mbedtls/library/sha1.c

480 lines
12 KiB
C
Raw Normal View History

/*
* FIPS-180-1 compliant SHA-1 implementation
*
2015-01-23 09:45:19 +00:00
* Copyright (C) 2006-2014, ARM Limited, All Rights Reserved
2010-07-18 20:36:00 +00:00
*
2015-03-06 13:17:10 +00:00
* This file is part of mbed TLS (https://tls.mbed.org)
2010-07-18 20:36:00 +00:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* The SHA-1 standard was published by NIST in 1993.
*
* http://www.itl.nist.gov/fipspubs/fip180-1.htm
*/
#if !defined(POLARSSL_CONFIG_FILE)
2015-03-09 17:05:11 +00:00
#include "mbedtls/config.h"
#else
#include POLARSSL_CONFIG_FILE
#endif
#if defined(POLARSSL_SHA1_C)
2015-03-09 17:05:11 +00:00
#include "mbedtls/sha1.h"
#include <string.h>
#if defined(POLARSSL_FS_IO)
#include <stdio.h>
#endif
#if defined(POLARSSL_SELF_TEST)
#if defined(POLARSSL_PLATFORM_C)
2015-03-09 17:05:11 +00:00
#include "mbedtls/platform.h"
#else
#include <stdio.h>
#define polarssl_printf printf
#endif /* POLARSSL_PLATFORM_C */
#endif /* POLARSSL_SELF_TEST */
/* Implementation that should never be optimized out by the compiler */
static void polarssl_zeroize( void *v, size_t n ) {
volatile unsigned char *p = v; while( n-- ) *p++ = 0;
}
#if !defined(POLARSSL_SHA1_ALT)
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
void sha1_init( sha1_context *ctx )
{
memset( ctx, 0, sizeof( sha1_context ) );
}
void sha1_free( sha1_context *ctx )
{
if( ctx == NULL )
return;
polarssl_zeroize( ctx, sizeof( sha1_context ) );
}
/*
* SHA-1 context setup
*/
void sha1_starts( sha1_context *ctx )
{
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
}
void sha1_process( sha1_context *ctx, const unsigned char data[64] )
{
uint32_t temp, W[16], A, B, C, D, E;
GET_UINT32_BE( W[ 0], data, 0 );
GET_UINT32_BE( W[ 1], data, 4 );
GET_UINT32_BE( W[ 2], data, 8 );
GET_UINT32_BE( W[ 3], data, 12 );
GET_UINT32_BE( W[ 4], data, 16 );
GET_UINT32_BE( W[ 5], data, 20 );
GET_UINT32_BE( W[ 6], data, 24 );
GET_UINT32_BE( W[ 7], data, 28 );
GET_UINT32_BE( W[ 8], data, 32 );
GET_UINT32_BE( W[ 9], data, 36 );
GET_UINT32_BE( W[10], data, 40 );
GET_UINT32_BE( W[11], data, 44 );
GET_UINT32_BE( W[12], data, 48 );
GET_UINT32_BE( W[13], data, 52 );
GET_UINT32_BE( W[14], data, 56 );
GET_UINT32_BE( W[15], data, 60 );
#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
#define R(t) \
( \
temp = W[( t - 3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \
W[( t - 14 ) & 0x0F] ^ W[ t & 0x0F], \
( W[t & 0x0F] = S(temp,1) ) \
)
#define P(a,b,c,d,e,x) \
{ \
e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
#define F(x,y,z) (z ^ (x & (y ^ z)))
#define K 0x5A827999
P( A, B, C, D, E, W[0] );
P( E, A, B, C, D, W[1] );
P( D, E, A, B, C, W[2] );
P( C, D, E, A, B, W[3] );
P( B, C, D, E, A, W[4] );
P( A, B, C, D, E, W[5] );
P( E, A, B, C, D, W[6] );
P( D, E, A, B, C, W[7] );
P( C, D, E, A, B, W[8] );
P( B, C, D, E, A, W[9] );
P( A, B, C, D, E, W[10] );
P( E, A, B, C, D, W[11] );
P( D, E, A, B, C, W[12] );
