Merged ECP improvements

This commit is contained in:
Paul Bakker 2013-11-26 15:19:17 +01:00
commit 3209ce3692
8 changed files with 572 additions and 308 deletions

View File

@ -201,6 +201,17 @@ void mpi_free( mpi *X );
*/ */
int mpi_grow( mpi *X, size_t nblimbs ); int mpi_grow( mpi *X, size_t nblimbs );
/**
* \brief Resize down, keeping at least the specified number of limbs
*
* \param X MPI to shrink
* \param nblimbs The minimum number of limbs to keep
*
* \return 0 if successful,
* POLARSSL_ERR_MPI_MALLOC_FAILED if memory allocation failed
*/
int mpi_shrink( mpi *X, size_t nblimbs );
/** /**
* \brief Copy the contents of Y into X * \brief Copy the contents of Y into X
* *
@ -220,6 +231,26 @@ int mpi_copy( mpi *X, const mpi *Y );
*/ */
void mpi_swap( mpi *X, mpi *Y ); void mpi_swap( mpi *X, mpi *Y );
/**
* \brief Safe conditional assignement X = Y if assign is 1
*
* \param X MPI to conditionally assign to
* \param Y Value to be assigned
* \param assign 1: perform the assignment, 0: leave X untouched
*
* \return 0 if successful,
* POLARSSL_ERR_MPI_MALLOC_FAILED if memory allocation failed,
* POLARSSL_ERR_MPI_BAD_INPUT_DATA if assing is not 0 or 1
*
* \note This function is equivalent to
* if( assign ) mpi_copy( X, Y );
* except that it avoids leaking any information about whether
* the assignment was done or not (the above code may leak
* information through branch prediction and/or memory access
* patterns analysis).
*/
int mpi_safe_cond_assign( mpi *X, const mpi *Y, unsigned char assign );
/** /**
* \brief Set value from integer * \brief Set value from integer
* *

View File

@ -157,16 +157,16 @@ ecp_keypair;
#define POLARSSL_ECP_MAX_PT_LEN ( 2 * POLARSSL_ECP_MAX_BYTES + 1 ) #define POLARSSL_ECP_MAX_PT_LEN ( 2 * POLARSSL_ECP_MAX_BYTES + 1 )
/* /*
* Maximum window size (actually, NAF width) used for point multipliation. * Maximum "window" size used for point multiplication.
* Default: 8. * Default: 6.
* Minimum value: 2. Maximum value: 8. * Minimum value: 2. Maximum value: 7.
* *
* Result is an array of at most ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) ) * Result is an array of at most ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) )
* points used for point multiplication. * points used for point multiplication.
* *
* Reduction in size may reduce speed for big curves. * Reduction in size may reduce speed for big curves.
*/ */
#define POLARSSL_ECP_WINDOW_SIZE 8 /**< Maximum NAF width used. */ #define POLARSSL_ECP_WINDOW_SIZE 6 /**< Maximum window size used. */
/* /*
* Point formats, from RFC 4492's enum ECPointFormat * Point formats, from RFC 4492's enum ECPointFormat
@ -459,28 +459,24 @@ int ecp_sub( const ecp_group *grp, ecp_point *R,
* \param p_rng RNG parameter * \param p_rng RNG parameter
* *
* \return 0 if successful, * \return 0 if successful,
* POLARSSL_ERR_ECP_INVALID_KEY if m is not a valid privkey
* or P is not a valid pubkey,
* POLARSSL_ERR_MPI_MALLOC_FAILED if memory allocation failed * POLARSSL_ERR_MPI_MALLOC_FAILED if memory allocation failed
* POLARSSL_ERR_ECP_BAD_INPUT_DATA if m < 0 of m has greater
* bit length than N, the number of points in the group.
* *
* \note In order to prevent simple timing attacks, this function * \note In order to prevent timing attacks, this function
* executes a constant number of operations (that is, point * executes the exact same sequence of (base field)
* doubling and addition of distinct points) for random m in * operations for any valid m. It avoids any if-branch or
* the allowed range. * array index depending on the value of m.
* *
* \note If f_rng is not NULL, it is used to randomize projective * \note If f_rng is not NULL, it is used to randomize intermediate
* coordinates of indermediate results, in order to prevent * results in order to prevent potential timing attacks
* more elaborate timing attacks relying on intermediate * targetting these results. It is recommended to always
* operations. (This is a prophylactic measure since no such * provide a non-NULL f_rng (the overhead is negligible).
* attack has been published yet.) Since this contermeasure
* has very low overhead, it is recommended to always provide
* a non-NULL f_rng parameter when using secret inputs.
*/ */
int ecp_mul( ecp_group *grp, ecp_point *R, int ecp_mul( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P, const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ); int (*f_rng)(void *, unsigned char *, size_t), void *p_rng );
/** /**
* \brief Check that a point is a valid public key on this curve * \brief Check that a point is a valid public key on this curve
* *

