CHECKTEST(sHC.internal_donotuse.dirty, "Context should be clean");
{ int const dSize = LZ4_decompress_safe_usingDict(testCompressed, testVerify, cSize, testCompressedSize, testInput, 64 KB);
FUZ_CHECKTEST(dSize!=(int)testCompressedSize, "LZ4_decompress_safe() simple dictionary decompression test failed");
} }
{ U64 const crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crc64!=crcNew, "LZ4_decompress_safe() simple dictionary decompression test : corruption");
} }
DISPLAYLEVEL(3, " OK \n");
/* multiple HC compression test with dictionary */
{ int result1, result2;
int segSize = testCompressedSize / 2;
XXH64_hash_t const crc64 = ( (void)assert((unsigned)segSize + testCompressedSize < testInputSize) ,
XXH64(testInput + segSize, testCompressedSize, 0) );
LZ4_resetStreamHC_fast(&sHC, compressionLevel);
LZ4_loadDictHC(&sHC, testInput, segSize);
result1 = LZ4_compress_HC_continue(&sHC, testInput + segSize, testCompressed, segSize, segSize -1);
FUZ_CHECKTEST(result1==0, "LZ4_compressHC_limitedOutput_continue() dictionary compression failed : result = %i", result1);
FUZ_CHECKTEST(sHC.internal_donotuse.dirty, "Context should be clean");
result2 = LZ4_compress_HC_continue(&sHC, testInput + 2*(size_t)segSize, testCompressed+result1, segSize, segSize-1);
FUZ_CHECKTEST(result2==0, "LZ4_compressHC_limitedOutput_continue() dictionary compression failed : result = %i", result2);
FUZ_CHECKTEST(sHC.internal_donotuse.dirty, "Context should be clean");
result = LZ4_decompress_safe_usingDict(testCompressed, testVerify, result1, segSize, testInput, segSize);
FUZ_CHECKTEST(result!=segSize, "LZ4_decompress_safe() dictionary decompression part 1 failed");
result = LZ4_decompress_safe_usingDict(testCompressed+result1, testVerify+segSize, result2, segSize, testInput, 2*segSize);
FUZ_CHECKTEST(result!=segSize, "LZ4_decompress_safe() dictionary decompression part 2 failed");
{ XXH64_hash_t const crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crc64!=crcNew, "LZ4_decompress_safe() dictionary decompression corruption");
} }
/* remote dictionary HC compression test */
{ U64 const crc64 = XXH64(testInput + 64 KB, testCompressedSize, 0);
LZ4_resetStreamHC_fast(&sHC, compressionLevel);
LZ4_loadDictHC(&sHC, testInput, 32 KB);
result = LZ4_compress_HC_continue(&sHC, testInput + 64 KB, testCompressed, testCompressedSize, testCompressedSize-1);
FUZ_CHECKTEST(result==0, "LZ4_compressHC_limitedOutput_continue() remote dictionary failed : result = %i", result);
FUZ_CHECKTEST(sHC.internal_donotuse.dirty, "Context should be clean");
result = LZ4_decompress_safe_usingDict(testCompressed, testVerify, result, testCompressedSize, testInput, 32 KB);
FUZ_CHECKTEST(result!=(int)testCompressedSize, "LZ4_decompress_safe_usingDict() decompression failed following remote dictionary HC compression test");
{ U64 const crcNew = XXH64(testVerify, testCompressedSize, 0);
FUZ_CHECKTEST(crc64!=crcNew, "LZ4_decompress_safe_usingDict() decompression corruption");
} }
/* multiple HC compression with ext. dictionary */
{ XXH64_state_t crcOrigState;
XXH64_state_t crcNewState;
const char* dict = testInput + 3;
size_t dictSize = (FUZ_rand(&randState) & 8191);
char* dst = testVerify;
size_t segStart = dictSize + 7;
size_t segSize = (FUZ_rand(&randState) & 8191);
int segNb = 1;
LZ4_resetStreamHC_fast(&sHC, compressionLevel);
LZ4_loadDictHC(&sHC, dict, (int)dictSize);
XXH64_reset(&crcOrigState, 0);
XXH64_reset(&crcNewState, 0);
while (segStart + segSize < testInputSize) {
XXH64_update(&crcOrigState, testInput + segStart, segSize);
crcOrig = XXH64_digest(&crcOrigState);
assert(segSize <= INT_MAX);
