/** * \file psa/crypto.h * \brief Platform Security Architecture cryptography module */ /* * Copyright (C) 2018, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef PSA_CRYPTO_H #define PSA_CRYPTO_H #include "crypto_platform.h" #include #ifdef __DOXYGEN_ONLY__ /* This __DOXYGEN_ONLY__ block contains mock definitions for things that * must be defined in the crypto_platform.h header. These mock definitions * are present in this file as a convenience to generate pretty-printed * documentation that includes those definitions. */ /** \defgroup platform Implementation-specific definitions * @{ */ /** \brief Key slot number. * * This type represents key slots. It must be an unsigned integral * type. The choice of type is implementation-dependent. * 0 is not a valid key slot number. The meaning of other values is * implementation dependent. * * At any given point in time, each key slot either contains a * cryptographic object, or is empty. Key slots are persistent: * once set, the cryptographic object remains in the key slot until * explicitly destroyed. */ typedef _unsigned_integral_type_ psa_key_slot_t; /**@}*/ #endif /* __DOXYGEN_ONLY__ */ #ifdef __cplusplus extern "C" { #endif /** \defgroup basic Basic definitions * @{ */ #if defined(PSA_SUCCESS) /* If PSA_SUCCESS is defined, assume that PSA crypto is being used * together with PSA IPC, which also defines the identifier * PSA_SUCCESS. We must not define PSA_SUCCESS ourselves in that case; * the other error code names don't clash. Also define psa_status_t as * an alias for the type used by PSA IPC. This is a temporary hack * until we unify error reporting in PSA IPC and PSA crypto. * * Note that psa_defs.h must be included before this header! */ typedef psa_error_t psa_status_t; #else /* defined(PSA_SUCCESS) */ /** * \brief Function return status. * * This is either #PSA_SUCCESS (which is zero), indicating success, * or a nonzero value indicating that an error occurred. Errors are * encoded as one of the \c PSA_ERROR_xxx values defined here. */ typedef int32_t psa_status_t; /** The action was completed successfully. */ #define PSA_SUCCESS ((psa_status_t)0) #endif /* !defined(PSA_SUCCESS) */ /** An error occurred that does not correspond to any defined * failure cause. * * Implementations may use this error code if none of the other standard * error codes are applicable. */ #define PSA_ERROR_UNKNOWN_ERROR ((psa_status_t)1) /** The requested operation or a parameter is not supported * by this implementation. * * Implementations should return this error code when an enumeration * parameter such as a key type, algorithm, etc. is not recognized. * If a combination of parameters is recognized and identified as * not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */ #define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)2) /** The requested action is denied by a policy. * * Implementations should return this error code when the parameters * are recognized as valid and supported, and a policy explicitly * denies the requested operation. * * If a subset of the parameters of a function call identify a * forbidden operation, and another subset of the parameters are * not valid or not supported, it is unspecified whether the function * returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or * #PSA_ERROR_INVALID_ARGUMENT. */ #define PSA_ERROR_NOT_PERMITTED ((psa_status_t)3) /** An output buffer is too small. * * Applications can call the \c PSA_xxx_SIZE macro listed in the function * description to determine a sufficient buffer size. * * Implementations should preferably return this error code only * in cases when performing the operation with a larger output * buffer would succeed. However implementations may return this * error if a function has invalid or unsupported parameters in addition * to the parameters that determine the necessary output buffer size. */ #define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)4) /** A slot is occupied, but must be empty to carry out the * requested action. * * If the slot number is invalid (i.e. the requested action could * not be performed even after erasing the slot's content), * implementations shall return #PSA_ERROR_INVALID_ARGUMENT instead. */ #define PSA_ERROR_OCCUPIED_SLOT ((psa_status_t)5) /** A slot is empty, but must be occupied to carry out the * requested action. * * If the slot number is invalid (i.e. the requested action could * not be performed even after creating appropriate content in the slot), * implementations shall return #PSA_ERROR_INVALID_ARGUMENT instead. */ #define PSA_ERROR_EMPTY_SLOT ((psa_status_t)6) /** The requested action cannot be performed in the current state. * * Multipart operations return this error when one of the * functions is called out of sequence. Refer to the function * descriptions for permitted sequencing of functions. * * Implementations shall not return this error code to indicate * that a key slot is occupied when it needs to be free or vice versa, * but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT * as applicable. */ #define PSA_ERROR_BAD_STATE ((psa_status_t)7) /** The parameters passed to the function are invalid. * * Implementations may return this error any time a parameter or * combination of parameters are recognized as invalid. * * Implementations shall not return this error code to indicate * that a key slot is occupied when it needs to be free or vice versa, * but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT * as applicable. */ #define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)8) /** There is not enough runtime memory. * * If the action is carried out across multiple security realms, this * error can refer to available memory in any of the security realms. */ #define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)9) /** There is not enough persistent storage. * * Functions that modify the key storage return this error code if * there is insufficient storage space on the host media. In addition, * many functions that do not otherwise access storage may return this * error code if the implementation requires a mandatory log entry for * the requested action and the log storage space is full. */ #define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)10) /** There was a communication failure inside the implementation. * * This can indicate a communication failure between the application * and an external cryptoprocessor or between the cryptoprocessor and * an external volatile or persistent memory. A communication failure * may be transient or permanent depending on the cause. * * \warning If a function returns this error, it is undetermined * whether the requested action has completed or not. Implementations * should return #PSA_SUCCESS on successful completion whenver * possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE * if the requested action was completed successfully in an external * cryptoprocessor but there was a breakdown of communication before * the cryptoprocessor could report the status to the application. */ #define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)11) /** There was a storage failure that may have led to data loss. * * This error indicates that some persistent storage is corrupted. * It should not be used for a corruption of volatile memory * (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error * between the cryptoprocessor and its external storage (use * #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is * in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE). * * Note that a storage failure does not indicate that any data that was * previously read is invalid. However this previously read data may no * longer be readable from storage. * * When a storage failure occurs, it is no longer possible to ensure * the global integrity of the keystore. Depending on the global * integrity guarantees offered by the implementation, access to other * data may or may not fail even if the data is still readable but * its integrity canont be guaranteed. * * Implementations should only use this error code to report a * permanent storage corruption. However application writers should * keep in mind that transient errors while reading the storage may be * reported using this error code. */ #define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)12) /** A hardware failure was detected. * * A hardware failure may be transient or permanent depending on the * cause. */ #define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)13) /** A tampering attempt was detected. * * If an application receives this error code, there is no guarantee * that previously accessed or computed data was correct and remains * confidential. Applications should not perform any security function * and should enter a safe failure state. * * Implementations may return this error code if they detect an invalid * state that cannot happen during normal operation and that indicates * that the implementation's security guarantees no longer hold. Depending * on the implementation architecture and on its security and safety goals, * the implementation may forcibly terminate the application. * * This error code is intended as a last resort when a security breach * is detected and it is unsure whether the keystore data is still * protected. Implementations shall only return this error code * to report an alarm from a tampering detector, to indicate that * the confidentiality of stored data can no longer be guaranteed, * or to indicate that the integrity of previously returned data is now * considered compromised. Implementations shall not use this error code * to indicate a hardware failure that merely makes it impossible to * perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE, * #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE, * #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code * instead). * * This error indicates an attack against the application. Implementations * shall not return this error code as a consequence of the behavior of * the application itself. */ #define PSA_ERROR_TAMPERING_DETECTED ((psa_status_t)14) /** There is not enough entropy to generate random data needed * for the requested action. * * This error indicates a failure of a hardware random generator. * Application writers should note that this error can be returned not * only by functions whose purpose is to generate random data, such * as key, IV or nonce generation, but