View File

@ -119,6 +119,45 @@ int mpi_grow( mpi *X, size_t nblimbs )
return( 0 ); return( 0 );
} }
/*
* Resize down as much as possible,
* while keeping at least the specified number of limbs
*/
int mpi_shrink( mpi *X, size_t nblimbs )
{
t_uint *p;
size_t i;
/* Actually resize up in this case */
if( X->n <= nblimbs )
return( mpi_grow( X, nblimbs ) );
for( i = X->n - 1; i > 0; i-- )
if( X->p[i] != 0 )
break;
i++;
if( i < nblimbs )
i = nblimbs;
if( ( p = (t_uint *) polarssl_malloc( i * ciL ) ) == NULL )
return( POLARSSL_ERR_MPI_MALLOC_FAILED );
memset( p, 0, i * ciL );
if( X->p != NULL )
{
memcpy( p, X->p, i * ciL );
memset( X->p, 0, X->n * ciL );
polarssl_free( X->p );
}
X->n = i;
X->p = p;
return( 0 );
}
/* /*
* Copy the contents of Y into X * Copy the contents of Y into X
*/ */
@ -165,6 +204,33 @@ void mpi_swap( mpi *X, mpi *Y )
memcpy( Y, &T, sizeof( mpi ) ); memcpy( Y, &T, sizeof( mpi ) );
} }
/*
* Conditionally assign X = Y, without leaking information
* about whether the assignment was made or not.
* (Leaking information about the respective sizes of X and Y is ok however.)
*/
int mpi_safe_cond_assign( mpi *X, const mpi *Y, unsigned char assign )
{
int ret = 0;
size_t i;
if( assign * ( 1 - assign ) != 0 )
return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
if( Y->n > X->n )
MPI_CHK( mpi_grow( X, Y->n ) );
/* Do the conditional assign safely */
X->s = X->s * (1 - assign) + Y->s * assign;
for( i = 0; i < Y->n; i++ )
X->p[i] = X->p[i] * (1 - assign) + Y->p[i] * assign;
for( ; i < X->n; i++ )
X->p[i] *= (1 - assign);
cleanup:
return( ret );
}
/* /*
* Set value from integer * Set value from integer
*/ */

