Move psa_destroy_key and psa_copy_key to Key Management section

This commit is contained in:
Adrian L. Shaw 2019-09-11 14:40:51 +01:00
parent cc5aeee278
commit 4c61c1a736

View File

@ -443,6 +443,140 @@ psa_status_t psa_open_key(psa_key_id_t id,
*/
psa_status_t psa_close_key(psa_key_handle_t handle);
/** Make a copy of a key.
*
* Copy key material from one location to another.
*
* This function is primarily useful to copy a key from one location
* to another, since it populates a key using the material from
* another key which may have a different lifetime.
*
* This function may be used to share a key with a different party,
* subject to implementation-defined restrictions on key sharing.
*
* The policy on the source key must have the usage flag
* #PSA_KEY_USAGE_COPY set.
* This flag is sufficient to permit the copy if the key has the lifetime
* #PSA_KEY_LIFETIME_VOLATILE or #PSA_KEY_LIFETIME_PERSISTENT.
* Some secure elements do not provide a way to copy a key without
* making it extractable from the secure element. If a key is located
* in such a secure element, then the key must have both usage flags
* #PSA_KEY_USAGE_COPY and #PSA_KEY_USAGE_EXPORT in order to make
* a copy of the key outside the secure element.
*
* The resulting key may only be used in a way that conforms to
* both the policy of the original key and the policy specified in
* the \p attributes parameter:
* - The usage flags on the resulting key are the bitwise-and of the
* usage flags on the source policy and the usage flags in \p attributes.
* - If both allow the same algorithm or wildcard-based
* algorithm policy, the resulting key has the same algorithm policy.
* - If either of the policies allows an algorithm and the other policy
* allows a wildcard-based algorithm policy that includes this algorithm,
* the resulting key allows the same algorithm.
* - If the policies do not allow any algorithm in common, this function
* fails with the status #PSA_ERROR_INVALID_ARGUMENT.
*
* The effect of this function on implementation-defined attributes is
* implementation-defined.
*
* \param source_handle The key to copy. It must be a valid key handle.
* \param[in] attributes The attributes for the new key.
* They are used as follows:
* - The key type and size may be 0. If either is
* nonzero, it must match the corresponding
* attribute of the source key.
* - The key location (the lifetime and, for
* persistent keys, the key identifier) is
* used directly.
* - The policy constraints (usage flags and
* algorithm policy) are combined from
* the source key and \p attributes so that
* both sets of restrictions apply, as
* described in the documentation of this function.
* \param[out] target_handle On success, a handle to the newly created key.
* \c 0 on failure.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_INVALID_HANDLE
* \p source_handle is invalid.
* \retval #PSA_ERROR_ALREADY_EXISTS
* This is an attempt to create a persistent key, and there is
* already a persistent key with the given identifier.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The lifetime or identifier in \p attributes are invalid.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The policy constraints on the source and specified in
* \p attributes are incompatible.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p attributes specifies a key type or key size
* which does not match the attributes of the source key.
* \retval #PSA_ERROR_NOT_PERMITTED
* The source key does not have the #PSA_KEY_USAGE_COPY usage flag.
* \retval #PSA_ERROR_NOT_PERMITTED
* The source key is not exportable and its lifetime does not
* allow copying it to the target's lifetime.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_INSUFFICIENT_STORAGE
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_STORAGE_FAILURE
* \retval #PSA_ERROR_CORRUPTION_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_copy_key(psa_key_handle_t source_handle,
const psa_key_attributes_t *attributes,
psa_key_handle_t *target_handle);
/**
* \brief Destroy a key.
*
* This function destroys a key from both volatile
* memory and, if applicable, non-volatile storage. Implementations shall
* make a best effort to ensure that that the key material cannot be recovered.
*
* This function also erases any metadata such as policies and frees
* resources associated with the key. To free all resources associated with
* the key, all handles to the key must be closed or destroyed.
*
* Destroying the key makes the handle invalid, and the key handle
* must not be used again by the application. Using other open handles to the
* destroyed key in a cryptographic operation will result in an error.
*
* If a key is currently in use in a multipart operation, then destroying the
* key will cause the multipart operation to fail.
*
* \param handle Handle to the key to erase.
*
* \retval #PSA_SUCCESS
* The key material has been erased.
* \retval #PSA_ERROR_NOT_PERMITTED
* The key cannot be erased because it is
* read-only, either due to a policy or due to physical restrictions.
* \retval #PSA_ERROR_INVALID_HANDLE
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* There was an failure in communication with the cryptoprocessor.
* The key material may still be present in the cryptoprocessor.
* \retval #PSA_ERROR_STORAGE_FAILURE
* The storage is corrupted. Implementations shall make a best effort
* to erase key material even in this stage, however applications
* should be aware that it may be impossible to guarantee that the
* key material is not recoverable in such cases.
* \retval #PSA_ERROR_CORRUPTION_DETECTED
* An unexpected condition which is not a storage corruption or
* a communication failure occurred. The cryptoprocessor may have
* been compromised.
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_destroy_key(psa_key_handle_t handle);
/**@}*/
/** \defgroup import_export Key import and export
@ -519,50 +653,7 @@ psa_status_t psa_import_key(const psa_key_attributes_t *attributes,