also by functions that execute * an algorithm with a randomized result, as well as functions that * use randomization of intermediate computations as a countermeasure * to certain attacks. * * Implementations should avoid returning this error after psa_crypto_init() * has succeeded. Implementations should generate sufficient * entropy during initialization and subsequently use a cryptographically * secure pseudorandom generator (PRNG). However implementations may return * this error at any time if a policy requires the PRNG to be reseeded * during normal operation. */ #define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)15) /** The signature, MAC or hash is incorrect. * * Verification functions return this error if the verification * calculations completed successfully, and the value to be verified * was determined to be incorrect. * * If the value to verify has an invalid size, implementations may return * either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */ #define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)16) /** The decrypted padding is incorrect. * * \warning In some protocols, when decrypting data, it is essential that * the behavior of the application does not depend on whether the padding * is correct, down to precise timing. Applications should prefer * protocols that use authenticated encryption rather than plain * encryption. If the application must perform a decryption of * unauthenticated data, the application writer should take care not * to reveal whether the padding is invalid. * * Implementations should strive to make valid and invalid padding * as close as possible to indistinguishable to an external observer. * In particular, the timing of a decryption operation should not * depend on the validity of the padding. */ #define PSA_ERROR_INVALID_PADDING ((psa_status_t)17) /** The generator has insufficient capacity left. * * Once a function returns this error, attempts to read from the * generator will always return this error. */ #define PSA_ERROR_INSUFFICIENT_CAPACITY ((psa_status_t)18) /** The key handle is not valid. */ #define PSA_ERROR_INVALID_HANDLE ((psa_status_t)19) /** * \brief Library initialization. * * Applications must call this function before calling any other * function in this module. * * Applications may call this function more than once. Once a call * succeeds, subsequent calls are guaranteed to succeed. * * If the application calls other functions before calling psa_crypto_init(), * the behavior is undefined. Implementations are encouraged to either perform * the operation as if the library had been initialized or to return * #PSA_ERROR_BAD_STATE or some other applicable error. In particular, * implementations should not return a success status if the lack of * initialization may have security implications, for example due to improper * seeding of the random number generator. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY */ psa_status_t psa_crypto_init(void); #define PSA_BITS_TO_BYTES(bits) (((bits) + 7) / 8) #define PSA_BYTES_TO_BITS(bytes) ((bytes) * 8) /**@}*/ /** \defgroup crypto_types Key and algorithm types * @{ */ /** \brief Encoding of a key type. */ typedef uint32_t psa_key_type_t; /** An invalid key type value. * * Zero is not the encoding of any key type. */ #define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000) /** Vendor-defined flag * * Key types defined by this standard will never have the * #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types * must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should * respect the bitwise structure used by standard encodings whenever practical. */ #define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000) #define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x70000000) #define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x40000000) #define PSA_KEY_TYPE_CATEGORY_RAW ((psa_key_type_t)0x50000000) #define PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY ((psa_key_type_t)0x60000000) #define PSA_KEY_TYPE_CATEGORY_KEY_PAIR ((psa_key_type_t)0x70000000) #define PSA_KEY_TYPE_CATEGORY_FLAG_PAIR ((psa_key_type_t)0x10000000) /** Whether a key type is vendor-defined. */ #define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \ (((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0) /** Whether a key type is an unstructured array of bytes. * * This encompasses both symmetric keys and non-key data. */ #define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK & ~(psa_key_type_t)0x10000000) == \ PSA_KEY_TYPE_CATEGORY_SYMMETRIC) /** Whether a key type is asymmetric: either a key pair or a public key. */ #define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK \ & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) == \ PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) /** Whether a key type is the public part of a key pair. */ #define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY) /** Whether a key type is a key pair containing a private part and a public * part. */ #define PSA_KEY_TYPE_IS_KEYPAIR(type) \ (((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_KEY_PAIR) /** The key pair type corresponding to a public key type. * * You may also pass a key pair type as \p type, it will be left unchanged. * * \param type A public key type or key pair type. * * \return The corresponding key pair type. * If \p type is not a public key or a key pair, * the return value is undefined. */ #define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \ ((type) | PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) /** The public key type corresponding to a key pair type. * * You may also pass a key pair type as \p type, it will be left unchanged. * * \param type A public key type or key pair type. * * \return The corresponding public key type. * If \p type is not a public key or a key pair, * the return value is undefined. */ #define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \ ((type) & ~PSA_KEY_TYPE_CATEGORY_FLAG_PAIR) /** Raw data. * * A "key" of this type cannot be used for any cryptographic operation. * Applications may use this type to store arbitrary data in the keystore. */ #define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x50000001) /** HMAC key. * * The key policy determines which underlying hash algorithm the key can be * used for. * * HMAC keys should generally have the same size as the underlying hash. * This size can be calculated with #PSA_HASH_SIZE(\c alg) where * \c alg is the HMAC algorithm or the underlying hash algorithm. */ #define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x51000000) /** A secret for key derivation. * * The key policy determines which key derivation algorithm the key * can be used for. */ #define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x52000000) /** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher. * * The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or * 32 bytes (AES-256). */ #define PSA_KEY_TYPE_AES ((psa_key_type_t)0x40000001) /** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES). * * The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or * 24 bytes (3-key 3DES). * * Note that single DES and 2-key 3DES are weak and strongly * deprecated and should only be used to decrypt legacy data. 3-key 3DES * is weak and deprecated and should only be used in legacy protocols. */ #define PSA_KEY_TYPE_DES ((psa_key_type_t)0x40000002) /** Key for an cipher, AEAD or MAC algorithm based on the * Camellia block cipher. */ #define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x40000003) /** Key for the RC4 stream cipher. * * Note that RC4 is weak and deprecated and should only be used in * legacy protocols. */ #define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x40000004) /** RSA public key. */ #define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x60010000) /** RSA key pair (private and public key). */ #define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x70010000) /** Whether a key type is an RSA key (pair or public-only). */ #define PSA_KEY_TYPE_IS_RSA(type) \ (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY) /** DSA public key. */ #define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x60020000) /** DSA key pair (private and public key). */ #define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x70020000) /** Whether a key type is an DSA key (pair or public-only). */ #define PSA_KEY_TYPE_IS_DSA(type) \ (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_DSA_PUBLIC_KEY) #define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x60030000) #define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x70030000) #define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff) /** Elliptic curve key pair. */ #define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \ (PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve)) /** Elliptic curve public key. */ #define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \ (PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve)) /** Whether a key type is an elliptic curve key (pair or public-only). */ #define PSA_KEY_TYPE_IS_ECC(type) \ ((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \ ~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) #define PSA_KEY_TYPE_IS_ECC_KEYPAIR(type) \ (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ PSA_KEY_TYPE_ECC_KEYPAIR_BASE) #define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \ (((type) & ~PSA_KEY_TYPE_ECC_CURVE_MASK) == \ PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE) /** The type of PSA elliptic curve identifiers. */ typedef uint16_t psa_ecc_curve_t; /** Extract the curve from an elliptic curve key type. */ #define PSA_KEY_TYPE_GET_CURVE(type) \ ((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \ ((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \ 0)) /* The encoding of curve identifiers is currently aligned with the * TLS Supported Groups Registry (formerly known as the * TLS EC Named Curve Registry) * https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8 * The values are defined by RFC 8422 and RFC 7027. */ #define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001) #define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002) #define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003) #define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004) #define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005) #define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006) #define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007) #define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008) #define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009) #define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a) #define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b) #define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c) #define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d) #define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e) #define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f) #define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010) #define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011) #define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012) #define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013) #define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014) #define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015) #define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016) #define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017) #define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018) #define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019) #define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a) #define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b) #define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c) #define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d) #define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e) /** The block size of a block cipher. * * \param type A cipher key type (value of type #psa_key_type_t). * * \return The block size for a block cipher, or 1 for a stream cipher. * The return value is undefined if \p type is not a supported * cipher key type. * * \note It is possible to build stream cipher algorithms on top of a block * cipher, for example CTR mode (#PSA_ALG_CTR). * This macro only takes the key type into account, so it cannot be * used to determine the size of the data that #psa_cipher_update() * might buffer for future processing in general. * * \note This macro returns a compile-time constant if its argument is one. * * \warning This macro may evaluate its argument multiple times. */ #define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \ ( \ (type) == PSA_KEY_TYPE_AES ? 16 : \ (type) == PSA_KEY_TYPE_DES ? 8 : \ (type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \ (type) == PSA_KEY_TYPE_ARC4 ? 1 : \ 0) /** \brief Encoding of a cryptographic algorithm. * * For algorithms that can be applied to multiple key types, this type * does not encode the key type. For example, for symmetric ciphers * based on a block cipher, #psa_algorithm_t encodes the block cipher * mode and the padding mode while the block cipher itself is encoded * via #psa_key_type_t. */ typedef uint32_t psa_algorithm_t; #define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000) #define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000) #define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000) #define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000) #define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000) #define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000) #define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000) #define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000) #define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x22000000) #define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x30000000) #define PSA_ALG_CATEGORY_KEY_SELECTION ((psa_algorithm_t)0x31000000) #define PSA_ALG_IS_VENDOR_DEFINED(alg) \ (((alg) & PSA_ALG_VENDOR_FLAG) != 0) /** Whether the specified algorithm is a hash algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a hash algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_HASH(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH) /** Whether the specified algorithm is a MAC algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a MAC algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_MAC(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC) /** Whether the specified algorithm is a symmetric cipher algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a symmetric cipher algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_CIPHER(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER) /** Whether the specified algorithm is an authenticated encryption * with associated data (AEAD) algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is an AEAD algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_AEAD(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD) /** Whether the specified algorithm is a public-key signature algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a public-key signature algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_SIGN(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN) /** Whether the specified algorithm is a public-key encryption algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a public-key encryption algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION) #define PSA_ALG_KEY_SELECTION_FLAG ((psa_algorithm_t)0x01000000) /** Whether the specified algorithm is a key agreement algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a key agreement algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_KEY_AGREEMENT(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK & ~PSA_ALG_KEY_SELECTION_FLAG) == \ PSA_ALG_CATEGORY_KEY_AGREEMENT) /** Whether the specified algorithm is a key derivation algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a key derivation algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_KEY_DERIVATION(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION) /** Whether the specified algorithm is a key selection algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a key selection algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_KEY_SELECTION(alg) \ (((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_SELECTION) #define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff) #define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001) #define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002) #define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003) #define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004) #define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005) /** SHA2-224 */ #define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008) /** SHA2-256 */ #define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009) /** SHA2-384 */ #define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a) /** SHA2-512 */ #define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b) /** SHA2-512/224 */ #define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c) /** SHA2-512/256 */ #define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d) /** SHA3-224 */ #define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010) /** SHA3-256 */ #define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011) /** SHA3-384 */ #define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012) /** SHA3-512 */ #define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013) #define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000) #define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000) /** Macro to build an HMAC algorithm. * * For example, #PSA_ALG_HMAC(#PSA_ALG_SHA_256) is HMAC-SHA-256. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding HMAC algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_HMAC(hash_alg) \ (PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_HMAC_GET_HASH(hmac_alg) \ (PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK)) /** Whether the specified algorithm is an HMAC algorithm. * * HMAC is a family of MAC algorithms that are based on a hash function. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is an HMAC algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_HMAC(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ PSA_ALG_HMAC_BASE) /* In the encoding of a MAC algorithm, the bits corresponding to * PSA_ALG_MAC_TRUNCATION_MASK encode the length to which the MAC is * truncated. As an exception, the value 0 means the untruncated algorithm, * whatever its length is. The length is encoded in 6 bits, so it can * reach up to 63; the largest MAC is 64 bytes so its trivial truncation * to full length is correctly encoded as 0 and any non-trivial truncation * is correctly encoded as a value between 1 and 63. */ #define PSA_ALG_MAC_TRUNCATION_MASK ((psa_algorithm_t)0x00003f00) #define PSA_MAC_TRUNCATION_OFFSET 8 /** Macro to build a truncated MAC algorithm. * * A truncated MAC algorithm is identical to the corresponding MAC * algorithm except that the MAC value for the truncated algorithm * consists of only the first \p mac_length bytes of the MAC value * for the untruncated algorithm. * * \note This macro may allow constructing algorithm identifiers that * are not valid, either because the specified length is larger * than the untruncated MAC or because the specified length is * smaller than permitted by the implementation. * * \note It is implementation-defined whether a truncated MAC that * is truncated to the same length as the MAC of the untruncated * algorithm is considered identical to the untruncated algorithm * for policy comparison purposes. * * \param alg A MAC algorithm identifier (value of type * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) * is true). This may be a truncated or untruncated * MAC algorithm. * \param mac_length Desired length of the truncated MAC in bytes. * This must be at most the full length of the MAC * and must be at least an implementation-specified * minimum. The implementation-specified minimum * shall not be zero. * * \return The corresponding MAC algorithm with the specified * length. * \return Unspecified if \p alg is not a supported * MAC algorithm or if \p mac_length is too small or * too large for the specified MAC algorithm. */ #define PSA_ALG_TRUNCATED_MAC(alg, mac_length) \ (((alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) | \ ((mac_length) << PSA_MAC_TRUNCATION_OFFSET & PSA_ALG_MAC_TRUNCATION_MASK)) /** Macro to build the base MAC algorithm corresponding to a truncated * MAC algorithm. * * \param alg A MAC algorithm identifier (value of type * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) * is true). This may be a truncated or untruncated * MAC algorithm. * * \return The corresponding base MAC algorithm. * \return Unspecified if \p alg is not a supported * MAC algorithm. */ #define PSA_ALG_FULL_LENGTH_MAC(alg) \ ((alg) & ~PSA_ALG_MAC_TRUNCATION_MASK) /** Length to which a MAC algorithm is truncated. * * \param alg A MAC algorithm identifier (value of type * #psa_algorithm_t such that #PSA_ALG_IS_MAC(\p alg) * is true). * * \return Length of the truncated MAC in bytes. * \return 0 if \p alg is a non-truncated MAC algorithm. * \return Unspecified if \p alg is not a supported * MAC algorithm. */ #define PSA_MAC_TRUNCATED_LENGTH(alg) \ (((alg) & PSA_ALG_MAC_TRUNCATION_MASK) >> PSA_MAC_TRUNCATION_OFFSET) #define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000) #define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001) #define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002) #define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003) /** Whether the specified algorithm is a MAC algorithm based on a block cipher. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a MAC algorithm based on a block cipher, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier. */ #define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \ PSA_ALG_CIPHER_MAC_BASE) #define PSA_ALG_CIPHER_STREAM_FLAG ((psa_algorithm_t)0x00800000) #define PSA_ALG_CIPHER_FROM_BLOCK_FLAG ((psa_algorithm_t)0x00400000) /** Whether the specified algorithm is a stream cipher. * * A stream cipher is a symmetric cipher that encrypts or decrypts messages * by applying a bitwise-xor with a stream of bytes that is generated * from a key. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \p alg is a stream cipher algorithm, 0 otherwise. * This macro may return either 0 or 1 if \p alg is not a supported * algorithm identifier or if it is not a symmetric cipher algorithm. */ #define PSA_ALG_IS_STREAM_CIPHER(alg) \ (((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_STREAM_FLAG)) == \ (PSA_ALG_CATEGORY_CIPHER | PSA_ALG_CIPHER_STREAM_FLAG)) /** The ARC4 stream cipher algorithm. */ #define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800001) /** The CTR stream cipher mode. * * CTR is a stream cipher which is built from a block cipher. * The underlying block cipher is determined by the key type. * For example, to use AES-128-CTR, use this algorithm with * a key of type #PSA_KEY_TYPE_AES and a length of 128 bits (16 bytes). */ #define PSA_ALG_CTR ((psa_algorithm_t)0x04c00001) #define PSA_ALG_CFB ((psa_algorithm_t)0x04c00002) #define PSA_ALG_OFB ((psa_algorithm_t)0x04c00003) /** The XTS cipher mode. * * XTS is a cipher mode which is built from a block cipher. It requires at * least one full block of input, but beyond this minimum the input * does not need to be a whole number of blocks. */ #define PSA_ALG_XTS ((psa_algorithm_t)0x044000ff) /** The CBC block cipher chaining mode, with no padding. * * The underlying block cipher is determined by the key type. * * This symmetric cipher mode can only be used with messages whose lengths * are whole number of blocks for the chosen block cipher. */ #define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04600100) /** The CBC block cipher chaining mode with PKCS#7 padding. * * The underlying block cipher is determined by the key type. * * This is the padding method defined by PKCS#7 (RFC 2315) §10.3. */ #define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04600101) #define PSA_ALG_CCM ((psa_algorithm_t)0x06001001) #define PSA_ALG_GCM ((psa_algorithm_t)0x06001002) /* In the encoding of a AEAD algorithm, the bits corresponding to * PSA_ALG_AEAD_TAG_LENGTH_MASK encode the length of the AEAD tag. * The constants for default lengths follow this encoding. */ #define PSA_ALG_AEAD_TAG_LENGTH_MASK ((psa_algorithm_t)0x00003f00) #define PSA_AEAD_TAG_LENGTH_OFFSET 8 /** Macro to build a shortened AEAD algorithm. * * A shortened AEAD algorithm is similar to the corresponding AEAD * algorithm, but has an authentication tag that consists of fewer bytes. * Depending on the algorithm, the tag length may affect the calculation * of the ciphertext. * * \param alg A AEAD algorithm identifier (value of type * #psa_algorithm_t such that #PSA_ALG_IS_AEAD(\p alg) * is true). * \param tag_length Desired length of the authentication tag in bytes. * * \return The corresponding AEAD algorithm with the specified * length. * \return Unspecified if \p alg is not a supported * AEAD algorithm or if \p tag_length is not valid * for the specified AEAD algorithm. */ #define PSA_ALG_AEAD_WITH_TAG_LENGTH(alg, tag_length) \ (((alg) & ~PSA_ALG_AEAD_TAG_LENGTH_MASK) | \ ((tag_length) << PSA_AEAD_TAG_LENGTH_OFFSET & \ PSA_ALG_AEAD_TAG_LENGTH_MASK)) /** Calculate the corresponding AEAD algorithm with the default tag length. * * \param alg An AEAD algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * * \return The corresponding AEAD algorithm with the default tag length * for that algorithm. */ #define PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH(alg) \ ( \ PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, PSA_ALG_CCM) \ PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, PSA_ALG_GCM) \ 0) #define PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE(alg, ref) \ PSA_ALG_AEAD_WITH_TAG_LENGTH(alg, 0) == \ PSA_ALG_AEAD_WITH_TAG_LENGTH(ref, 0) ? \ ref : #define PSA_ALG_RSA_PKCS1V15_SIGN_BASE ((psa_algorithm_t)0x10020000) /** RSA PKCS#1 v1.5 signature with hashing. * * This is the signature scheme defined by RFC 8017 * (PKCS#1: RSA Cryptography Specifications) under the name * RSASSA-PKCS1-v1_5. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding RSA PKCS#1 v1.5 signature algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \ (PSA_ALG_RSA_PKCS1V15_SIGN_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** Raw PKCS#1 v1.5 signature. * * The input to this algorithm is the DigestInfo structure used by * RFC 8017 (PKCS#1: RSA Cryptography Specifications), §9.2 * steps 3–6. */ #define PSA_ALG_RSA_PKCS1V15_SIGN_RAW PSA_ALG_RSA_PKCS1V15_SIGN_BASE #define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_BASE) #define PSA_ALG_RSA_PSS_BASE ((psa_algorithm_t)0x10030000) /** RSA PSS signature with hashing. * * This is the signature scheme defined by RFC 8017 * (PKCS#1: RSA Cryptography Specifications) under the name * RSASSA-PSS, with the message generation function MGF1, and with * a salt length equal to the length of the hash. The specified * hash algorithm is used to hash the input message, to create the * salted hash, and for the mask generation. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding RSA PSS signature algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_RSA_PSS(hash_alg) \ (PSA_ALG_RSA_PSS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_RSA_PSS(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PSS_BASE) #define PSA_ALG_DSA_BASE ((psa_algorithm_t)0x10040000) /** DSA signature with hashing. * * This is the signature scheme defined by FIPS 186-4, * with a random per-message secret number (*k*). * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding DSA signature algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_DSA(hash_alg) \ (PSA_ALG_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_DETERMINISTIC_DSA_BASE ((psa_algorithm_t)0x10050000) #define PSA_ALG_DSA_DETERMINISTIC_FLAG ((psa_algorithm_t)0x00010000) #define PSA_ALG_DETERMINISTIC_DSA(hash_alg) \ (PSA_ALG_DETERMINISTIC_DSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_DSA(alg) \ (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \ PSA_ALG_DSA_BASE) #define PSA_ALG_DSA_IS_DETERMINISTIC(alg) \ (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0) #define PSA_ALG_IS_DETERMINISTIC_DSA(alg) \ (PSA_ALG_IS_DSA(alg) && PSA_ALG_DSA_IS_DETERMINISTIC(alg)) #define PSA_ALG_IS_RANDOMIZED_DSA(alg) \ (PSA_ALG_IS_DSA(alg) && !PSA_ALG_DSA_IS_DETERMINISTIC(alg)) #define PSA_ALG_ECDSA_BASE ((psa_algorithm_t)0x10060000) /** ECDSA signature with hashing. * * This is the ECDSA signature scheme defined by ANSI X9.62, * with a random per-message secret number (*k*). * * The representation of the signature as a byte string consists of * the concatentation of the signature values *r* and *s*. Each of * *r* and *s* is encoded as an *N*-octet string, where *N* is the length * of the base point of the curve in octets. Each value is represented * in big-endian order (most significant octet first). * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding ECDSA signature algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_ECDSA(hash_alg) \ (PSA_ALG_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** ECDSA signature without hashing. * * This is the same signature scheme as #PSA_ALG_ECDSA(), but * without specifying a hash algorithm. This algorithm may only be * used to sign or verify a sequence of bytes that should be an * already-calculated hash. Note that the input is padded with * zeros on the left or truncated on the left as required to fit * the curve size. */ #define PSA_ALG_ECDSA_ANY PSA_ALG_ECDSA_BASE #define PSA_ALG_DETERMINISTIC_ECDSA_BASE ((psa_algorithm_t)0x10070000) /** Deterministic ECDSA signature with hashing. * * This is the deterministic ECDSA signature scheme defined by RFC 6979. * * The representation of a signature is the same as with #PSA_ALG_ECDSA(). * * Note that when this algorithm is used for verification, signatures * made with randomized ECDSA (#PSA_ALG_ECDSA(\p hash_alg)) with the * same private key are accepted. In other words, * #PSA_ALG_DETERMINISTIC_ECDSA(\p hash_alg) differs from * #PSA_ALG_ECDSA(\p hash_alg) only for signature, not for verification. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding deterministic ECDSA signature * algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \ (PSA_ALG_DETERMINISTIC_ECDSA_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_ECDSA(alg) \ (((alg) & ~PSA_ALG_HASH_MASK & ~PSA_ALG_DSA_DETERMINISTIC_FLAG) == \ PSA_ALG_ECDSA_BASE) #define PSA_ALG_ECDSA_IS_DETERMINISTIC(alg) \ (((alg) & PSA_ALG_DSA_DETERMINISTIC_FLAG) != 0) #define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \ (PSA_ALG_IS_ECDSA(alg) && PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) #define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \ (PSA_ALG_IS_ECDSA(alg) && !PSA_ALG_ECDSA_IS_DETERMINISTIC(alg)) /** Get the hash used by a hash-and-sign signature algorithm. * * A hash-and-sign algorithm is a signature algorithm which is * composed of two phases: first a hashing phase which does not use * the key and produces a hash of the input message, then a signing * phase which only uses the hash and the key and not the message * itself. * * \param alg A signature algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_SIGN(\p alg) is true). * * \return The underlying hash algorithm if \p alg is a hash-and-sign * algorithm. * \return 0 if \p alg is a signature algorithm that does not * follow the hash-and-sign structure. * \return Unspecified if \p alg is not a signature algorithm or * if it is not supported by the implementation. */ #define PSA_ALG_SIGN_GET_HASH(alg) \ (PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \ PSA_ALG_IS_DSA(alg) || PSA_ALG_IS_ECDSA(alg) ? \ ((alg) & PSA_ALG_HASH_MASK) == 0 ? /*"raw" algorithm*/ 0 : \ ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ 0) /** RSA PKCS#1 v1.5 encryption. */ #define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12020000) #define PSA_ALG_RSA_OAEP_BASE ((psa_algorithm_t)0x12030000) /** RSA OAEP encryption. * * This is the encryption scheme defined by RFC 8017 * (PKCS#1: RSA Cryptography Specifications) under the name * RSAES-OAEP, with the message generation function MGF1. * * \param hash_alg The hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true) to use * for MGF1. * * \return The corresponding RSA OAEP signature algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_RSA_OAEP(hash_alg) \ (PSA_ALG_RSA_OAEP_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_IS_RSA_OAEP(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_BASE) #define PSA_ALG_RSA_OAEP_GET_HASH(alg) \ (PSA_ALG_IS_RSA_OAEP(alg) ? \ ((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH : \ 0) #define PSA_ALG_HKDF_BASE ((psa_algorithm_t)0x30000100) /** Macro to build an HKDF algorithm. * * For example, `PSA_ALG_HKDF(PSA_ALG_SHA256)` is HKDF using HMAC-SHA-256. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding HKDF algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_HKDF(hash_alg) \ (PSA_ALG_HKDF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** Whether the specified algorithm is an HKDF algorithm. * * HKDF is a family of key derivation algorithms that are based on a hash * function and the HMAC construction. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is an HKDF algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key derivation algorithm identifier. */ #define PSA_ALG_IS_HKDF(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_HKDF_BASE) #define PSA_ALG_HKDF_GET_HASH(hkdf_alg) \ (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_TLS12_PRF_BASE ((psa_algorithm_t)0x30000200) /** Macro to build a TLS-1.2 PRF algorithm. * * TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, * specified in Section 5 of RFC 5246. It is based on HMAC and can be * used with either SHA-256 or SHA-384. * * For the application to TLS-1.2, the salt and label arguments passed * to psa_key_derivation() are what's called 'seed' and 'label' in RFC 5246, * respectively. For example, for TLS key expansion, the salt is the * concatenation of ServerHello.Random + ClientHello.Random, * while the label is "key expansion". * * For example, `PSA_ALG_TLS12_PRF(PSA_ALG_SHA256)` represents the * TLS 1.2 PRF using HMAC-SHA-256. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding TLS-1.2 PRF algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_TLS12_PRF(hash_alg) \ (PSA_ALG_TLS12_PRF_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** Whether the specified algorithm is a TLS-1.2 PRF algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is a TLS-1.2 PRF algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key derivation algorithm identifier. */ #define PSA_ALG_IS_TLS12_PRF(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PRF_BASE) #define PSA_ALG_TLS12_PRF_GET_HASH(hkdf_alg) \ (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_TLS12_PSK_TO_MS_BASE ((psa_algorithm_t)0x30000300) /** Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm. * * In a pure-PSK handshake in TLS 1.2, the master secret is derived * from the PreSharedKey (PSK) through the application of padding * (RFC 4279, Section 2) and the TLS-1.2 PRF (RFC 5246, Section 5). * The latter is based on HMAC and can be used with either SHA-256 * or SHA-384. * * For the application to TLS-1.2, the salt passed to psa_key_derivation() * (and forwarded to the TLS-1.2 PRF) is the concatenation of the * ClientHello.Random + ServerHello.Random, while the label is "master secret" * or "extended master secret". * * For example, `PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA256)` represents the * TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256. * * \param hash_alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p hash_alg) is true). * * \return The corresponding TLS-1.2 PSK to MS algorithm. * \return Unspecified if \p alg is not a supported * hash algorithm. */ #define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \ (PSA_ALG_TLS12_PSK_TO_MS_BASE | ((hash_alg) & PSA_ALG_HASH_MASK)) /** Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key derivation algorithm identifier. */ #define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \ (((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_TLS12_PSK_TO_MS_BASE) #define PSA_ALG_TLS12_PSK_TO_MS_GET_HASH(hkdf_alg) \ (PSA_ALG_CATEGORY_HASH | ((hkdf_alg) & PSA_ALG_HASH_MASK)) #define PSA_ALG_KEY_DERIVATION_MASK ((psa_algorithm_t)0x010fffff) /** Use a shared secret as is. * * Specify this algorithm as the selection component of a key agreement * to use the raw result of the key agreement as key material. * * \warning The raw result of a key agreement algorithm such as finite-field * Diffie-Hellman or elliptic curve Diffie-Hellman has biases and should * not be used directly as key material. It can however be used as the secret * input in a key derivation algorithm. */ #define PSA_ALG_SELECT_RAW ((psa_algorithm_t)0x31000001) #define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \ (((alg) & PSA_ALG_KEY_DERIVATION_MASK) | PSA_ALG_CATEGORY_KEY_DERIVATION) #define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \ ((alg) & ~PSA_ALG_KEY_DERIVATION_MASK) #define PSA_ALG_FFDH_BASE ((psa_algorithm_t)0x22100000) /** The Diffie-Hellman key agreement algorithm. * * This algorithm combines the finite-field Diffie-Hellman (DH) key * agreement, also known as Diffie-Hellman-Merkle (DHM) key agreement, * to produce a shared secret from a private key and the peer's * public key, with a key selection or key derivation algorithm to produce * one or more shared keys and other shared cryptographic material. * * The shared secret produced by key agreement and passed as input to the * derivation or selection algorithm \p kdf_alg is the shared secret * `g^{ab}` in big-endian format. * It is `ceiling(m / 8)` bytes long where `m` is the size of the prime `p` * in bits. * * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such * that #PSA_ALG_IS_KEY_DERIVATION(\p hash_alg) is true) * or a key selection algorithm (\c PSA_ALG_XXX value such * that #PSA_ALG_IS_KEY_SELECTION(\p hash_alg) is true). * * \return The Diffie-Hellman algorithm with the specified * selection or derivation algorithm. */ #define PSA_ALG_FFDH(kdf_alg) \ (PSA_ALG_FFDH_BASE | ((kdf_alg) & PSA_ALG_KEY_DERIVATION_MASK)) /** Whether the specified algorithm is a finite field Diffie-Hellman algorithm. * * This includes every supported key selection or key agreement algorithm * for the output of the Diffie-Hellman calculation. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is a finite field Diffie-Hellman algorithm, 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key agreement algorithm identifier. */ #define PSA_ALG_IS_FFDH(alg) \ (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_FFDH_BASE) #define PSA_ALG_ECDH_BASE ((psa_algorithm_t)0x22200000) /** The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm. * * This algorithm combines the elliptic curve Diffie-Hellman key * agreement to produce a shared secret from a private key and the peer's * public key, with a key selection or key derivation algorithm to produce * one or more shared keys and other shared cryptographic material. * * The shared secret produced by key agreement and passed as input to the * derivation or selection algorithm \p kdf_alg is the x-coordinate of * the shared secret point. It is always `ceiling(m / 8)` bytes long where * `m` is the bit size associated with the curve, i.e. the bit size of the * order of the curve's coordinate field. When `m` is not a multiple of 8, * the byte containing the most significant bit of the shared secret * is padded with zero bits. The byte order is either little-endian * or big-endian depending on the curve type. * * - For Montgomery curves (curve types `PSA_ECC_CURVE_CURVEXXX`), * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` * in little-endian byte order. * The bit size is 448 for Curve448 and 255 for Curve25519. * - For Weierstrass curves over prime fields (curve types * `PSA_ECC_CURVE_SECPXXX` and `PSA_ECC_CURVE_BRAINPOOL_PXXX`), * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` * in big-endian byte order. * The bit size is `m = ceiling(log_2(p))` for the field `F_p`. * - For Weierstrass curves over binary fields (curve types * `PSA_ECC_CURVE_SECTXXX`), * the shared secret is the x-coordinate of `d_A Q_B = d_B Q_A` * in big-endian byte order. * The bit size is `m` for the field `F_{2^m}`. * * \param kdf_alg A key derivation algorithm (\c PSA_ALG_XXX value such * that #PSA_ALG_IS_KEY_DERIVATION(\p hash_alg) is true) * or a selection algorithm (\c PSA_ALG_XXX value such * that #PSA_ALG_IS_KEY_SELECTION(\p hash_alg) is true). * * \return The Diffie-Hellman algorithm with the specified * selection or derivation algorithm. */ #define PSA_ALG_ECDH(kdf_alg) \ (PSA_ALG_ECDH_BASE | ((kdf_alg) & PSA_ALG_KEY_DERIVATION_MASK)) /** Whether the specified algorithm is an elliptic curve Diffie-Hellman * algorithm. * * This includes every supported key selection or key agreement algorithm * for the output of the Diffie-Hellman calculation. * * \param alg An algorithm identifier (value of type #psa_algorithm_t). * * \return 1 if \c alg is an elliptic curve Diffie-Hellman algorithm, * 0 otherwise. * This macro may return either 0 or 1 if \c alg is not a supported * key agreement algorithm identifier. */ #define PSA_ALG_IS_ECDH(alg) \ (PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) == PSA_ALG_ECDH_BASE) /**@}*/ /** \defgroup key_management Key management * @{ */ /** Encoding of key lifetimes. */ typedef uint32_t psa_key_lifetime_t; /** Encoding of identifiers of persistent keys. */ typedef uint32_t psa_key_id_t; /** A volatile key slot retains its content as long as the application is * running. It is guaranteed to be erased on a power reset. */ #define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000) /** A persistent key slot retains its content as long as it is not explicitly * destroyed. */ #define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001) /** A write-once key slot may not be modified once a key has been set. * It will retain its content as long as the device remains operational. */ #define PSA_KEY_LIFETIME_WRITE_ONCE ((psa_key_lifetime_t)0x7fffffff) /** \brief Retrieve the lifetime of a key slot. * * The assignment of lifetimes to slots is implementation-dependent. * * \param key Slot to query. * \param[out] lifetime On success, the lifetime value. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_ARGUMENT * The key slot is invalid. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_get_key_lifetime(psa_key_slot_t key, psa_key_lifetime_t *lifetime); /** \brief Change the lifetime of a key slot. * * Whether the lifetime of a key slot can be changed at all, and if so * whether the lifetime of an occupied key slot can be changed, is * implementation-dependent. * * When creating a persistent key, you must call this function before creating * the key material with psa_import_key(), psa_generate_key() or * psa_generator_import_key(). To open an existing persistent key, you must * call this function with the correct lifetime value before using the slot * for a cryptographic operation. Once a slot's lifetime has been set, * the lifetime remains associated with the slot until a subsequent call to * psa_set_key_lifetime(), until the key is wiped with psa_destroy_key or * until the application terminates (or disconnects from the cryptography * service, if the implementation offers such a possibility). * * \param key Slot whose lifetime is to be changed. * \param lifetime The lifetime value to set for the given key slot. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INVALID_ARGUMENT * The key slot is invalid, * or the lifetime value is invalid. * \retval #PSA_ERROR_NOT_SUPPORTED * The implementation does not support the specified lifetime value, * at least for the specified key slot. * \retval #PSA_ERROR_OCCUPIED_SLOT * The slot contains a key, and the implementation does not support * changing the lifetime of an occupied slot. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_set_key_lifetime(psa_key_slot_t key, psa_key_lifetime_t lifetime); /** Allocate a key slot for a transient key, i.e. a key which is only stored * in volatile memory. * * The allocated key slot and its handle remain valid until the * application calls psa_close_key() or psa_destroy_key() or until the * application terminates. * * This function takes a key type and maximum size as arguments so that * the implementation can reserve a corresponding amount of memory. * Implementations are not required to enforce this limit: if the application * later tries to create a larger key or a key of a different type, it * is implementation-defined whether this may succeed. * * \param type The type of key that the slot will contain. * \param max_bits The maximum key size that the slot will contain. * \param[out] handle On success, a handle to a volatile key slot. * * \retval #PSA_SUCCESS * Success. The application can now use the value of `*handle` * to access the newly allocated key slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * There was not enough memory, or the maximum number of key slots * has been reached. * \retval #PSA_ERROR_INVALID_ARGUMENT * This implementation does not support this key type. */ psa_status_t psa_allocate_key(psa_key_type_t type, size_t max_bits, psa_key_handle_t *handle); /** Open a handle to an existing persistent key. * * Open a handle to a key which was previously created with psa_create_key(). * * \param lifetime The lifetime of the key. This designates a storage * area where the key material is stored. This must not * be #PSA_KEY_LIFETIME_VOLATILE. * \param id The persistent identifier of the key. * \param[out] handle On success, a handle to a key slot which contains * the data and metadata loaded from the specified * persistent location. * * \retval #PSA_SUCCESS * Success. The application can now use the value of `*handle` * to access the newly allocated key slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_INVALID_ARGUMENT * \p lifetime is invalid, for example #PSA_KEY_LIFETIME_VOLATILE. * \retval #PSA_ERROR_INVALID_ARGUMENT * \p id is invalid for the specified lifetime. * \retval #PSA_ERROR_NOT_SUPPORTED * \p lifetime is not supported. * \retval #PSA_ERROR_NOT_PERMITTED * The specified key exists, but the application does not have the * permission to access it. Note that this specification does not * define any way to create such a key, but it may be possible * through implementation-specific means. */ psa_status_t psa_open_key(psa_key_lifetime_t lifetime, psa_key_id_t id, psa_key_handle_t *handle); /** Create a new persistent key slot. * * Create a new persistent key slot and return a handle to it. The handle * remains valid until the application calls psa_close_key() or terminates. * The application can open the key again with psa_open_key() until it * removes the key by calling psa_destroy_key(). * * \param lifetime The lifetime of the key. This designates a storage * area where the key material is stored. This must not * be #PSA_KEY_LIFETIME_VOLATILE. * \param id The persistent identifier of the key. * \param type The type of key that the slot will contain. * \param max_bits The maximum key size that the slot will contain. * \param[out] handle On success, a handle to the newly created key slot. * When key material is later created in this key slot, * it will be saved to the specified persistent location. * * \retval #PSA_SUCCESS * Success. The application can now use the value of `*handle` * to access the newly allocated key slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_OCCUPIED_SLOT * There is already a key with the identifier \p id in the storage * area designated by \p lifetime. * \retval #PSA_ERROR_INVALID_ARGUMENT * \p lifetime is invalid, for example #PSA_KEY_LIFETIME_VOLATILE. * \retval #PSA_ERROR_INVALID_ARGUMENT * \p id is invalid for the specified lifetime. * \retval #PSA_ERROR_NOT_SUPPORTED * \p lifetime is not supported. * \retval #PSA_ERROR_NOT_PERMITTED * \p lifetime is valid, but the application does not have the * permission to create a key there. */ psa_status_t psa_create_key(psa_key_lifetime_t lifetime, psa_key_id_t id, psa_key_type_t type, size_t max_bits, psa_key_handle_t *handle); /** Close a key handle. * * If the handle designates a volatile key, destroy the key material and * free all associated resources, just like psa_destroy_key(). * * If the handle designates a persistent key, free all resources associated * with the key in volatile memory. The key slot in persistent storage is * not affected and can be opened again later with psa_open_key(). * * \param handle The key handle to close. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INVALID_HANDLE */ psa_status_t psa_close_key(psa_key_handle_t handle); /**@}*/ /** \defgroup import_export Key import and export * @{ */ /** * \brief Import a key in binary format. * * This function supports any output from psa_export_key(). Refer to the * documentation of psa_export_public_key() for the format of public keys * and to the documentation of psa_export_key() for the format for * other key types. * * This specification supports a single format for each key type. * Implementations may support other formats as long as the standard * format is supported. Implementations that support other formats * should ensure that the formats are clearly unambiguous so as to * minimize the risk that an invalid input is accidentally interpreted * according to a different format. * * \param key Slot where the key will be stored. This must be a * valid slot for a key of the chosen type. It must * be unoccupied. * \param type Key type (a \c PSA_KEY_TYPE_XXX value). On a successful * import, the key slot will contain a key of this type. * \param[in] data Buffer containing the key data. The content of this * buffer is interpreted according to \p type. It must * contain the format described in the documentation * of psa_export_key() or psa_export_public_key() for * the chosen type. * \param data_length Size of the \p data buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_NOT_SUPPORTED * The key type or key size is not supported, either by the * implementation in general or in this particular slot. * \retval #PSA_ERROR_INVALID_ARGUMENT * The key slot is invalid, * or the key data is not correctly formatted. * \retval #PSA_ERROR_OCCUPIED_SLOT * There is already a key in the specified slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_STORAGE_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_import_key(psa_key_slot_t key, psa_key_type_t type, const uint8_t *data, size_t data_length); /** * \brief Destroy a key and restore the slot to its default state. * * This function destroys the content of the key slot from both volatile * memory and, if applicable, non-volatile storage. Implementations shall * make a best effort to ensure that any previous content of the slot is * unrecoverable. * * This function also erases any metadata such as policies. It returns the * specified slot to its default state. * * \param key The key slot to erase. * * \retval #PSA_SUCCESS * The slot's content, if any, has been erased. * \retval #PSA_ERROR_NOT_PERMITTED * The slot holds content and cannot be erased because it is * read-only, either due to a policy or due to physical restrictions. * \retval #PSA_ERROR_INVALID_ARGUMENT * The specified slot number does not designate a valid slot. