Return the error code if failed, instead of returning value `1`.
If not failed, return the call of the underlying function,
in `mbedtls_ecdsa_genkey()`.
Use `cmake -D CMAKE_BUILD_TYPE=Asan` rather than manually setting
`-fsanitize=address`. This lets cmake determine the necessary compiler
and linker flags.
With UNSAFE_BUILD on, force -Wno-error. This is necessary to build
with MBEDTLS_TEST_NULL_ENTROPY.
mbedtls_mpi_read_binary() calls memcpy() with the source pointer being
the source pointer passed to mbedtls_mpi_read_binary(), the latter may
be NULL if the buffer length is 0 (and this happens e.g. in the ECJPAKE
test suite). The behavior of memcpy(), in contrast, is undefined when
called with NULL source buffer, even if the length of the copy operation
is 0.
This commit fixes this by explicitly checking that the source pointer is
not NULL before calling memcpy(), and skipping the call otherwise.
Context: The function `mbedtls_mpi_fill_random()` uses a temporary stack
buffer to hold the random data before reading it into the target MPI.
Problem: This is inefficient both computationally and memory-wise.
Memory-wise, it may lead to a stack overflow on constrained devices with
limited stack.
Fix: This commit introduces the following changes to get rid of the
temporary stack buffer entirely:
1. It modifies the call to the PRNG to output the random data directly
into the target MPI's data buffer.
This alone, however, constitutes a change of observable behaviour:
The previous implementation guaranteed to interpret the bytes emitted by
the PRNG in a big-endian fashion, while rerouting the PRNG output into the
target MPI's limb array leads to an interpretation that depends on the
endianness of the host machine.
As a remedy, the following change is applied, too:
2. Reorder the bytes emitted from the PRNG within the target MPI's
data buffer to ensure big-endian semantics.
Luckily, the byte reordering was already implemented as part of
`mbedtls_mpi_read_binary()`, so:
3. Extract bigendian-to-host byte reordering from
`mbedtls_mpi_read_binary()` to a separate internal function
`mpi_bigendian_to_host()` to be used by `mbedtls_mpi_read_binary()`
and `mbedtls_mpi_fill_random()`.
The calls to cipher_finish didn't actually do anything:
- the cipher mode is always ECB
- in that case cipher_finish() only sets *olen to zero, and returns either 0
or an error depending on whether there was pending data
- olen is a local variable in the caller, so setting it to zero right before
returning is not essential
- the return value of cipher_finis() was not checked by the caller so that's
not useful either
- the cipher layer does not have ALT implementations so the behaviour
described above is unconditional on ALT implementations (in particular,
cipher_finish() can't be useful to hardware as (with ECB) it doesn't call any
functions from lower-level modules that could release resources for example)
Since the calls are causing issues with parameter validation, and were no
serving any functional purpose, it's simpler to just remove them.
Somehow, mbedtls_sha256_ret() is defined even if MBEDTLS_SHA256_ALT
is set, and it is using SHA256_VALIDATE_RET. The documentation should
be enhanced to indicate that MBEDTLS_SHA256_ALT does _not_ replace
the entire module, but only the core SHA-256 functions.
Somehow, mbedtls_sha512_ret() is defined even if MBEDTLS_SHA512_ALT
is set, and it is using SHA512_VALIDATE_RET. The documentation should
be enhanced to indicate that MBEDTLS_SHA512_ALT does _not_ replace
the entire module, but only the core SHA-512 functions.
Somehow, mbedtls_sha1_ret() is defined even if MBEDTLS_SHA1_ALT
is set, and it is using SHA1_VALIDATE_RET. The documentation should
be enhanced to indicate that MBEDTLS_SHA1_ALT does _not_ replace
the entire module, but only the core SHA-1 functions.
Document when a context must be initialized or not, when it must be
set up or not, and whether it needs a private key or a public key will
do.
The implementation is sometimes more liberal than the documentation,
accepting a non-set-up context as a context that can't perform the
requested information. This preserves backward compatibility.
The MPI_VALIDATE_RET() macro cannot be used for parameter
validation of mbedtls_mpi_lsb() because this function returns
a size_t.
Use the underlying MBEDTLS_INTERNAL_VALIDATE_RET() insteaed,
returning 0 on failure.
Also, add a test for this behaviour.
A 0-length buffer for the key is a legitimate edge case. Ensure that
it works, even with buf=NULL. Document the key and keylen parameters.
There are already test cases for parsing an empty buffer. A subsequent
commit will add tests for writing to an empty buffer.
Add checks for null pointers under MBEDTLS_CHECK_PARAMS.
In functions that perform operations with a context, only check if the
context pointer is non-null under MBEDTLS_CHECK_PARAMS. In the default
configuration, unconditionally dereference the context pointer.