View File

@ -31,16 +31,15 @@
* FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
* RFC 4492 for the related TLS structures and constants * RFC 4492 for the related TLS structures and constants
* *
* [1] OKEYA, Katsuyuki and TAKAGI, Tsuyoshi. The width-w NAF method provides
* small memory and fast elliptic scalar multiplications secure against
* side channel attacks. In : Topics in CryptologyCT-RSA 2003. Springer
* Berlin Heidelberg, 2003. p. 328-343.
* <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
*
* [2] CORON, Jean-Sébastien. Resistance against differential power analysis * [2] CORON, Jean-Sébastien. Resistance against differential power analysis
* for elliptic curve cryptosystems. In : Cryptographic Hardware and * for elliptic curve cryptosystems. In : Cryptographic Hardware and
* Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
* <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
*
* [3] HEDABOU, Mustapha, PINEL, Pierre, et BÉNÉTEAU, Lucien. A comb method to
* render ECC resistant against Side Channel Attacks. IACR Cryptology
* ePrint Archive, 2004, vol. 2004, p. 342.
* <http://eprint.iacr.org/2004/342.pdf>
*/ */
#include "polarssl/config.h" #include "polarssl/config.h"
@ -69,10 +68,10 @@
#if defined(POLARSSL_SELF_TEST) #if defined(POLARSSL_SELF_TEST)
/* /*
* Counts of point addition and doubling operations. * Counts of point addition and doubling, and field multiplications.
* Used to test resistance of point multiplication to simple timing attacks. * Used to test resistance of point multiplication to simple timing attacks.
*/ */
unsigned long add_count, dbl_count; unsigned long add_count, dbl_count, mul_count;
#endif #endif
/* /*
@ -844,7 +843,14 @@ cleanup:
/* /*
* Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi
*/ */
#define MOD_MUL( N ) MPI_CHK( ecp_modp( &N, grp ) ) #if defined(POLARSSL_SELF_TEST)
#define INC_MUL_COUNT mul_count++;
#else
#define INC_MUL_COUNT
#endif
#define MOD_MUL( N ) do { MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
while( 0 )
/* /*
* Reduce a mpi mod p in-place, to use after mpi_sub_mpi * Reduce a mpi mod p in-place, to use after mpi_sub_mpi
@ -865,6 +871,7 @@ cleanup:
/* /*
* Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1) * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
* Cost: 1N := 1I + 3M + 1S
*/ */
static int ecp_normalize( const ecp_group *grp, ecp_point *pt ) static int ecp_normalize( const ecp_group *grp, ecp_point *pt )
{ {
@ -902,23 +909,25 @@ cleanup:
} }
/* /*
* Normalize jacobian coordinates of an array of points, * Normalize jacobian coordinates of an array of (pointers to) points,
* using Montgomery's trick to perform only one inversion mod P. * using Montgomery's trick to perform only one inversion mod P.
* (See for example Cohen's "A Course in Computational Algebraic Number * (See for example Cohen's "A Course in Computational Algebraic Number
* Theory", Algorithm 10.3.4.) * Theory", Algorithm 10.3.4.)
* *
* Warning: fails (returning an error) if one of the points is zero! * Warning: fails (returning an error) if one of the points is zero!
* This should never happen, see choice of w in ecp_mul(). * This should never happen, see choice of w in ecp_mul().
*
* Cost: 1N(t) := 1I + (6t - 3)M + 1S
*/ */
static int ecp_normalize_many( const ecp_group *grp, static int ecp_normalize_many( const ecp_group *grp,
ecp_point T[], size_t t_len ) ecp_point *T[], size_t t_len )
{ {
int ret; int ret;
size_t i; size_t i;
mpi *c, u, Zi, ZZi; mpi *c, u, Zi, ZZi;
if( t_len < 2 ) if( t_len < 2 )
return( ecp_normalize( grp, T ) ); return( ecp_normalize( grp, *T ) );
if( ( c = (mpi *) polarssl_malloc( t_len * sizeof( mpi ) ) ) == NULL ) if( ( c = (mpi *) polarssl_malloc( t_len * sizeof( mpi ) ) ) == NULL )
return( POLARSSL_ERR_ECP_MALLOC_FAILED ); return( POLARSSL_ERR_ECP_MALLOC_FAILED );
@ -930,10 +939,10 @@ static int ecp_normalize_many( const ecp_group *grp,
/* /*
* c[i] = Z_0 * ... * Z_i * c[i] = Z_0 * ... * Z_i
*/ */
MPI_CHK( mpi_copy( &c[0], &T[0].Z ) ); MPI_CHK( mpi_copy( &c[0], &T[0]->Z ) );
for( i = 1; i < t_len; i++ ) for( i = 1; i < t_len; i++ )
{ {
MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i].Z ) ); MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
MOD_MUL( c[i] ); MOD_MUL( c[i] );
} }
@ -953,18 +962,18 @@ static int ecp_normalize_many( const ecp_group *grp,
} }
else else
{ {
MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi ); MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
MPI_CHK( mpi_mul_mpi( &u, &u, &T[i].Z ) ); MOD_MUL( u ); MPI_CHK( mpi_mul_mpi( &u, &u, &T[i]->Z ) ); MOD_MUL( u );
} }
/* /*
* proceed as in normalize() * proceed as in normalize()
*/ */
MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi ); MPI_CHK( mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
MPI_CHK( mpi_mul_mpi( &T[i].X, &T[i].X, &ZZi ) ); MOD_MUL( T[i].X ); MPI_CHK( mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
MPI_CHK( mpi_mul_mpi( &T[i].Y, &T[i].Y, &ZZi ) ); MOD_MUL( T[i].Y ); MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
MPI_CHK( mpi_mul_mpi( &T[i].Y, &T[i].Y, &Zi ) ); MOD_MUL( T[i].Y ); MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi ) ); MOD_MUL( T[i]->Y );
MPI_CHK( mpi_lset( &T[i].Z, 1 ) ); MPI_CHK( mpi_lset( &T[i]->Z, 1 ) );
if( i == 0 ) if( i == 0 )
break; break;
@ -980,6 +989,31 @@ cleanup:
return( ret ); return( ret );
} }
/*
* Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
* "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
*/
static int ecp_safe_invert( const ecp_group *grp,
ecp_point *Q,
unsigned char inv )
{
int ret;
unsigned char nonzero;
mpi mQY;
mpi_init( &mQY );
/* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
MPI_CHK( mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
nonzero = mpi_cmp_int( &Q->Y, 0 ) != 0;
MPI_CHK( mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
cleanup:
mpi_free( &mQY );
return( ret );
}
/* /*
* Point doubling R = 2 P, Jacobian coordinates * Point doubling R = 2 P, Jacobian coordinates
* *
@ -987,6 +1021,8 @@ cleanup:
* with heavy variable renaming, some reordering and one minor modification * with heavy variable renaming, some reordering and one minor modification
* (a = 2 * b, c = d - 2a replaced with c = d, c = c - b, c = c - b) * (a = 2 * b, c = d - 2a replaced with c = d, c = c - b, c = c - b)
* in order to use a lot less intermediate variables (6 vs 25). * in order to use a lot less intermediate variables (6 vs 25).
*
* Cost: 1D := 2M + 8S
*/ */
static int ecp_double_jac( const ecp_group *grp, ecp_point *R, static int ecp_double_jac( const ecp_group *grp, ecp_point *R,
const ecp_point *P ) const ecp_point *P )
@ -1038,19 +1074,23 @@ cleanup:
} }
/* /*
* Addition or subtraction: R = P + Q or R = P - Q, * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
* mixed affine-Jacobian coordinates (GECC 3.22)
* *
* The coordinates of Q must be normalized (= affine), * The coordinates of Q must be normalized (= affine),
* but those of P don't need to. R is not normalized. * but those of P don't need to. R is not normalized.
* *
* If sign >= 0, perform addition, otherwise perform subtraction, * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