result = LZ4_compress_HC_continue(&sHC, testInput + segStart, testCompressed, (int)segSize, LZ4_compressBound((int)segSize));
FUZ_CHECKTEST(result==0, "LZ4_compressHC_limitedOutput_continue() dictionary compression failed : result = %i", result);
FUZ_CHECKTEST(sHC.internal_donotuse.dirty, "Context should be clean");
result = LZ4_decompress_safe_usingDict(testCompressed, dst, result, (int)segSize, dict, (int)dictSize);
FUZ_CHECKTEST(result!=(int)segSize, "LZ4_decompress_safe_usingDict() dictionary decompression part %i failed", (int)segNb);
XXH64_update(&crcNewState, dst, segSize);
{ U64 const crcNew = XXH64_digest(&crcNewState);
if (crcOrig != crcNew) FUZ_findDiff(dst, testInput+segStart);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe_usingDict() part %i corruption", segNb);
}
dict = dst;
dictSize = segSize;
dst += segSize + 1;
segNb ++;
segStart += segSize + (FUZ_rand(&randState) & 0xF) + 1;
segSize = (FUZ_rand(&randState) & 8191);
} }
/* ring buffer test */
{ XXH64_state_t xxhOrig;
XXH64_state_t xxhNewSafe, xxhNewFast;
LZ4_streamDecode_t decodeStateSafe, decodeStateFast;
const U32 maxMessageSizeLog = 10;
const U32 maxMessageSizeMask = (1<<maxMessageSizeLog) - 1;
U32 messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
U32 iNext = 0;
U32 rNext = 0;
U32 dNext = 0;
const U32 dBufferSize = ringBufferSize + maxMessageSizeMask;
XXH64_reset(&xxhOrig, 0);
XXH64_reset(&xxhNewSafe, 0);
XXH64_reset(&xxhNewFast, 0);
LZ4_resetStreamHC_fast(&sHC, compressionLevel);
LZ4_setStreamDecode(&decodeStateSafe, NULL, 0);
LZ4_setStreamDecode(&decodeStateFast, NULL, 0);
while (iNext + messageSize < testCompressedSize) {
int compressedSize;
XXH64_update(&xxhOrig, testInput + iNext, messageSize);
crcOrig = XXH64_digest(&xxhOrig);
memcpy (ringBuffer + rNext, testInput + iNext, messageSize);
assert(messageSize < INT_MAX);
compressedSize = LZ4_compress_HC_continue(&sHC, ringBuffer + rNext, testCompressed, (int)messageSize, testCompressedSize-ringBufferSize);
FUZ_CHECKTEST(compressedSize==0, "LZ4_compress_HC_continue() compression failed");
FUZ_CHECKTEST(sHC.internal_donotuse.dirty, "Context should be clean");
assert(messageSize < INT_MAX);
result = LZ4_decompress_safe_continue(&decodeStateSafe, testCompressed, testVerify + dNext, compressedSize, (int)messageSize);
FUZ_CHECKTEST(result!=(int)messageSize, "ringBuffer : LZ4_decompress_safe_continue() test failed");
XXH64_update(&xxhNewSafe, testVerify + dNext, messageSize);
{ U64 const crcNew = XXH64_digest(&xxhNewSafe);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe_continue() decompression corruption"); }
assert(messageSize < INT_MAX);
result = LZ4_decompress_fast_continue(&decodeStateFast, testCompressed, testVerify + dNext, (int)messageSize);
FUZ_CHECKTEST(result!=compressedSize, "ringBuffer : LZ4_decompress_fast_continue() test failed");
XXH64_update(&xxhNewFast, testVerify + dNext, messageSize);
{ U64 const crcNew = XXH64_digest(&xxhNewFast);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_fast_continue() decompression corruption"); }
/* prepare next message */
iNext += messageSize;
rNext += messageSize;
dNext += messageSize;
messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
if (rNext + messageSize > ringBufferSize) rNext = 0;
if (dNext + messageSize > dBufferSize) dNext = 0;
}
}
/* Ring buffer test : Non synchronized decoder */
/* This test uses minimum amount of memory required to setup a decoding ring buffer
* while being unsynchronized with encoder
* (no assumption done on how the data is encoded, it just follows LZ4 format specification).
* This size is documented in lz4.h, and is LZ4_decoderRingBufferSize(maxBlockSize).
