For selection of test cases, see comments added in the commit.
It makes the most sense to test with chains using ECC only, so for the chain
of length 2 we use server10 -> int-ca3 -> int-ca2 and trust int-ca2 directly.
Note: server10.crt was created by copying server10_int3_int-ca2.crt and
manually truncating it to remove the intermediates. That base can now be used
to create derived certs (without or with a chain) in a programmatic way.
When a trusted CA is rolling its root keys, it could happen that for some
users the list of trusted roots contains two versions of the same CA with the
same name but different keys. Currently this is supported but wasn't tested.
Note: the intermediate file test-ca-alt.csr is commited on purpose, as not
commiting intermediate files causes make to regenerate files that we don't
want it to touch.
As we accept EE certs that are explicitly trusted (in the list of trusted
roots) and usually look for parent by subject, and in the future we might want
to avoid checking the self-signature on trusted certs, there could a risk that we
incorrectly accept a cert that looks like a trusted root except it doesn't
have the same key. This test ensures this will never happen.
The tests cover chains of length 0, 1 and 2, with one error, located at any of
the available levels in the chain. This exercises all three call sites of
f_vrfy (two in verify_top, one in verify_child). Chains of greater length
would not cover any new code path or behaviour that I can see.
With SHA-1 deprecation, we need a few certificates using algorithms in
the default support list. Most tests still use SHA-1 though.
The generation process for the new certificates is recorded in the makefile.