size_t data_length,
psa_key_handle_t *handle);
/**
* \brief Destroy a key.
*
* This function destroys a key from both volatile
* memory and, if applicable, non-volatile storage. Implementations shall
* make a best effort to ensure that that the key material cannot be recovered.
*
* This function also erases any metadata such as policies and frees
* resources associated with the key. To free all resources associated with
* the key, all handles to the key must be closed or destroyed.
*
* Destroying the key makes the handle invalid, and the key handle
* must not be used again by the application. Using other open handles to the
* destroyed key in a cryptographic operation will result in an error.
*
* If a key is currently in use in a multipart operation, then destroying the
* key will cause the multipart operation to fail.
*
* \param handle Handle to the key to erase.
*
* \retval #PSA_SUCCESS
* The key material has been erased.
* \retval #PSA_ERROR_NOT_PERMITTED
* The key cannot be erased because it is
* read-only, either due to a policy or due to physical restrictions.
* \retval #PSA_ERROR_INVALID_HANDLE
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* There was an failure in communication with the cryptoprocessor.
* The key material may still be present in the cryptoprocessor.
* \retval #PSA_ERROR_STORAGE_FAILURE
* The storage is corrupted. Implementations shall make a best effort
* to erase key material even in this stage, however applications
* should be aware that it may be impossible to guarantee that the
* key material is not recoverable in such cases.
* \retval #PSA_ERROR_CORRUPTION_DETECTED
* An unexpected condition which is not a storage corruption or
* a communication failure occurred. The cryptoprocessor may have
* been compromised.
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_destroy_key(psa_key_handle_t handle);
/**
* \brief Export a key in binary format.
@ -722,93 +813,7 @@ psa_status_t psa_export_public_key(psa_key_handle_t handle,
size_t data_size,
size_t *data_length);
/** Make a copy of a key.
*
* Copy key material from one location to another.
*
* This function is primarily useful to copy a key from one location
* to another, since it populates a key using the material from
* another key which may have a different lifetime.
*
* This function may be used to share a key with a different party,
* subject to implementation-defined restrictions on key sharing.
*
* The policy on the source key must have the usage flag
* #PSA_KEY_USAGE_COPY set.
* This flag is sufficient to permit the copy if the key has the lifetime
* #PSA_KEY_LIFETIME_VOLATILE or #PSA_KEY_LIFETIME_PERSISTENT.
* Some secure elements do not provide a way to copy a key without
* making it extractable from the secure element. If a key is located
* in such a secure element, then the key must have both usage flags
* #PSA_KEY_USAGE_COPY and #PSA_KEY_USAGE_EXPORT in order to make
* a copy of the key outside the secure element.
*
* The resulting key may only be used in a way that conforms to
* both the policy of the original key and the policy specified in
* the \p attributes parameter:
* - The usage flags on the resulting key are the bitwise-and of the
* usage flags on the source policy and the usage flags in \p attributes.
* - If both allow the same algorithm or wildcard-based
* algorithm policy, the resulting key has the same algorithm policy.
* - If either of the policies allows an algorithm and the other policy
* allows a wildcard-based algorithm policy that includes this algorithm,
* the resulting key allows the same algorithm.
* - If the policies do not allow any algorithm in common, this function
* fails with the status #PSA_ERROR_INVALID_ARGUMENT.
*
* The effect of this function on implementation-defined attributes is
* implementation-defined.
*
* \param source_handle The key to copy. It must be a valid key handle.
* \param[in] attributes The attributes for the new key.
* They are used as follows:
* - The key type and size may be 0. If either is
* nonzero, it must match the corresponding
* attribute of the source key.
* - The key location (the lifetime and, for
* persistent keys, the key identifier) is
* used directly.
* - The policy constraints (usage flags and
* algorithm policy) are combined from
* the source key and \p attributes so that
* both sets of restrictions apply, as
* described in the documentation of this function.
* \param[out] target_handle On success, a handle to the newly created key.
* \c 0 on failure.
*
* \retval #PSA_SUCCESS
* \retval #PSA_ERROR_INVALID_HANDLE
* \p source_handle is invalid.
* \retval #PSA_ERROR_ALREADY_EXISTS
* This is an attempt to create a persistent key, and there is
* already a persistent key with the given identifier.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The lifetime or identifier in \p attributes are invalid.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* The policy constraints on the source and specified in
* \p attributes are incompatible.
* \retval #PSA_ERROR_INVALID_ARGUMENT
* \p attributes specifies a key type or key size
* which does not match the attributes of the source key.
* \retval #PSA_ERROR_NOT_PERMITTED
* The source key does not have the #PSA_KEY_USAGE_COPY usage flag.
* \retval #PSA_ERROR_NOT_PERMITTED
* The source key is not exportable and its lifetime does not
* allow copying it to the target's lifetime.
* \retval #PSA_ERROR_INSUFFICIENT_MEMORY
* \retval #PSA_ERROR_INSUFFICIENT_STORAGE
* \retval #PSA_ERROR_COMMUNICATION_FAILURE
* \retval #PSA_ERROR_HARDWARE_FAILURE
* \retval #PSA_ERROR_STORAGE_FAILURE
* \retval #PSA_ERROR_CORRUPTION_DETECTED
* \retval #PSA_ERROR_BAD_STATE
* The library has not been previously initialized by psa_crypto_init().
* It is implementation-dependent whether a failure to initialize
* results in this error code.
*/
psa_status_t psa_copy_key(psa_key_handle_t source_handle,
const psa_key_attributes_t *attributes,
psa_key_handle_t *target_handle);
/**@}*/