* taking advantage of the fact that, for Q != 0, we have * None of these cases can happen as intermediate step in ecp_mul():
* -Q = (Q.X, -Q.Y, Q.Z) * - at each step, P, Q and R are multiples of the base point, the factor
* being less than its order, so none of them is zero;
* - Q is an odd multiple of the base point, P an even multiple,
* due to the choice of precomputed points in the modified comb method.
* So branches for these cases do not leak secret information.
*
* Cost: 1A := 8M + 3S
*/ */
static int ecp_add_mixed( const ecp_group *grp, ecp_point *R, static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
const ecp_point *P, const ecp_point *Q, const ecp_point *P, const ecp_point *Q )
signed char sign )
{ {
int ret; int ret;
mpi T1, T2, T3, T4, X, Y, Z; mpi T1, T2, T3, T4, X, Y, Z;
@ -1060,26 +1100,14 @@ static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
#endif #endif
/* /*
* Trivial cases: P == 0 or Q == 0 * Trivial cases: P == 0 or Q == 0 (case 1)
* (Check Q first, so that we know Q != 0 when we compute -Q.)
*/ */
if( mpi_cmp_int( &P->Z, 0 ) == 0 )
return( ecp_copy( R, Q ) );
if( mpi_cmp_int( &Q->Z, 0 ) == 0 ) if( mpi_cmp_int( &Q->Z, 0 ) == 0 )
return( ecp_copy( R, P ) ); return( ecp_copy( R, P ) );
if( mpi_cmp_int( &P->Z, 0 ) == 0 )
{
ret = ecp_copy( R, Q );
/*
* -R.Y mod P = P - R.Y unless R.Y == 0
*/
if( ret == 0 && sign < 0)
if( mpi_cmp_int( &R->Y, 0 ) != 0 )
ret = mpi_sub_mpi( &R->Y, &grp->P, &R->Y );
return( ret );
}
/* /*
* Make sure Q coordinates are normalized * Make sure Q coordinates are normalized
*/ */
@ -1093,20 +1121,10 @@ static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 ); MPI_CHK( mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 ); MPI_CHK( mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 ); MPI_CHK( mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
/*
* For subtraction, -Q.Y should have been used instead of Q.Y,
* so we replace T2 by -T2, which is P - T2 mod P
*/
if( sign < 0 )
{
MPI_CHK( mpi_sub_mpi( &T2, &grp->P, &T2 ) );
MOD_SUB( T2 );
}
MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 ); MPI_CHK( mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 ); MPI_CHK( mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
/* Special cases (2) and (3) */
if( mpi_cmp_int( &T1, 0 ) == 0 ) if( mpi_cmp_int( &T1, 0 ) == 0 )
{ {
if( mpi_cmp_int( &T2, 0 ) == 0 ) if( mpi_cmp_int( &T2, 0 ) == 0 )
@ -1148,13 +1166,14 @@ cleanup:
/* /*
* Addition: R = P + Q, result's coordinates normalized * Addition: R = P + Q, result's coordinates normalized
* Cost: 1A + 1N = 1I + 11M + 4S
*/ */
int ecp_add( const ecp_group *grp, ecp_point *R, int ecp_add( const ecp_group *grp, ecp_point *R,
const ecp_point *P, const ecp_point *Q ) const ecp_point *P, const ecp_point *Q )
{ {
int ret; int ret;
MPI_CHK( ecp_add_mixed( grp, R, P, Q , 1 ) ); MPI_CHK( ecp_add_mixed( grp, R, P, Q ) );
MPI_CHK( ecp_normalize( grp, R ) ); MPI_CHK( ecp_normalize( grp, R ) );
cleanup: cleanup:
@ -1163,111 +1182,26 @@ cleanup:
/* /*
* Subtraction: R = P - Q, result's coordinates normalized * Subtraction: R = P - Q, result's coordinates normalized
* Cost: 1A + 1N = 1I + 11M + 4S
*/ */
int ecp_sub( const ecp_group *grp, ecp_point *R, int ecp_sub( const ecp_group *grp, ecp_point *R,
const ecp_point *P, const ecp_point *Q ) const ecp_point *P, const ecp_point *Q )
{ {
int ret; int ret;
ecp_point mQ;
MPI_CHK( ecp_add_mixed( grp, R, P, Q, -1 ) ); ecp_point_init( &mQ );
/* mQ = - Q */
ecp_copy( &mQ, Q );
if( mpi_cmp_int( &mQ.Y, 0 ) != 0 )
MPI_CHK( mpi_sub_mpi( &mQ.Y, &grp->P, &mQ.Y ) );
MPI_CHK( ecp_add_mixed( grp, R, P, &mQ ) );
MPI_CHK( ecp_normalize( grp, R ) ); MPI_CHK( ecp_normalize( grp, R ) );
cleanup: cleanup:
return( ret ); ecp_point_free( &mQ );
}
/*
* Compute a modified width-w non-adjacent form (NAF) of a number,
* with a fixed pattern for resistance to simple timing attacks (even SPA),
* see [1]. (The resulting multiplication algorithm can also been seen as a
* modification of 2^w-ary multiplication, with signed coefficients, all of
* them odd.)
*
* Input:
* m must be an odd positive mpi less than w * k bits long
* x must be an array of k elements
* w must be less than a certain maximum (currently 8)
*
* The result is a sequence x[0], ..., x[k-1] with x[i] in the range
* - 2^(width - 1) .. 2^(width - 1) - 1 such that
* m = (2 * x[0] + 1) + 2^width * (2 * x[1] + 1) + ...
* + 2^((k-1) * width) * (2 * x[k-1] + 1)
*
* Compared to "Algorithm SPA-resistant Width-w NAF with Odd Scalar"
* p. 335 of the cited reference, here we return only u, not d_w since
* it is known that the other d_w[j] will be 0. Moreover, the returned
* string doesn't actually store u_i but x_i = u_i / 2 since it is known
* that u_i is odd. Also, since we always select a positive value for d
* mod 2^w, we don't need to check the sign of u[i-1] when the reference
* does. Finally, there is an off-by-one error in the reference: the
* last index should be k-1, not k.
*/
static int ecp_w_naf_fixed( signed char x[], size_t k,
unsigned char w, const mpi *m )
{
int ret;
unsigned int i, u, mask, carry;
mpi M;
mpi_init( &M );
MPI_CHK( mpi_copy( &M, m ) );
mask = ( 1 << w ) - 1;
carry = 1 << ( w - 1 );
for( i = 0; i < k; i++ )
{
u = M.p[0] & mask;
if( ( u & 1 ) == 0 && i > 0 )
x[i - 1] -= carry;
x[i] = u >> 1;
mpi_shift_r( &M, w );
}
/*
* We should have consumed all bits, unless the input value was too big
*/
if( mpi_cmp_int( &M, 0 ) != 0 )
ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
cleanup:
mpi_free( &M );
return( ret );
}
/*
* Precompute odd multiples of P up to (2 * t_len - 1) P.
* The table is filled with T[i] = (2 * i + 1) P.
*/
static int ecp_precompute( const ecp_group *grp,
ecp_point T[], size_t t_len,
const ecp_point *P )
{
int ret;
size_t i;
ecp_point PP;
ecp_point_init( &PP );
MPI_CHK( ecp_add( grp, &PP, P, P ) );
MPI_CHK( ecp_copy( &T[0], P ) );
for( i = 1; i < t_len; i++ )
MPI_CHK( ecp_add_mixed( grp, &T[i], &T[i-1], &PP, +1 ) );
/*
* T[0] = P already has normalized coordinates
*/
MPI_CHK( ecp_normalize_many( grp, T + 1, t_len - 1 ) );
cleanup:
ecp_point_free( &PP );
return( ret ); return( ret );
} }
@ -1276,6 +1210,8 @@ cleanup:
* Randomize jacobian coordinates: * Randomize jacobian coordinates:
* (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
* This is sort of the reverse operation of ecp_normalize(). * This is sort of the reverse operation of ecp_normalize().
*
* This countermeasure was first suggested in [2].
*/ */
static int ecp_randomize_coordinates( const ecp_group *grp, ecp_point *pt, static int ecp_randomize_coordinates( const ecp_group *grp, ecp_point *pt,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
@ -1318,86 +1254,277 @@ cleanup:
} }
/* /*
* Maximum length of the precomputed table * Check and define parameters used by the comb method (see below for details)
*/ */
#define MAX_PRE_LEN ( 1 << (POLARSSL_ECP_WINDOW_SIZE - 1) ) #if POLARSSL_ECP_WINDOW_SIZE < 2 || POLARSSL_ECP_WINDOW_SIZE > 7
#error "POLARSSL_ECP_WINDOW_SIZE out of bounds"
#endif
/* d = ceil( n / w ) */
#define COMB_MAX_D ( POLARSSL_ECP_MAX_BITS + 1 ) / 2
/* number of precomputed points */
