The client previously reproted the offered ciphersuites through
their numerical identifier only, while the server reported them
through their name.
This commit modifies the debug output on client and server to
both use the format `ID (NAME)` for the ciphersuites.
In library source files, include "common.h", which takes care of
including "mbedtls/config.h" (or the alternative MBEDTLS_CONFIG_FILE)
and other things that are used throughout the library.
FROM=$'#if !defined(MBEDTLS_CONFIG_FILE)\n#include "mbedtls/config.h"\n#else\n#include MBEDTLS_CONFIG_FILE\n#endif' perl -i -0777 -pe 's~\Q$ENV{FROM}~#include "common.h"~' library/*.c 3rdparty/*/library/*.c scripts/data_files/error.fmt scripts/data_files/version_features.fmt
Signed-off-by: Gilles Peskine <Gilles.Peskine@arm.com>
This commit uses the previously defined macro to uniformize
bounds checks in several places. It also adds bounds checks to
the ClientHello writing function that were previously missing.
Also, the functions adding extensions to the ClientHello message
can now fail if the buffer is too small or a different error
condition occurs, and moreover they take an additional buffer
end parameter to free them from the assumption that one is
writing to the default output buffer.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
The ssl_cli.c:ssl_write_supported_elliptic_curves_ext()
function is compiled only if MBEDTLS_ECDH_C, MBEDTLS_ECDSA_C
or MBEDTLS_KEY_EXCHANGE_ECJPAKE_ENABLED is defined which
implies that MBEDTLS_ECP_C is defined. Thus remove the
precompiler conditions on MBEDTLS_ECP_C in its code.
Signed-off-by: Ronald Cron <ronald.cron@arm.com>
Rename identifiers containing double-underscore (`__`) to avoid `__`.
The reason to avoid double-underscore is that all identifiers
containing double-underscore are reserved in C++. Rename all such
identifiers that appear in any public header, including ssl_internal.h
which is in principle private but in practice is installed with the
public headers.
This commit makes check-names.sh pass.
```
perl -i -pe 's/\bMBEDTLS_SSL__ECP_RESTARTABLE\b/MBEDTLS_SSL_ECP_RESTARTABLE_ENABLED/g; s/\bMBEDTLS_KEY_EXCHANGE_(_\w+)_(_\w+)\b/MBEDTLS_KEY_EXCHANGE${1}${2}/g' include/mbedtls/*.h library/*.c programs/*/*.c scripts/data_files/rename-1.3-2.0.txt tests/suites/*.function
```
Adapt to the change of encoding of elliptic curve key types in PSA
crypto. Before, an EC key type encoded the TLS curve identifier. Now
the EC key type only includes an ad hoc curve family identifier, and
determining the exact curve requires both the key type and size. This
commit moves from the old encoding and old definitions from
crypto/include/mbedtls/psa_util.h to the new encoding and definitions
from the immediately preceding crypto submodule update.
The library style is to start with the includes corresponding to the
current module and then the rest in alphabetical order. Some modules
have several header files (eg. ssl_internal.h).
The recently added error.h includes did not respect this convention and
this commit restores it. In some cases this is not possible just by
moving the error.h declarations. This commit fixes the pre-existing
order in these instances too.
In ssl_parse_hello_verify_request, we read 3 bytes (version and cookie
length) without checking that there are that many bytes left in
ssl->in_msg. This could potentially read from memory outside of the
ssl->receive buffer (which would be a remotely exploitable
crash).
In ssl_parse_hello_verify_request, we print cookie_len bytes without
checking that there are that many bytes left in ssl->in_msg. This
could potentially log data outside the received message (not a big
deal) and could potentially read from memory outside of the receive
buffer (which would be a remotely exploitable crash).
The SSL context structure mbedtls_ssl_context contains several pointers
ssl->in_hdr, ssl->in_len, ssl->in_iv, ssl->in_msg pointing to various
parts of the record header in an incoming record, and they are setup
in the static function ssl_update_in_pointers() based on the _expected_
transform for the next incoming record.
In particular, the pointer ssl->in_msg is set to where the record plaintext
should reside after record decryption, and an assertion double-checks this
after each call to ssl_decrypt_buf().
This commit removes the dependency of ssl_update_in_pointers() on the
expected incoming transform by setting ssl->in_msg to ssl->in_iv --
the beginning of the record content (potentially including the IV) --
and adjusting ssl->in_msg after calling ssl_decrypt_buf() on a protected
record.
Care has to be taken to not load ssl->in_msg before calling
mbedtls_ssl_read_record(), then, which was previously the
case in ssl_parse_server_hello(); the commit fixes that.
Signal casting from size_t to unsigned char explicitly, so that the compiler
does not raise a warning about possible loss of data on MSVC, targeting
64-bit Windows.
Prior to this commit, the security parameter struct `ssl_transform`
contained a `ciphersuite_info` field pointing to the information
structure for the negotiated ciphersuite. However, the only
information extracted from that structure that was used in the core
encryption and decryption functions `ssl_encrypt_buf`/`ssl_decrypt_buf`
was the authentication tag length in case of an AEAD cipher.
The present commit removes the `ciphersuite_info` field from the
`ssl_transform` structure and adds an explicit `taglen` field
for AEAD authentication tag length.
This is in accordance with the principle that the `ssl_transform`
structure should contain the raw parameters needed for the record
encryption and decryption functions to work, but not the higher-level
information that gave rise to them. For example, the `ssl_transform`
structure implicitly contains the encryption/decryption keys within
their cipher contexts, but it doesn't contain the SSL master or
premaster secrets. Likewise, it contains an explicit `maclen`, while
the status of the 'Truncated HMAC' extension -- which determines the
value of `maclen` when the `ssl_transform` structure is created in
`ssl_derive_keys` -- is not contained in `ssl_transform`.
The `ciphersuite_info` pointer was used in other places outside
the encryption/decryption functions during the handshake, and for
these functions to work, this commit adds a `ciphersuite_info` pointer
field to the handshake-local `ssl_handshake_params` structure.
We must dispatch between the peer's public key stored as part of
the peer's CRT in the current session structure (situation until
now, and future behaviour if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is
enabled), and the sole public key stored in the handshake structure
(new, if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is disabled).
We must dispatch between the peer's public key stored as part of
the peer's CRT in the current session structure (situation until
now, and future behaviour if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is
enabled), and the sole public key stored in the handshake structure
(new, if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is disabled).
We must dispatch between the peer's public key stored as part of
the peer's CRT in the current session structure (situation until
now, and future behaviour if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is
enabled), and the sole public key stored in the handshake structure
(new, if MBEDTLS_SSL_KEEP_PEER_CERTIFICATE is disabled).
mbedtls_ssl_parse_certificate() will fail if a ciphersuite requires
a certificate, but none is provided. While it is sensible to double-
check this, failure should be reported as an internal error and not
as an unexpected message.
This commit simplifies the client-side code for outgoing CertificateVerify
messages, and server-side code for outgoing CertificateRequest messages and
incoming CertificateVerify messages, through the use of the macro
`MBEDTLS_KEY_EXCHANGE__CERT_REQ_ALLOWED__ENABLED`
indicating whether a ciphersuite allowing CertificateRequest messages
is enabled in the configuration, as well as the helper function
`mbedtls_ssl_ciphersuite_cert_req_allowed()`
indicating whether a particular ciphersuite allows CertificateRequest
messages.
These were already used in the client-side code to simplify the
parsing functions for CertificateRequest messages.