In functions that query a context, support NULL as a
pointer-to-context argument, and return the same value as for a
context which has been initialized but not set up.
- The validity of the input and output parameters is checked by
parameter validation.
- A PRNG is required in public mode only (even though it's also
recommended in private mode), so move the check to the
corresponding branch.
The check was already done later when calling ECB, (as evidenced by the tests
passing, which have a call with data_unit set to NULL), but it's more readable
to have it here too, and more helpful when debugging.
The function called through the macro MBEDTLS_PARAM_FAILED() must be supplied by
users and makes no sense as a library function, apart from debug and test.
Function calls to alternative implementations have to follow certain
rules in order to preserve correct functionality. To avoid accidentally
breaking these rules we state them explicitly in the ECP module for
ourselves and every contributor to see.
We initialized the ECC hardware before calling
mbedtls_ecp_mul_shortcuts(). This in turn calls
mbedtls_ecp_mul_restartable(), which initializes and frees the hardware
too. This issue has been introduced by recent changes and caused some
accelerators to hang.
We move the initialization after the mbedtle_ecp_mul_shortcuts() calls
to avoid double initialization.
The SSL module accesses ECDH context members directly. This can't work
with the new context, where we can't make any assumption about the
implementation of the context.
This commit makes use of the new functions to avoid accessing ECDH
members directly. The only members that are still accessed directly are
the group ID and the point format and they are independent from the
implementation.
The SSL module accesses ECDH context members directly to print debug
information. This can't work with the new context, where we can't make
assumptions about the implementation of the context. This commit adds
new debug functions to complete the encapsulation of the ECDH context
and work around the problem.
The functionality from public API functions are moved to
`xxx_internal()` functions. The public API functions are modified to do
basic parameter validation and dispatch the call to the right
implementation.
There is no intended change in behaviour when
`MBEDTLS_ECDH_LEGACY_CONTEXT` is enabled.
In the future we want to support alternative ECDH implementations. We
can't make assumptions about the structure of the context they might
use, and therefore shouldn't access the members of
`mbedtls_ecdh_context`.
Currently the lifecycle of the context can't be done without direct
manipulation. This commit adds `mbedtls_ecdh_setup()` to complete
covering the context lifecycle with functions.
`mbedtls_ecp_tls_read_group()` both parses the group ID and loads the
group into the structure provided. We want to support alternative
implementations of ECDH in the future and for that we need to parse the
group ID without populating an `mbedtls_ecp_group` structure (because
alternative implementations might not use that).
This commit moves the part that parses the group ID to a new function.
There is no need to test the new function directly, because the tests
for `mbedtls_ecp_tls_read_group()` are already implicitly testing it.
There is no intended change in behaviour in this commit.
Refactor `mpi_write_hlp()` to not be recursive, to fix stack overflows.
Iterate over the `mbedtls_mpi` division of the radix requested,
until it is zero. Each iteration, put the residue in the next LSB
of the output buffer. Fixes#2190
Refactor mbedtls_ctr_drbg_update_seed_file and
mbedtls_hmac_drbg_update_seed_file to make the error logic clearer.
The new code does not use fseek, so it works with non-seekable files.
Return early from mbedtls_pk_write_pubkey_der - public opaque key
exporting is expected to contain all of the needed data, therefore it shouldn't
be written again.
There is a probability that r will be encoded as 31 or less bytes in DER,
so additional padding is added in such case.
Added a signature-part extraction function to tidy up the code further.
Reasons:
- For the first release, we attempt to support TLS-1.2 only,
- At least TLS-1.0 is known to not work at the moment, as
for CBC ciphersuites the code in mbedtls_ssl_decrypt_buf()
and mbedtls_ssl_encrypt_buf() assumes that mbedtls_cipher_crypt()
updates the structure field for the IV in the cipher context,
which the PSA-based implementation currently doesn't.
This commit modifies the default SSL ticket implementation
from `library/ssl_ticket.c` to use PSA-based cipher context
for ticket creation and parsing.
As in mbedtls_ssl_derive_keys() adapted in an earlier commit,
we allow fallback to the ordinary mbedtls_cipher_setup()
if the provided cipher is not known. We do this even though
we always call mbedtls_ssl_ticket_setup() with AES-GCM
in our own code since this function is public and might
be used with other ciphers by users.
This commit changes the code path in mbedtls_ssl_derive_keys()
responsible for setting up record protection cipher contexts
to attempt to use the new API mbedtls_cipher_setup_psa() in
case MBEDTLS_USE_PSA_CRYPTO is set.