#define COMB_MAX_PRE ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) )
/* /*
* Maximum length of the NAF: ceil( grp->nbits + 1 ) / w * Compute the representation of m that will be used with our comb method.
* (that is: grp->nbits / w + 1) *
* Allow p_bits + 1 bits in case M = grp->N + 1 is one bit longer than N. * The basic comb method is described in GECC 3.44 for example. We use a
* modified version that provides resistance to SPA by avoiding zero
* digits in the representation as in [3]. We modify the method further by
* requiring that all K_i be odd, which has the small cost that our
* representation uses one more K_i, due to carries.
*
* Also, for the sake of compactness, only the seven low-order bits of x[i]
* are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
* the paper): it is set if and only if if s_i == -1;
*
* Calling conventions:
* - x is an array of size d + 1
* - w is the size, ie number of teeth, of the comb, and must be between
* 2 and 7 (in practice, between 2 and POLARSSL_ECP_WINDOW_SIZE)
* - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
* (the result will be incorrect if these assumptions are not satisfied)
*/ */
#define MAX_NAF_LEN ( POLARSSL_ECP_MAX_BITS / 2 + 1 ) static void ecp_comb_fixed( unsigned char x[], size_t d,
unsigned char w, const mpi *m )
{
size_t i, j;
unsigned char c, cc, adjust;
memset( x, 0, d+1 );
/* First get the classical comb values (except for x_d = 0) */
for( i = 0; i < d; i++ )
for( j = 0; j < w; j++ )
x[i] |= mpi_get_bit( m, i + d * j ) << j;
/* Now make sure x_1 .. x_d are odd */
c = 0;
for( i = 1; i <= d; i++ )
{
/* Add carry and update it */
cc = x[i] & c;
x[i] = x[i] ^ c;
c = cc;
/* Adjust if needed, avoiding branches */
adjust = 1 - ( x[i] & 0x01 );
c |= x[i] & ( x[i-1] * adjust );
x[i] = x[i] ^ ( x[i-1] * adjust );
x[i-1] |= adjust << 7;
}
}
/* /*
* Integer multiplication: R = m * P * Precompute points for the comb method
* *
* Based on fixed-pattern width-w NAF, see comments of ecp_w_naf_fixed(). * If i = i_{w-1} ... i_1 is the binary representation of i, then
* T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
* *
* This function executes a fixed number of operations for * T must be able to hold 2^{w - 1} elements
* random m in the range 0 .. 2^nbits - 1.
* *
* As an additional countermeasure against potential timing attacks, * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
* we randomize coordinates before each addition. This was suggested as a */
* countermeasure against DPA in 5.3 of [2] (with the obvious adaptation that static int ecp_precompute_comb( const ecp_group *grp,
* we use jacobian coordinates, not standard projective coordinates). ecp_point T[], const ecp_point *P,
unsigned char w, size_t d )
{
int ret;
unsigned char i, k;
size_t j;
ecp_point *cur, *TT[COMB_MAX_PRE - 1];
/*
* Set T[0] = P and
* T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
*/
MPI_CHK( ecp_copy( &T[0], P ) );
k = 0;
for( i = 1; i < ( 1U << (w-1) ); i <<= 1 )
{
cur = T + i;
MPI_CHK( ecp_copy( cur, T + ( i >> 1 ) ) );
for( j = 0; j < d; j++ )
MPI_CHK( ecp_double_jac( grp, cur, cur ) );
TT[k++] = cur;
}
ecp_normalize_many( grp, TT, k );
/*
* Compute the remaining ones using the minimal number of additions
* Be careful to update T[2^l] only after using it!
*/
k = 0;
for( i = 1; i < ( 1U << (w-1) ); i <<= 1 )
{
j = i;
while( j-- )
{
ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] );
TT[k++] = &T[i + j];
}
}
ecp_normalize_many( grp, TT, k );
/*
* Post-precessing: reclaim some memory by
* - not storing Z (always 1)
* - shrinking other coordinates
* Keep the same number of limbs as P to avoid re-growing on next use.
*/
for( i = 0; i < ( 1U << (w-1) ); i++ )
{
mpi_free( &T[i].Z );
mpi_shrink( &T[i].X, grp->P.n );
mpi_shrink( &T[i].Y, grp->P.n );
}
cleanup:
return( ret );
}
/*
* Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
*/
static int ecp_select_comb( const ecp_group *grp, ecp_point *R,
const ecp_point T[], unsigned char t_len,
unsigned char i )
{
int ret;
unsigned char ii, j;
/* Ignore the "sign" bit and scale down */
ii = ( i & 0x7Fu ) >> 1;
/* Read the whole table to thwart cache-based timing attacks */
for( j = 0; j < t_len; j++ )
{
MPI_CHK( mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
MPI_CHK( mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
}
/* The Z coordinate is always 1 */
MPI_CHK( mpi_lset( &R->Z, 1 ) );
/* Safely invert result if i is "negative" */
MPI_CHK( ecp_safe_invert( grp, R, i >> 7 ) );
cleanup:
return( ret );
}
/*
* Core multiplication algorithm for the (modified) comb method.
* This part is actually common with the basic comb method (GECC 3.44)
*
* Cost: d A + d D + 1 R
*/
static int ecp_mul_comb_core( const ecp_group *grp, ecp_point *R,
const ecp_point T[], unsigned char t_len,
const unsigned char x[], size_t d,
int (*f_rng)(void *, unsigned char *, size_t),
void *p_rng )
{
int ret;
ecp_point Txi;
size_t i;
ecp_point_init( &Txi );
/* Start with a non-zero point and randomize its coordinates */
i = d;
MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) );
if( f_rng != 0 )
MPI_CHK( ecp_randomize_coordinates( grp, R, f_rng, p_rng ) );
while( i-- != 0 )
{
MPI_CHK( ecp_double_jac( grp, R, R ) );
MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) );
MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
}
cleanup:
ecp_point_free( &Txi );
return( ret );
}
/*
* Multiplication using the comb method
*/ */
int ecp_mul( ecp_group *grp, ecp_point *R, int ecp_mul( ecp_group *grp, ecp_point *R,
const mpi *m, const ecp_point *P, const mpi *m, const ecp_point *P,
int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ) int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
{ {
int ret; int ret;
unsigned char w, m_is_odd, p_eq_g; unsigned char w, m_is_odd, p_eq_g, pre_len, i;
size_t pre_len = 1, naf_len, i, j; size_t d;
signed char naf[ MAX_NAF_LEN ]; unsigned char k[COMB_MAX_D + 1];
ecp_point Q, *T = NULL, S[2]; ecp_point *T;
mpi M; mpi M, mm;
if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
mpi_init( &M );
ecp_point_init( &Q );
ecp_point_init( &S[0] );
ecp_point_init( &S[1] );
/* /*
* Check if P == G * Sanity checks (before we even initialize anything)
*/ */
p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 && if( mpi_cmp_int( &P->Z, 1 ) != 0 ||
mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 && mpi_get_bit( &grp->N, 0 ) != 1 )
{
return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
}
if( ( ret = ecp_check_privkey( grp, m ) ) != 0 )
return( ret );
/* We'll need this later, but do it now to possibly avoid checking P */
p_eq_g = ( mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 ); mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
/* if( ! p_eq_g && ( ret = ecp_check_pubkey( grp, P ) ) != 0 )
* If P == G, pre-compute a lot of points: this will be re-used later, return( ret );
* otherwise, choose window size depending on curve size
*/ mpi_init( &M );
if( p_eq_g ) mpi_init( &mm );
w = POLARSSL_ECP_WINDOW_SIZE;
else
w = grp->nbits >= 512 ? 6 :
grp->nbits >= 224 ? 5 :
4;
/* /*
* Make sure w is within the limits. * Minimize the number of multiplications, that is minimize
