So far, we've used the `peer_cert` pointer to detect whether
we're parsing the first CRT, but that will soon be removed
if `MBEDTLS_SSL_KEEP_PEER_CERTIFICATE` is unset.
This commit introduces a helper function `ssl_clear_peer_cert()`
which frees all data related to the peer's certificate from an
`mbedtls_ssl_session` structure. Currently, this is the peer's
certificate itself, while eventually, it'll be its digest only.
After mitigating the 'triple handshake attack' by checking that
the peer's end-CRT didn't change during renegotation, the current
code avoids re-parsing the CRT by moving the CRT-pointer from the
old session to the new one. While efficient, this will no longer
work once only the hash of the peer's CRT is stored beyond the
handshake.
This commit removes the code-path moving the old CRT, and instead
frees the entire peer CRT chain from the initial handshake as soon
as the 'triple handshake attack' protection has completed.
Commit "Smoke-test operation contexts after setup+abort" replaced
{failed-setup; abort} sequences by {failed-setup; successful-setup}.
We want to test that, but we also want to test {failed-setup; abort}.
So test {failed-setup; abort; failed-setup; successful-setup}.
After a successful setup followed by abort, or after a failed setup
from an inactive state, a context must be usable. Test this for
hash, MAC and cipher contexts.
crypto_extra.h has a dependency on platform_util.h for
MBEDTLS_DEPRECATED_NUMERIC_CONSTANT. Make the dependency explicit by
including platform_util.h. Although in most use cases the header should
already be included by something else, it doesn't hurt to include it
again and helps to clarify dependencies.
Additional work done as part of merge:
- Run ./tests/scripts/check-generated-files.sh and check in the
resulting changes to programs/ssl/query_config.c
In places where we detect a context is in a bad state and there is no
sensitive data to clear, simply return PSA_ERROR_BAD_STATE and don't
abort on behalf of the application. The application will choose what to
do when it gets a bad state error.
The motivation for this change is that an application should decide what
to do when it misuses the API and encounters a PSA_ERROR_BAD_STATE
error. The library should not attempt to abort on behalf of the
application, as that may not be the correct thing to do in all
circumstances.
Calling psa_*_setup() twice on a MAC, cipher, or hash context should
result in a PSA_ERROR_BAD_STATE error because the operation has already
been set up.
Fixes#10
Extend hash bad order test in line with the new bad order tests for MAC
and cipher, covering more cases and making comments and test layout
consistent.
Ensure that when doing hash operations out of order, PSA_ERROR_BAD_STATE
is returned as documented in crypto.h and the PSA Crypto specification.
Switch to the terminology "key file identifier", as has been done in
the code.
The owner uid is now in the upper 32 bits of the key file identifier,
which facilitates namespacing.
When building for the PSA crypto service (defined(PSA_CRYPTO_SECURE)),
define psa_key_owner_id_t as int32_t, which is how a PSA platform
encodes partition identity. Note that this only takes effect when the
build option MBEDTLS_PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER is active.
Support this configuration in the ITS backend.
Declare the owner as psa_key_owner_id_t, of which an implementation
must be provided separately.
Make this a configuration option
MBEDTLS_PSA_CRYPTO_KEY_FILE_ID_ENCODES_OWNER, to make the conditional
compilation flow easier to follow. Declare it in config.h to
pacify check_names.sh.
Support for a specific implementation of psa_key_owner_id_t in storage
backends will come in a subsequent commit.
Differentiate between _key identifiers_, which are always `uint32_t`,
and _key file identifiers_, which are platform-dependent. Normally,
the two are the same.
In `psa/crypto_platform.h`, define `psa_app_key_id_t` (which is always
32 bits, the standard key identifier type) and
`psa_key_file_id_t` (which will be different in some service builds).
A subsequent commit will introduce a platform where the two are different.
It would make sense for the function declarations in `psa/crypto.h` to
use `psa_key_file_id_t`. However this file is currently part of the
PSA Crypto API specification, so it must stick to the standard type
`psa_key_id_t`. Hence, as long as the specification and Mbed Crypto
are not separate, use the implementation-specific file
`psa/crypto_platform.h` to define `psa_key_id_t` as `psa_key_file_id_t`.
In the library, systematically use `psa_key_file_id_t`.
perl -i -pe 's/psa_key_id_t/psa_key_file_id_t/g' library/*.[hc]
PSA_MAX_PERSISTENT_KEY_IDENTIFIER was actually one plus the maximum
key identifier. Change it to be the maximum value, and change the code
that uses it accordingly.
There is no semantic change here (the maximum value hasn't changed).
This commit only makes the implementation clearer.
In multipart cipher tests, test that each step of psa_cipher_update
produces output of the expected length. The length is hard-coded in
the test data since it depends on the mode.
The length of the output of psa_cipher_finish is effectively tested
because it's the total output length minus the length produced by the
update steps.