P( C, D, E, A, B, W[13] );
P( B, C, D, E, A, W[14] );
P( A, B, C, D, E, W[15] );
P( E, A, B, C, D, R(16) );
P( D, E, A, B, C, R(17) );
P( C, D, E, A, B, R(18) );
P( B, C, D, E, A, R(19) );
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0x6ED9EBA1
P( A, B, C, D, E, R(20) );
P( E, A, B, C, D, R(21) );
P( D, E, A, B, C, R(22) );
P( C, D, E, A, B, R(23) );
P( B, C, D, E, A, R(24) );
P( A, B, C, D, E, R(25) );
P( E, A, B, C, D, R(26) );
P( D, E, A, B, C, R(27) );
P( C, D, E, A, B, R(28) );
P( B, C, D, E, A, R(29) );
P( A, B, C, D, E, R(30) );
P( E, A, B, C, D, R(31) );
P( D, E, A, B, C, R(32) );
P( C, D, E, A, B, R(33) );
P( B, C, D, E, A, R(34) );
P( A, B, C, D, E, R(35) );
P( E, A, B, C, D, R(36) );
P( D, E, A, B, C, R(37) );
P( C, D, E, A, B, R(38) );
P( B, C, D, E, A, R(39) );
#undef K
#undef F
#define F(x,y,z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDC
P( A, B, C, D, E, R(40) );
P( E, A, B, C, D, R(41) );
P( D, E, A, B, C, R(42) );
P( C, D, E, A, B, R(43) );
P( B, C, D, E, A, R(44) );
P( A, B, C, D, E, R(45) );
P( E, A, B, C, D, R(46) );
P( D, E, A, B, C, R(47) );
P( C, D, E, A, B, R(48) );
P( B, C, D, E, A, R(49) );
P( A, B, C, D, E, R(50) );
P( E, A, B, C, D, R(51) );
P( D, E, A, B, C, R(52) );
P( C, D, E, A, B, R(53) );
P( B, C, D, E, A, R(54) );
P( A, B, C, D, E, R(55) );
P( E, A, B, C, D, R(56) );
P( D, E, A, B, C, R(57) );
P( C, D, E, A, B, R(58) );
P( B, C, D, E, A, R(59) );
#undef K
#undef F
#define F(x,y,z) (x ^ y ^ z)
#define K 0xCA62C1D6
P( A, B, C, D, E, R(60) );
P( E, A, B, C, D, R(61) );
P( D, E, A, B, C, R(62) );
P( C, D, E, A, B, R(63) );
P( B, C, D, E, A, R(64) );
P( A, B, C, D, E, R(65) );
P( E, A, B, C, D, R(66) );
P( D, E, A, B, C, R(67) );
P( C, D, E, A, B, R(68) );
P( B, C, D, E, A, R(69) );
P( A, B, C, D, E, R(70) );
P( E, A, B, C, D, R(71) );
P( D, E, A, B, C, R(72) );
P( C, D, E, A, B, R(73) );
P( B, C, D, E, A, R(74) );
P( A, B, C, D, E, R(75) );
P( E, A, B, C, D, R(76) );
P( D, E, A, B, C, R(77) );
P( C, D, E, A, B, R(78) );
P( B, C, D, E, A, R(79) );
#undef K
#undef F
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}
/*
* SHA-1 process buffer
*/
void sha1_update( sha1_context *ctx, const unsigned char *input, size_t ilen )
{
size_t fill;
uint32_t left;
if( ilen == 0 )
return;
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if( ctx->total[0] < (uint32_t) ilen )
ctx->total[1]++;
if( left && ilen >= fill )
{
memcpy( (void *) (ctx->buffer + left), input, fill );
sha1_process( ctx, ctx->buffer );
input += fill;
ilen -= fill;
left = 0;
}
while( ilen >= 64 )
{
sha1_process( ctx, input );
input += 64;
ilen -= 64;
}
if( ilen > 0 )
memcpy( (void *) (ctx->buffer + left), input, ilen );
}
static const unsigned char sha1_padding[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* SHA-1 final digest
*/
void sha1_finish( sha1_context *ctx, unsigned char output[20] )
{
uint32_t last, padn;
uint32_t high, low;
unsigned char msglen[8];
high = ( ctx->total[0] >> 29 )