* The last test ensures that none of the precomputed points is zero, * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
* which wouldn't be handled correctly by ecp_normalize_many(). * (see costs of the various parts, with 1S = 1M)
* It is only useful for very small curves as used in the test suite. */
w = grp->nbits >= 384 ? 5 : 4;
/*
* If P == G, pre-compute a bit more, since this may be re-used later.
* Just adding one ups the cost of the first mul by at most 3%.
*/
if( p_eq_g )
w++;
/*
* Make sure w is within bounds.
* (The last test is useful only for very small curves in the test suite.)
*/ */
if( w > POLARSSL_ECP_WINDOW_SIZE ) if( w > POLARSSL_ECP_WINDOW_SIZE )
w = POLARSSL_ECP_WINDOW_SIZE; w = POLARSSL_ECP_WINDOW_SIZE;
if( w < 2 || w >= grp->nbits ) if( w >= grp->nbits )
w = 2; w = 2;
pre_len <<= ( w - 1 ); /* Other sizes that depend on w */
naf_len = grp->nbits / w + 1; pre_len = 1U << ( w - 1 );
d = ( grp->nbits + w - 1 ) / w;
/* /*
* Prepare precomputed points: if P == G we want to * Prepare precomputed points: if P == G we want to
* use grp->T if already initialized, or initiliaze it. * use grp->T if already initialized, or initialize it.
*/ */
if( ! p_eq_g || grp->T == NULL ) T = p_eq_g ? grp->T : NULL;
if( T == NULL )
{ {
T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) ); T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) );
if( T == NULL ) if( T == NULL )
@ -1409,7 +1536,7 @@ int ecp_mul( ecp_group *grp, ecp_point *R,
for( i = 0; i < pre_len; i++ ) for( i = 0; i < pre_len; i++ )
ecp_point_init( &T[i] ); ecp_point_init( &T[i] );
MPI_CHK( ecp_precompute( grp, T, pre_len, P ) ); MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
if( p_eq_g ) if( p_eq_g )
{ {
@ -1417,74 +1544,27 @@ int ecp_mul( ecp_group *grp, ecp_point *R,
grp->T_size = pre_len; grp->T_size = pre_len;
} }
} }
else
{
T = grp->T;
/* Should never happen, but we want to be extra sure */
if( pre_len != grp->T_size )
{
ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
goto cleanup;
}
}
/* /*
* Make sure M is odd (M = m + 1 or M = m + 2) * Make sure M is odd (M = m or M = N - m, since N is odd)
* later we'll get m * P by subtracting P or 2 * P to M * P. * using the fact that m * P = - (N - m) * P
*/ */
m_is_odd = ( mpi_get_bit( m, 0 ) == 1 ); m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
MPI_CHK( mpi_copy( &M, m ) ); MPI_CHK( mpi_copy( &M, m ) );
MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) ); MPI_CHK( mpi_sub_mpi( &mm, &grp->N, m ) );
MPI_CHK( mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );
/* /*
* Compute the fixed-pattern NAF of M * Go for comb multiplication, R = M * P
*/ */
MPI_CHK( ecp_w_naf_fixed( naf, naf_len, w, &M ) ); ecp_comb_fixed( k, d, w, &M );
MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) );
/* /*
* Compute M * P, using a variant of left-to-right 2^w-ary multiplication: * Now get m * P from M * P and normalize it
* at each step we add (2 * naf[i] + 1) P, then multiply by 2^w.
*
* If naf[i] >= 0, we have (2 * naf[i] + 1) P == T[ naf[i] ]
* Otherwise, (2 * naf[i] + 1) P == - ( 2 * ( - naf[i] - 1 ) + 1) P
* == T[ - naf[i] - 1 ]
*/ */
MPI_CHK( ecp_set_zero( &Q ) ); MPI_CHK( ecp_safe_invert( grp, R, ! m_is_odd ) );
i = naf_len - 1; MPI_CHK( ecp_normalize( grp, R ) );
while( 1 )
{
/* Countermeasure (see comments above) */
if( f_rng != NULL )
ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
if( naf[i] < 0 )
{
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ - naf[i] - 1 ], -1 ) );
}
else
{
MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
}
if( i == 0 )
break;
i--;
for( j = 0; j < w; j++ )
{
MPI_CHK( ecp_double_jac( grp, &Q, &Q ) );
}
}
/*
* Now get m * P from M * P
*/
MPI_CHK( ecp_copy( &S[0], P ) );
MPI_CHK( ecp_add( grp, &S[1], P, P ) );
MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
cleanup: cleanup:
@ -1495,10 +1575,11 @@ cleanup:
polarssl_free( T ); polarssl_free( T );
} }
ecp_point_free( &S[1] );
ecp_point_free( &S[0] );
ecp_point_free( &Q );
mpi_free( &M ); mpi_free( &M );
mpi_free( &mm );
if( ret != 0 )
ecp_point_free( R );
return( ret ); return( ret );
} }
@ -2003,17 +2084,16 @@ int ecp_self_test( int verbose )
ecp_group grp; ecp_group grp;
ecp_point R, P; ecp_point R, P;
mpi m; mpi m;
unsigned long add_c_prev, dbl_c_prev; unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
/* exponents especially adapted for secp192r1 */ /* exponents especially adapted for secp192r1 */
const char *exponents[] = const char *exponents[] =
{ {
"000000000000000000000000000000000000000000000000", /* zero */
"000000000000000000000000000000000000000000000001", /* one */ "000000000000000000000000000000000000000000000001", /* one */
"FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", /* N */ "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
"5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */ "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
"400000000000000000000000000000000000000000000000", "400000000000000000000000000000000000000000000000", /* one and zeros */
"7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
"555555555555555555555555555555555555555555555555", "555555555555555555555555555555555555555555555555", /* 101010... */
}; };
ecp_group_init( &grp ); ecp_group_init( &grp );
@ -2037,6 +2117,7 @@ int ecp_self_test( int verbose )
add_count = 0; add_count = 0;
dbl_count = 0; dbl_count = 0;
mul_count = 0;
MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) ); MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) ); MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
@ -2044,13 +2125,17 @@ int ecp_self_test( int verbose )
{ {
add_c_prev = add_count; add_c_prev = add_count;
dbl_c_prev = dbl_count; dbl_c_prev = dbl_count;
mul_c_prev = mul_count;
add_count = 0; add_count = 0;
dbl_count = 0; dbl_count = 0;
mul_count = 0;
MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) ); MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) ); MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
if( add_count != add_c_prev || dbl_count != dbl_c_prev ) if( add_count != add_c_prev ||
dbl_count != dbl_c_prev ||
mul_count != mul_c_prev )
{ {
if( verbose != 0 ) if( verbose != 0 )
printf( "failed (%zu)\n", i ); printf( "failed (%zu)\n", i );
@ -2069,6 +2154,7 @@ int ecp_self_test( int verbose )
add_count = 0; add_count = 0;
dbl_count = 0; dbl_count = 0;
mul_count = 0;
MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) ); MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) ); MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
@ -2076,13 +2162,17 @@ int ecp_self_test( int verbose )
{ {
add_c_prev = add_count; add_c_prev = add_count;
dbl_c_prev = dbl_count; dbl_c_prev = dbl_count;
mul_c_prev = mul_count;
add_count = 0; add_count = 0;
dbl_count = 0; dbl_count = 0;
mul_count = 0;
MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) ); MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) ); MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
if( add_count != add_c_prev || dbl_count != dbl_c_prev ) if( add_count != add_c_prev ||
dbl_count != dbl_c_prev ||
mul_count != mul_c_prev )
{ {
if( verbose != 0 ) if( verbose != 0 )
printf( "failed (%zu)\n", i ); printf( "failed (%zu)\n", i );

