For now, just check that it causes us to fragment. More tests are coming in
follow-up commits to ensure we respect the exact value set, including when
renegotiating.
Note: no interop tests in ssl-opt.sh for now, as some of them make us run into
bugs in (the CI's default versions of) OpenSSL and GnuTLS, so interop tests
will be added later once the situation is clarified. <- TODO
This will allow fragmentation to always happen in the same place, always from
a buffer distinct from ssl->out_msg, and with the same way of resuming after
returning WANT_WRITE
- take advantage of the fact that we're only called for first send
- put all sanity checks at the top
- rename and constify shortcut variables
- improve comments
`mbedtls_ssl_get_record_expansion()` is supposed to return the maximum
difference between the size of a protected record and the size of the
encapsulated plaintext.
It had the following two bugs:
(1) It did not consider the new ChaChaPoly ciphersuites, returning
the error code #MBEDTLS_ERR_SSL_INTERNAL_ERROR in this case.
(2) It did not correctly estimate the maximum record expansion in case
of CBC ciphersuites in (D)TLS versions 1.1 and higher, in which
case the ciphertext is prefixed by an explicit IV.
This commit fixes both bugs.
In `mbedtls_ccm_self_test()`, enforce input and output
buffers sent to the ccm API to be contigous and aligned,
by copying the test vectors to buffers on the stack.
In ecp_mul_comb(), if (!p_eq_g && grp->T == NULL) and then ecp_precompute_comb() fails (which can
happen due to OOM), then the new array of points T will be leaked (as it's newly allocated, but
hasn't been asigned to grp->T yet).
Symptom was a memory leak in ECDHE key exchange under low memory conditions.
The length to the debug message could conceivably leak through the time it
takes to print it, and that length would in turn reveal whether padding was
correct or not.
The basis for the Lucky 13 family of attacks is for an attacker to be able to
distinguish between (long) valid TLS-CBC padding and invalid TLS-CBC padding.
Since our code sets padlen = 0 for invalid padding, the length of the input to
the HMAC function, and the location where we read the MAC, give information
about that.
A local attacker could gain information about that by observing via a
cache attack whether the bytes at the end of the record (at the location of
would-be padding) have been read during MAC verification (computation +
comparison).
Let's make sure they're always read.
The basis for the Lucky 13 family of attacks is for an attacker to be able to
distinguish between (long) valid TLS-CBC padding and invalid TLS-CBC padding.
Since our code sets padlen = 0 for invalid padding, the length of the input to
the HMAC function gives information about that.
Information about this length (modulo the MD/SHA block size) can be deduced
from how much MD/SHA padding (this is distinct from TLS-CBC padding) is used.
If MD/SHA padding is read from a (static) buffer, a local attacker could get
information about how much is used via a cache attack targeting that buffer.
Let's get rid of this buffer. Now the only buffer used is the internal MD/SHA
one, which is always read fully by the process() function.
Move definition of `MBEDTLS_CIPHER_MODE_STREAM` to header file
(`mbedtls_cipher_internal.h`), because it is used by more than
one file. Raised by TrinityTonic in #1719