*/
{ XXH64_state_t xxhOrig;
XXH64_state_t xxhNewSafe, xxhNewFast;
LZ4_streamDecode_t decodeStateSafe, decodeStateFast;
const int maxMessageSizeLog = 12;
const int maxMessageSize = 1 << maxMessageSizeLog;
const int maxMessageSizeMask = maxMessageSize - 1;
int messageSize;
U32 totalMessageSize = 0;
const int dBufferSize = LZ4_decoderRingBufferSize(maxMessageSize);
char* const ringBufferSafe = testVerify;
char* const ringBufferFast = testVerify + dBufferSize + 1; /* used by LZ4_decompress_fast_continue */
int iNext = 0;
int dNext = 0;
int compressedSize;
assert((size_t)dBufferSize * 2 + 1 < testInputSize); /* space used by ringBufferSafe and ringBufferFast */
XXH64_reset(&xxhOrig, 0);
XXH64_reset(&xxhNewSafe, 0);
XXH64_reset(&xxhNewFast, 0);
LZ4_resetStreamHC_fast(&sHC, compressionLevel);
LZ4_setStreamDecode(&decodeStateSafe, NULL, 0);
LZ4_setStreamDecode(&decodeStateFast, NULL, 0);
#define BSIZE1 (dBufferSize - (maxMessageSize-1))
/* first block */
messageSize = BSIZE1; /* note : we cheat a bit here, in theory no message should be > maxMessageSize. We just want to fill the decoding ring buffer once. */
XXH64_update(&xxhOrig, testInput + iNext, (size_t)messageSize);
crcOrig = XXH64_digest(&xxhOrig);
compressedSize = LZ4_compress_HC_continue(&sHC, testInput + iNext, testCompressed, messageSize, testCompressedSize-ringBufferSize);
FUZ_CHECKTEST(compressedSize==0, "LZ4_compress_HC_continue() compression failed");
FUZ_CHECKTEST(sHC.internal_donotuse.dirty, "Context should be clean");
result = LZ4_decompress_safe_continue(&decodeStateSafe, testCompressed, ringBufferSafe + dNext, compressedSize, messageSize);
FUZ_CHECKTEST(result!=messageSize, "64K D.ringBuffer : LZ4_decompress_safe_continue() test failed");
XXH64_update(&xxhNewSafe, ringBufferSafe + dNext, (size_t)messageSize);
{ U64 const crcNew = XXH64_digest(&xxhNewSafe);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe_continue() decompression corruption"); }
result = LZ4_decompress_fast_continue(&decodeStateFast, testCompressed, ringBufferFast + dNext, messageSize);
FUZ_CHECKTEST(result!=compressedSize, "64K D.ringBuffer : LZ4_decompress_fast_continue() test failed");
XXH64_update(&xxhNewFast, ringBufferFast + dNext, (size_t)messageSize);
{ U64 const crcNew = XXH64_digest(&xxhNewFast);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_fast_continue() decompression corruption"); }
/* prepare second message */
dNext += messageSize;
assert(messageSize >= 0);
totalMessageSize += (unsigned)messageSize;
messageSize = maxMessageSize;
iNext = BSIZE1+1;
assert(BSIZE1 >= 65535);
memcpy(testInput + iNext, testInput + (BSIZE1-65535), messageSize); /* will generate a match at max distance == 65535 */
FUZ_CHECKTEST(dNext+messageSize <= dBufferSize, "Ring buffer test : second message should require restarting from beginning");
dNext = 0;
while (totalMessageSize < 9 MB) {
XXH64_update(&xxhOrig, testInput + iNext, (size_t)messageSize);
crcOrig = XXH64_digest(&xxhOrig);
compressedSize = LZ4_compress_HC_continue(&sHC, testInput + iNext, testCompressed, messageSize, testCompressedSize-ringBufferSize);
FUZ_CHECKTEST(compressedSize==0, "LZ4_compress_HC_continue() compression failed");
FUZ_CHECKTEST(sHC.internal_donotuse.dirty, "Context should be clean");
DISPLAYLEVEL(5, "compressed %i bytes to %i bytes \n", messageSize, compressedSize);
/* test LZ4_decompress_safe_continue */
assert(dNext < dBufferSize);
assert(dBufferSize - dNext >= maxMessageSize);
result = LZ4_decompress_safe_continue(&decodeStateSafe,
testCompressed, ringBufferSafe + dNext,
compressedSize, dBufferSize - dNext); /* works without knowing messageSize, under assumption that messageSize <= maxMessageSize */
FUZ_CHECKTEST(result!=messageSize, "D.ringBuffer : LZ4_decompress_safe_continue() test failed");
XXH64_update(&xxhNewSafe, ringBufferSafe + dNext, (size_t)messageSize);
{ U64 const crcNew = XXH64_digest(&xxhNewSafe);
if (crcOrig != crcNew) FUZ_findDiff(testInput + iNext, ringBufferSafe + dNext);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_safe_continue() decompression corruption during D.ringBuffer test");
}
/* test LZ4_decompress_fast_continue in its own buffer ringBufferFast */