View File

@ -50,10 +50,10 @@ ECP small subtraction #9
ecp_small_sub:0:"14":"11":0:"14":"36":0:27:30 ecp_small_sub:0:"14":"11":0:"14":"36":0:27:30
ECP small multiplication negative ECP small multiplication negative
ecp_small_mul:-1:0:0:0:POLARSSL_ERR_ECP_BAD_INPUT_DATA ecp_small_mul:-1:0:0:0:POLARSSL_ERR_ECP_INVALID_KEY
ECP small multiplication #0 ECP small multiplication #0
ecp_small_mul:0:1:0:0:0 ecp_small_mul:0:1:0:0:POLARSSL_ERR_ECP_INVALID_KEY
ECP small multiplication #1 ECP small multiplication #1
ecp_small_mul:1:0:17:42:0 ecp_small_mul:1:0:17:42:0
@ -92,16 +92,10 @@ ECP small multiplication #12
ecp_small_mul:12:0:17:05:0 ecp_small_mul:12:0:17:05:0
ECP small multiplication #13 ECP small multiplication #13
ecp_small_mul:13:1:0:0:0 ecp_small_mul:13:1:0:0:POLARSSL_ERR_ECP_INVALID_KEY
ECP small multiplication #14 ECP small multiplication #14
ecp_small_mul:1:0:17:42:0 ecp_small_mul:14:0:17:42:POLARSSL_ERR_ECP_INVALID_KEY
ECP small multiplication #15
ecp_small_mul:2:0:20:01:0
ECP small multiplication too big
ecp_small_mul:-1:0:0:0:POLARSSL_ERR_ECP_BAD_INPUT_DATA
ECP small check pubkey #1 ECP small check pubkey #1
ecp_small_check_pub:1:1:0:POLARSSL_ERR_ECP_INVALID_KEY ecp_small_check_pub:1:1:0:POLARSSL_ERR_ECP_INVALID_KEY