For that, the AEAD tag length must be provided, which is already
computed earlier in mbedtls_ssl_derive_keys() and only needs to be
stored a function scope to be available for mbedtls_cipher_setup_psa().
If mbedtls_cipher_setup_psa() fails cleanly indicating that the
requested cipher is not supported in PSA, we fall through to
the default setup using mbedtls_cipher_setup(). However, we print
a debug message in this case, to allow catching the fallthrough in
tests where we know we're using a cipher which should be supported
by PSA.
mbedtls_cipher_setup_psa() should return
MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE when the requested
cipher is not supported by PSA, so that the caller can
try the original mbedtls_cipher_setup() instead.
The previous version of mbedtls_cipher_setup_psa(), however,
only attempted to translate the cipher mode (GCM, CCM, CBC,
ChaChaPoly, Stream), but didn't consider the underlying
cipher primitive. Hence, it wouldn't fail when attempting
to setup a cipher context for, say, 3DES-CBC, where CBC
is currently supported by PSA but 3DES isn't.
This commit adds a check to mbedtls_cipher_setup_psa()
for whether the requested cipher primitive is available
in the underlying PSA Crypto implementation, and fails
cleanly with MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE if
it is isn't.
For AEAD ciphers, the information contained in mbedtls_cipher_info
is not enough to deduce a PSA algorithm value of type psa_algorithm_t.
This is because mbedtls_cipher_info doesn't contain the AEAD tag
length, while values of type psa_algorithm_t do.
This commit adds the AEAD tag length as a separate parameter
to mbedtls_cipher_setup_psa(). For Non-AEAD ciphers, the value
must be 0.
This approach is preferred over passing psa_algorithm_t directly
in order to keep the changes in existing code using the cipher layer
small.
Mbed TLS cipher layer allows usage of keys for other purposes
than indicated in the `operation` parameter of `mbedtls_cipher_setkey()`.
The semantics of the PSA Crypto API, in contrast, checks key
usage against the key policy.
As a remedy, this commit modifies the PSA key slot setup to
always allow both encryption and decryption.
This commit implements the internal key slot management performed
by PSA-based cipher contexts. Specifically, `mbedtls_cipher_setkey()`
wraps the provided raw key material into a key slot, and
`mbedtls_cipher_free()` destroys that key slot.
This field determines whether a cipher context should
use an external implementation of the PSA Crypto API for
cryptographic operations, or Mbed TLS' own crypto library.
The commit also adds dummy implementations for the cipher API.
It's better for names in the API to describe the "what" (opaque keys) rather
than the "how" (using PSA), at least since we don't intend to have multiple
function doing the same "what" in different ways in the foreseeable future.
Unfortunately the can_do wrapper does not receive the key context as an
argument, so it cannot check psa_get_key_information(). Later we might want to
change our internal structures to fix this, but for now we'll just restrict
opaque PSA keys to be ECDSA keypairs, as this is the only thing we need for
now. It also simplifies testing a bit (no need to test each key type).
The code maintains the invariant that raw and opaque PSKs are never
configured simultaneously, so strictly speaking `ssl_conf_remove_psk()`
need not consider clearing the raw PSK if it has already cleared an
opaque one - and previously, it didn't. However, it doesn't come at
any cost to keep this check as a safe-guard to future unforeseen
situations where opaque and raw PSKs _are_ both present.
In multiple places, it occurrs as the fixed length of
the master secret, so use a constant with a descriptive
name instead. This is reinforced by the fact the some
further occurrences of '48' are semantically different.
Using finer grained control over include directories will allow differnt
targets to use different include files. This will be useful when the
`crypto` subcomponent wants to use its own include files instead of or in
addition to the top level ones.
In mbedtls_mpi_write_binary, avoid leaking the size of the number
through timing or branches, if possible. More precisely, if the number
fits in the output buffer based on its allocated size, the new code's
trace doesn't depend on the value of the number.
Deprecate the module-specific XXX_HW_ACCEL_FAILED and
XXX_FEATURE_UNAVAILABLE errors, as alternative implementations should now
return `MBEDTLS_ERR_PLATFORM_HW_FAILED` and
`MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED`.
ssl_write_handshake_msg() includes the assertion that
`ssl->handshake != NULL` when handling a record which is
(a) a handshake message, and NOT
(b) a HelloRequest.
However, it later calls `ssl_append_flight()` for any
record different from a HelloRequest handshake record,
that is, records satisfying !(a) || !(b), instead of
(a) && !(b) as covered by the assertion (specifically,
CCS or Alert records).
Since `ssl_append_flight()` assumes that `ssl->handshake != NULL`,
this rightfully triggers static analyzer warnings.
This commit expands the scope of the assertion to check
that `ssl->handshake != NULL` for any record which is not
a HelloRequest.