result = LZ4_decompress_fast_continue(&decodeStateFast, testCompressed, ringBufferFast + dNext, messageSize);
FUZ_CHECKTEST(result!=compressedSize, "D.ringBuffer : LZ4_decompress_fast_continue() test failed");
XXH64_update(&xxhNewFast, ringBufferFast + dNext, (size_t)messageSize);
{ U64 const crcNew = XXH64_digest(&xxhNewFast);
if (crcOrig != crcNew) FUZ_findDiff(testInput + iNext, ringBufferFast + dNext);
FUZ_CHECKTEST(crcOrig!=crcNew, "LZ4_decompress_fast_continue() decompression corruption during D.ringBuffer test");
}
/* prepare next message */
dNext += messageSize;
assert(messageSize >= 0);
totalMessageSize += (unsigned)messageSize;
messageSize = (FUZ_rand(&randState) & maxMessageSizeMask) + 1;
iNext = (FUZ_rand(&randState) & 65535);
if (dNext + maxMessageSize > dBufferSize) dNext = 0;
}
}
}
/* clean up */
free(testInput);
free(testCompressed);
free(testVerify);
printf("All unit tests completed successfully compressionLevel=%d \n", compressionLevel);
return;
}
/* =======================================
* CLI
* ======================================= */
static int FUZ_usage(const char* programName)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [args]\n", programName);
DISPLAY( "\n");
DISPLAY( "Arguments :\n");
DISPLAY( " -i# : Nb of tests (default:%i) \n", NB_ATTEMPTS);
DISPLAY( " -T# : Duration of tests, in seconds (default: use Nb of tests) \n");
DISPLAY( " -s# : Select seed (default:prompt user)\n");
DISPLAY( " -t# : Select starting test number (default:0)\n");
DISPLAY( " -P# : Select compressibility in %% (default:%i%%)\n", FUZ_COMPRESSIBILITY_DEFAULT);
DISPLAY( " -v : verbose\n");
DISPLAY( " -p : pause at the end\n");
DISPLAY( " -h : display help and exit\n");
return 0;
}
int main(int argc, const char** argv)
{
U32 seed = 0;
int seedset = 0;
int argNb;
unsigned nbTests = NB_ATTEMPTS;
unsigned testNb = 0;
int proba = FUZ_COMPRESSIBILITY_DEFAULT;
int use_pause = 0;
const char* programName = argv[0];
U32 duration = 0;
/* Check command line */
for(argNb=1; argNb<argc; argNb++) {
const char* argument = argv[argNb];
if(!argument) continue; // Protection if argument empty
// Decode command (note : aggregated commands are allowed)
if (argument[0]=='-') {
if (!strcmp(argument, "--no-prompt")) { use_pause=0; seedset=1; g_displayLevel=1; continue; }
argument++;
while (*argument!=0) {
switch(*argument)
{
case 'h': /* display help */
return FUZ_usage(programName);
case 'v': /* verbose mode */
g_displayLevel++;
argument++;
break;
case 'p': /* pause at the end */
use_pause=1;
argument++;
break;
case 'i':
argument++;
nbTests = 0; duration = 0;
while ((*argument>='0') && (*argument<='9')) {
nbTests *= 10;
nbTests += (unsigned)(*argument - '0');
argument++;
}
break;
case 'T':
argument++;
nbTests = 0; duration = 0;
for (;;) {
switch(*argument)
{
case 'm': duration *= 60; argument++; continue;
case 's':
case 'n': argument++; continue;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': duration *= 10; duration += (U32)(*argument++ - '0'); continue;
}
break;
}
break;
case 's':
argument++;
seed=0; seedset=1;
while ((*argument>='0') && (*argument<='9')) {
seed *= 10;
seed += (U32)(*argument - '0');
argument++;
}
break;
case 't': /* select starting test nb */
argument++;
testNb=0;
while ((*argument>='0') && (*argument<='9')) {
testNb *= 10;
testNb += (unsigned)(*argument - '0');
argument++;
}
break;
case 'P': /* change probability */
argument++;
proba=0;
while ((*argument>='0') && (*argument<='9')) {
proba *= 10;
proba += *argument - '0';
argument++;
}
if (proba<0) proba=0;
if (proba>100) proba=100;
break;
default: ;
}
}
}
}
printf("Starting LZ4 fuzzer (%i-bits, v%s)\n", (int)(sizeof(size_t)*8), LZ4_versionString());
if (!seedset) {
time_t const t = time(NULL);
U32 const h = XXH32(&t, sizeof(t), 1);
seed = h % 10000;
}
printf("Seed = %u\n", seed);
if (proba!=FUZ_COMPRESSIBILITY_DEFAULT) printf("Compressibility : %i%%\n", proba);
if ((seedset==0) && (testNb==0)) { FUZ_unitTests(LZ4HC_CLEVEL_DEFAULT); FUZ_unitTests(LZ4HC_CLEVEL_OPT_MIN); }
nbTests += (nbTests==0); /* avoid zero */
{ int const result = FUZ_test(seed, nbTests, testNb, ((double)proba) / 100, duration);
if (use_pause) {
DISPLAY("press enter ... \n");
(void)getchar();
}
return result;
}
}