View File

@ -115,12 +115,15 @@ void ecp_small_mul( int m_str, int r_zero, int x_r, int y_r, int ret )
TEST_ASSERT( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) == ret ); TEST_ASSERT( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) == ret );
if( r_zero ) if( ret == 0 )
TEST_ASSERT( mpi_cmp_int( &R.Z, 0 ) == 0 );
else
{ {
TEST_ASSERT( mpi_cmp_int( &R.X, x_r ) == 0 ); if( r_zero )
TEST_ASSERT( mpi_cmp_int( &R.Y, y_r ) == 0 ); TEST_ASSERT( mpi_cmp_int( &R.Z, 0 ) == 0 );
else
{
TEST_ASSERT( mpi_cmp_int( &R.X, x_r ) == 0 );
TEST_ASSERT( mpi_cmp_int( &R.Y, y_r ) == 0 );
}
} }
/* try again with randomization */ /* try again with randomization */
@ -129,12 +132,15 @@ void ecp_small_mul( int m_str, int r_zero, int x_r, int y_r, int ret )
TEST_ASSERT( ecp_mul( &grp, &R, &m, &grp.G, TEST_ASSERT( ecp_mul( &grp, &R, &m, &grp.G,
&rnd_pseudo_rand, &rnd_info ) == ret ); &rnd_pseudo_rand, &rnd_info ) == ret );
if( r_zero ) if( ret == 0 )
TEST_ASSERT( mpi_cmp_int( &R.Z, 0 ) == 0 );
else
{ {
TEST_ASSERT( mpi_cmp_int( &R.X, x_r ) == 0 ); if( r_zero )
TEST_ASSERT( mpi_cmp_int( &R.Y, y_r ) == 0 ); TEST_ASSERT( mpi_cmp_int( &R.Z, 0 ) == 0 );
else
{
TEST_ASSERT( mpi_cmp_int( &R.X, x_r ) == 0 );
TEST_ASSERT( mpi_cmp_int( &R.Y, y_r ) == 0 );
}
} }
ecp_group_free( &grp ); ecp_group_free( &grp );

View File

@ -181,6 +181,48 @@ mpi_copy_self:14
Base test mpi_swap #1 Base test mpi_swap #1
mpi_swap:0:1500 mpi_swap:0:1500
Test mpi_shrink #1
mpi_shrink:2:2:4:4
Test mpi_shrink #2
mpi_shrink:4:2:4:4
Test mpi_shrink #3
mpi_shrink:8:2:4:4
Test mpi_shrink #4
mpi_shrink:8:4:4:4
Test mpi_shrink #5
mpi_shrink:8:6:4:6
Test mpi_shrink #6
mpi_shrink:4:2:0:2
Test mpi_shrink #7
mpi_shrink:4:1:0:1
Test mpi_shrink #8
mpi_shrink:4:0:0:1
Test mpi_safe_cond_assign #1
mpi_safe_cond_assign:+1:"01":+1:"02"
Test mpi_safe_cond_assign #2
mpi_safe_cond_assign:+1:"FF000000000000000001":+1:"02"
Test mpi_safe_cond_assign #3
mpi_safe_cond_assign:+1:"01":+1:"FF000000000000000002"
Test mpi_safe_cond_assign #4
mpi_safe_cond_assign:+1:"01":-1:"02"
Test mpi_safe_cond_assign #5
mpi_safe_cond_assign:-1:"01":+1:"02"
Test mpi_safe_cond_assign #6
mpi_safe_cond_assign:-1:"01":-1:"02"
Base test mpi_add_abs #1 Base test mpi_add_abs #1
mpi_add_abs:10:"12345678":10:"642531":10:"12988209" mpi_add_abs:10:"12345678":10:"642531":10:"12988209"

View File

@ -292,6 +292,45 @@ void mpi_copy_self( int input_X )
} }
/* END_CASE */ /* END_CASE */
/* BEGIN_CASE */
void mpi_shrink( int before, int used, int min, int after )
{
mpi X;
mpi_init( &X );
TEST_ASSERT( mpi_grow( &X, before ) == 0 );
TEST_ASSERT( used <= before );
memset( X.p, 0x2a, used * sizeof( t_uint ) );
TEST_ASSERT( mpi_shrink( &X, min ) == 0 );
TEST_ASSERT( X.n == (size_t) after );
mpi_free( &X );
}
/* END_CASE */
/* BEGIN_CASE */
void mpi_safe_cond_assign( int x_sign, char *x_str,
int y_sign, char *y_str )
{
mpi X, Y, XX;
mpi_init( &X ); mpi_init( &Y ); mpi_init( &XX );
TEST_ASSERT( mpi_read_string( &X, 16, x_str ) == 0 );
X.s = x_sign;
TEST_ASSERT( mpi_read_string( &Y, 16, y_str ) == 0 );
Y.s = y_sign;
TEST_ASSERT( mpi_copy( &XX, &X ) == 0 );
TEST_ASSERT( mpi_safe_cond_assign( &X, &Y, 0 ) == 0 );
TEST_ASSERT( mpi_cmp_mpi( &X, &XX ) == 0 );
TEST_ASSERT( mpi_safe_cond_assign( &X, &Y, 1 ) == 0 );
TEST_ASSERT( mpi_cmp_mpi( &X, &Y ) == 0 );
mpi_free( &X ); mpi_free( &Y ); mpi_free( &XX );
}
/* END_CASE */
/* BEGIN_CASE */ /* BEGIN_CASE */
void mpi_swap( int input_X, int input_Y ) void mpi_swap( int input_X, int input_Y )
{ {