| ( ctx->total[1] << 3 );
low = ( ctx->total[0] << 3 );
PUT_UINT32_BE( high, msglen, 0 );
PUT_UINT32_BE( low, msglen, 4 );
last = ctx->total[0] & 0x3F;
padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
sha1_update( ctx, sha1_padding, padn );
sha1_update( ctx, msglen, 8 );
PUT_UINT32_BE( ctx->state[0], output, 0 );
PUT_UINT32_BE( ctx->state[1], output, 4 );
PUT_UINT32_BE( ctx->state[2], output, 8 );
PUT_UINT32_BE( ctx->state[3], output, 12 );
PUT_UINT32_BE( ctx->state[4], output, 16 );
}
#endif /* !POLARSSL_SHA1_ALT */
/*
* output = SHA-1( input buffer )
*/
void sha1( const unsigned char *input, size_t ilen, unsigned char output[20] )
{
sha1_context ctx;
sha1_init( &ctx );
sha1_starts( &ctx );
sha1_update( &ctx, input, ilen );
sha1_finish( &ctx, output );
sha1_free( &ctx );
}
#if defined(POLARSSL_FS_IO)
/*
* output = SHA-1( file contents )
*/
int sha1_file( const char *path, unsigned char output[20] )
{
FILE *f;
size_t n;
sha1_context ctx;
unsigned char buf[1024];
if( ( f = fopen( path, "rb" ) ) == NULL )
return( POLARSSL_ERR_SHA1_FILE_IO_ERROR );
sha1_init( &ctx );
sha1_starts( &ctx );
while( ( n = fread( buf, 1, sizeof( buf ), f ) ) > 0 )
sha1_update( &ctx, buf, n );
sha1_finish( &ctx, output );
sha1_free( &ctx );
if( ferror( f ) != 0 )
{
fclose( f );
return( POLARSSL_ERR_SHA1_FILE_IO_ERROR );
}
fclose( f );
return( 0 );
}
#endif /* POLARSSL_FS_IO */
#if defined(POLARSSL_SELF_TEST)
/*
* FIPS-180-1 test vectors
*/
2015-03-11 09:13:42 +00:00
static const unsigned char sha1_test_buf[3][57] =
{
{ "abc" },
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
{ "" }
};
static const int sha1_test_buflen[3] =
{
3, 56, 1000
};
static const unsigned char sha1_test_sum[3][20] =
{
{ 0xA9, 0x99, 0x3E, 0x36, 0x47, 0x06, 0x81, 0x6A, 0xBA, 0x3E,
0x25, 0x71, 0x78, 0x50, 0xC2, 0x6C, 0x9C, 0xD0, 0xD8, 0x9D },
{ 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 0xBA, 0xAE,
0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5, 0xE5, 0x46, 0x70, 0xF1 },
{ 0x34, 0xAA, 0x97, 0x3C, 0xD4, 0xC4, 0xDA, 0xA4, 0xF6, 0x1E,
0xEB, 0x2B, 0xDB, 0xAD, 0x27, 0x31, 0x65, 0x34, 0x01, 0x6F }
};
/*
* Checkup routine
*/
int sha1_self_test( int verbose )
{
int i, j, buflen, ret = 0;
unsigned char buf[1024];
unsigned char sha1sum[20];
sha1_context ctx;
sha1_init( &ctx );
/*
* SHA-1
*/
for( i = 0; i < 3; i++ )
{
if( verbose != 0 )
polarssl_printf( " SHA-1 test #%d: ", i + 1 );
sha1_starts( &ctx );
if( i == 2 )
{
memset( buf, 'a', buflen = 1000 );
for( j = 0; j < 1000; j++ )
sha1_update( &ctx, buf, buflen );
}
else
sha1_update( &ctx, sha1_test_buf[i],
sha1_test_buflen[i] );
sha1_finish( &ctx, sha1sum );
if( memcmp( sha1sum, sha1_test_sum[i], 20 ) != 0 )
{
if( verbose != 0 )
polarssl_printf( "failed\n" );
ret = 1;
goto exit;
}
if( verbose != 0 )
polarssl_printf( "passed\n" );
}
if( verbose != 0 )
polarssl_printf( "\n" );
exit:
sha1_free( &ctx );
return( ret );
}
#endif /* POLARSSL_SELF_TEST */
#endif /* POLARSSL_SHA1_C */