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * There was an failure in communication with the cryptoprocessor. * The key material may still be present in the cryptoprocessor. * \retval #PSA_ERROR_STORAGE_FAILURE * The storage is corrupted. Implementations shall make a best effort * to erase key material even in this stage, however applications * should be aware that it may be impossible to guarantee that the * key material is not recoverable in such cases. * \retval #PSA_ERROR_TAMPERING_DETECTED * An unexpected condition which is not a storage corruption or * a communication failure occurred. The cryptoprocessor may have * been compromised. * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_destroy_key(psa_key_slot_t key); /** * \brief Get basic metadata about a key. * * \param key Slot whose content is queried. This must * be an occupied key slot. * \param[out] type On success, the key type (a \c PSA_KEY_TYPE_XXX value). * This may be a null pointer, in which case the key type * is not written. * \param[out] bits On success, the key size in bits. * This may be a null pointer, in which case the key size * is not written. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_get_key_information(psa_key_slot_t key, psa_key_type_t *type, size_t *bits); /** * \brief Export a key in binary format. * * The output of this function can be passed to psa_import_key() to * create an equivalent object. * * If the implementation of psa_import_key() supports other formats * beyond the format specified here, the output from psa_export_key() * must use the representation specified here, not the original * representation. * * For standard key types, the output format is as follows: * * - For symmetric keys (including MAC keys), the format is the * raw bytes of the key. * - For DES, the key data consists of 8 bytes. The parity bits must be * correct. * - For Triple-DES, the format is the concatenation of the * two or three DES keys. * - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEYPAIR), the format * is the non-encrypted DER encoding of the representation defined by * PKCS\#1 (RFC 8017) as `RSAPrivateKey`, version 0. * ``` * RSAPrivateKey ::= SEQUENCE { * version INTEGER, -- must be 0 * modulus INTEGER, -- n * publicExponent INTEGER, -- e * privateExponent INTEGER, -- d * prime1 INTEGER, -- p * prime2 INTEGER, -- q * exponent1 INTEGER, -- d mod (p-1) * exponent2 INTEGER, -- d mod (q-1) * coefficient INTEGER, -- (inverse of q) mod p * } * ``` * - For DSA private keys (#PSA_KEY_TYPE_DSA_KEYPAIR), the format * is the non-encrypted DER encoding of the representation used by * OpenSSL and OpenSSH, whose structure is described in ASN.1 as follows: * ``` * DSAPrivateKey ::= SEQUENCE { * version INTEGER, -- must be 0 * prime INTEGER, -- p * subprime INTEGER, -- q * generator INTEGER, -- g * public INTEGER, -- y * private INTEGER, -- x * } * ``` * - For elliptic curve key pairs (key types for which * #PSA_KEY_TYPE_IS_ECC_KEYPAIR is true), the format is * a representation of the private value as a `ceiling(m/8)`-byte string * where `m` is the bit size associated with the curve, i.e. the bit size * of the order of the curve's coordinate field. This byte string is * in little-endian order for Montgomery curves (curve types * `PSA_ECC_CURVE_CURVEXXX`), and in big-endian order for Weierstrass * curves (curve types `PSA_ECC_CURVE_SECTXXX`, `PSA_ECC_CURVE_SECPXXX` * and `PSA_ECC_CURVE_BRAINPOOL_PXXX`). * This is the content of the `privateKey` field of the `ECPrivateKey` * format defined by RFC 5915. * - For public keys (key types for which #PSA_KEY_TYPE_IS_PUBLIC_KEY is * true), the format is the same as for psa_export_public_key(). * * \param key Slot whose content is to be exported. This must * be an occupied key slot. * \param[out] data Buffer where the key data is to be written. * \param data_size Size of the \p data buffer in bytes. * \param[out] data_length On success, the number of bytes * that make up the key data. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p data buffer is too small. You can determine a * sufficient buffer size by calling * #PSA_KEY_EXPORT_MAX_SIZE(\c type, \c bits) * where \c type is the key type * and \c bits is the key size in bits. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_export_key(psa_key_slot_t key, uint8_t *data, size_t data_size, size_t *data_length); /** * \brief Export a public key or the public part of a key pair in binary format. * * The output of this function can be passed to psa_import_key() to * create an object that is equivalent to the public key. * * The format is the DER representation defined by RFC 5280 as * `SubjectPublicKeyInfo`, with the `subjectPublicKey` format * specified below. * ``` * SubjectPublicKeyInfo ::= SEQUENCE { * algorithm AlgorithmIdentifier, * subjectPublicKey BIT STRING } * AlgorithmIdentifier ::= SEQUENCE { * algorithm OBJECT IDENTIFIER, * parameters ANY DEFINED BY algorithm OPTIONAL } * ``` * * - For RSA public keys (#PSA_KEY_TYPE_RSA_PUBLIC_KEY), * the `subjectPublicKey` format is defined by RFC 3279 §2.3.1 as * `RSAPublicKey`, * with the OID `rsaEncryption`, * and with the parameters `NULL`. * ``` * pkcs-1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) * rsadsi(113549) pkcs(1) 1 } * rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 } * * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER } -- e * ``` * - For DSA public keys (#PSA_KEY_TYPE_DSA_PUBLIC_KEY), * the `subjectPublicKey` format is defined by RFC 3279 §2.3.2 as * `DSAPublicKey`, * with the OID `id-dsa`, * and with the parameters `DSS-Parms`. * ``` * id-dsa OBJECT IDENTIFIER ::= { * iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 } * * Dss-Parms ::= SEQUENCE { * p INTEGER, * q INTEGER, * g INTEGER } * DSAPublicKey ::= INTEGER -- public key, Y * ``` * - For elliptic curve public keys (key types for which * #PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY is true), * the `subjectPublicKey` format is defined by RFC 3279 §2.3.5 as * `ECPoint`, which contains the uncompressed * representation defined by SEC1 §2.3.3. * The OID is `id-ecPublicKey`, * and the parameters must be given as a `namedCurve` OID as specified in * RFC 5480 §2.1.1.1 or other applicable standards. * ``` * ansi-X9-62 OBJECT IDENTIFIER ::= * { iso(1) member-body(2) us(840) 10045 } * id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 } * id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 } * * ECPoint ::= ... * -- first 8 bits: 0x04; * -- then x_P as a `ceiling(m/8)`-byte string, big endian; * -- then y_P as a `ceiling(m/8)`-byte string, big endian; * -- where `m` is the bit size associated with the curve, * -- i.e. the bit size of `q` for a curve over `F_q`. * * EcpkParameters ::= CHOICE { -- other choices are not allowed * namedCurve OBJECT IDENTIFIER } * ``` * * \param key Slot whose content is to be exported. This must * be an occupied key slot. * \param[out] data Buffer where the key data is to be written. * \param data_size Size of the \p data buffer in bytes. * \param[out] data_length On success, the number of bytes * that make up the key data. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_INVALID_ARGUMENT * The key is neither a public key nor a key pair. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p data buffer is too small. You can determine a * sufficient buffer size by calling * #PSA_KEY_EXPORT_MAX_SIZE(#PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(\c type), \c bits) * where \c type is the key type * and \c bits is the key size in bits. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_export_public_key(psa_key_slot_t key, uint8_t *data, size_t data_size, size_t *data_length); /**@}*/ /** \defgroup policy Key policies * @{ */ /** \brief Encoding of permitted usage on a key. */ typedef uint32_t psa_key_usage_t; /** Whether the key may be exported. * * A public key or the public part of a key pair may always be exported * regardless of the value of this permission flag. * * If a key does not have export permission, implementations shall not * allow the key to be exported in plain form from the cryptoprocessor, * whether through psa_export_key() or through a proprietary interface. * The key may however be exportable in a wrapped form, i.e. in a form * where it is encrypted by another key. */ #define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001) /** Whether the key may be used to encrypt a message. * * This flag allows the key to be used for a symmetric encryption operation, * for an AEAD encryption-and-authentication operation, * or for an asymmetric encryption operation, * if otherwise permitted by the key's type and policy. * * For a key pair, this concerns the public key. */ #define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100) /** Whether the key may be used to decrypt a message. * * This flag allows the key to be used for a symmetric decryption operation, * for an AEAD decryption-and-verification operation, * or for an asymmetric decryption operation, * if otherwise permitted by the key's type and policy. * * For a key pair, this concerns the private key. */ #define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200) /** Whether the key may be used to sign a message. * * This flag allows the key to be used for a MAC calculation operation * or for an asymmetric signature operation, * if otherwise permitted by the key's type and policy. * * For a key pair, this concerns the private key. */ #define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400) /** Whether the key may be used to verify a message signature. * * This flag allows the key to be used for a MAC verification operation * or for an asymmetric signature verification operation, * if otherwise permitted by by the key's type and policy. * * For a key pair, this concerns the public key. */ #define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800) /** Whether the key may be used to derive other keys. */ #define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00001000) /** The type of the key policy data structure. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_key_policy_s psa_key_policy_t; /** \brief Initialize a key policy structure to a default that forbids all * usage of the key. * * \param[out] policy The policy object to initialize. */ void psa_key_policy_init(psa_key_policy_t *policy); /** \brief Set the standard fields of a policy structure. * * Note that this function does not make any consistency check of the * parameters. The values are only checked when applying the policy to * a key slot with psa_set_key_policy(). * * \param[out] policy The policy object to modify. * \param usage The permitted uses for the key. * \param alg The algorithm that the key may be used for. */ void psa_key_policy_set_usage(psa_key_policy_t *policy, psa_key_usage_t usage, psa_algorithm_t alg); /** \brief Retrieve the usage field of a policy structure. * * \param[in] policy The policy object to query. * * \return The permitted uses for a key with this policy. */ psa_key_usage_t psa_key_policy_get_usage(const psa_key_policy_t *policy); /** \brief Retrieve the algorithm field of a policy structure. * * \param[in] policy The policy object to query. * * \return The permitted algorithm for a key with this policy. */ psa_algorithm_t psa_key_policy_get_algorithm(const psa_key_policy_t *policy); /** \brief Set the usage policy on a key slot. * * This function must be called on an empty key slot, before importing, * generating or creating a key in the slot. Changing the policy of an * existing key is not permitted. * * Implementations may set restrictions on supported key policies * depending on the key type and the key slot. * * \param key The key slot whose policy is to be changed. * \param[in] policy The policy object to query. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_OCCUPIED_SLOT * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_set_key_policy(psa_key_slot_t key, const psa_key_policy_t *policy); /** \brief Get the usage policy for a key slot. * * \param key The key slot whose policy is being queried. * \param[out] policy On success, the key's policy. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_get_key_policy(psa_key_slot_t key, psa_key_policy_t *policy); /**@}*/ /** \defgroup hash Message digests * @{ */ /** The type of the state data structure for multipart hash operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_hash_operation_s psa_hash_operation_t; /** The size of the output of psa_hash_finish(), in bytes. * * This is also the hash size that psa_hash_verify() expects. * * \param alg A hash algorithm (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_HASH(\p alg) is true), or an HMAC algorithm * (#PSA_ALG_HMAC(\c hash_alg) where \c hash_alg is a * hash algorithm). * * \return The hash size for the specified hash algorithm. * If the hash algorithm is not recognized, return 0. * An implementation may return either 0 or the correct size * for a hash algorithm that it recognizes, but does not support. */ #define PSA_HASH_SIZE(alg) \ ( \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_MD2 ? 16 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_MD4 ? 16 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_MD5 ? 16 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_RIPEMD160 ? 20 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_1 ? 20 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_224 ? 28 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_256 ? 32 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_384 ? 48 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_512 ? 64 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_512_224 ? 28 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA_512_256 ? 32 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA3_224 ? 28 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA3_256 ? 32 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA3_384 ? 48 : \ PSA_ALG_HMAC_GET_HASH(alg) == PSA_ALG_SHA3_512 ? 64 : \ 0) /** Start a multipart hash operation. * * The sequence of operations to calculate a hash (message digest) * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_hash_setup() to specify the algorithm. * -# Call psa_hash_update() zero, one or more times, passing a fragment * of the message each time. The hash that is calculated is the hash * of the concatenation of these messages in order. * -# To calculate the hash, call psa_hash_finish(). * To compare the hash with an expected value, call psa_hash_verify(). * * The application may call psa_hash_abort() at any time after the operation * has been initialized with psa_hash_setup(). * * After a successful call to psa_hash_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_hash_update(). * - A call to psa_hash_finish(), psa_hash_verify() or psa_hash_abort(). * * \param[out] operation The operation object to use. * \param alg The hash algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_HASH(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a hash algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_setup(psa_hash_operation_t *operation, psa_algorithm_t alg); /** Add a message fragment to a multipart hash operation. * * The application must call psa_hash_setup() before calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active hash operation. * \param[in] input Buffer containing the message fragment to hash. * \param input_length Size of the \p input buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_update(psa_hash_operation_t *operation, const uint8_t *input, size_t input_length); /** Finish the calculation of the hash of a message. * * The application must call psa_hash_setup() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). * * When this function returns, the operation becomes inactive. * * \warning Applications should not call this function if they expect * a specific value for the hash. Call psa_hash_verify() instead. * Beware that comparing integrity or authenticity data such as * hash values with a function such as \c memcmp is risky * because the time taken by the comparison may leak information * about the hashed data which could allow an attacker to guess * a valid hash and thereby bypass security controls. * * \param[in,out] operation Active hash operation. * \param[out] hash Buffer where the hash is to be written. * \param hash_size Size of the \p hash buffer in bytes. * \param[out] hash_length On success, the number of bytes * that make up the hash value. This is always * #PSA_HASH_SIZE(\c alg) where \c alg is the * hash algorithm that is calculated. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p hash buffer is too small. You can determine a * sufficient buffer size by calling #PSA_HASH_SIZE(\c alg) * where \c alg is the hash algorithm that is calculated. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_finish(psa_hash_operation_t *operation, uint8_t *hash, size_t hash_size, size_t *hash_length); /** Finish the calculation of the hash of a message and compare it with * an expected value. * * The application must call psa_hash_setup() before calling this function. * This function calculates the hash of the message formed by concatenating * the inputs passed to preceding calls to psa_hash_update(). It then * compares the calculated hash with the expected hash passed as a * parameter to this function. * * When this function returns, the operation becomes inactive. * * \note Implementations shall make the best effort to ensure that the * comparison between the actual hash and the expected hash is performed * in constant time. * * \param[in,out] operation Active hash operation. * \param[in] hash Buffer containing the expected hash value. * \param hash_length Size of the \p hash buffer in bytes. * * \retval #PSA_SUCCESS * The expected hash is identical to the actual hash of the message. * \retval #PSA_ERROR_INVALID_SIGNATURE * The hash of the message was calculated successfully, but it * differs from the expected hash. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_verify(psa_hash_operation_t *operation, const uint8_t *hash, size_t hash_length); /** Abort a hash operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_hash_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_hash_setup(), whether it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_hash_operation_t operation = {0}`. * * In particular, calling psa_hash_abort() after the operation has been * terminated by a call to psa_hash_abort(), psa_hash_finish() or * psa_hash_verify() is safe and has no effect. * * \param[in,out] operation Initialized hash operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active hash operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_hash_abort(psa_hash_operation_t *operation); /**@}*/ /** \defgroup MAC Message authentication codes * @{ */ /** The type of the state data structure for multipart MAC operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_mac_operation_s psa_mac_operation_t; /** Start a multipart MAC calculation operation. * * This function sets up the calculation of the MAC * (message authentication code) of a byte string. * To verify the MAC of a message against an * expected value, use psa_mac_verify_setup() instead. * * The sequence of operations to calculate a MAC is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_mac_sign_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_mac_update() zero, one or more times, passing a fragment * of the message each time. The MAC that is calculated is the MAC * of the concatenation of these messages in order. * -# At the end of the message, call psa_mac_sign_finish() to finish * calculating the MAC value and retrieve it. * * The application may call psa_mac_abort() at any time after the operation * has been initialized with psa_mac_sign_setup(). * * After a successful call to psa_mac_sign_setup(), the application must * eventually terminate the operation through one of the following methods: * - A failed call to psa_mac_update(). * - A call to psa_mac_sign_finish() or psa_mac_abort(). * * \param[out] operation The operation object to use. * \param key Slot containing the key to use for the operation. * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a MAC algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_mac_sign_setup(psa_mac_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); /** Start a multipart MAC verification operation. * * This function sets up the verification of the MAC * (message authentication code) of a byte string against an expected value. * * The sequence of operations to verify a MAC is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_mac_verify_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_mac_update() zero, one or more times, passing a fragment * of the message each time. The MAC that is calculated is the MAC * of the concatenation of these messages in order. * -# At the end of the message, call psa_mac_verify_finish() to finish * calculating the actual MAC of the message and verify it against * the expected value. * * The application may call psa_mac_abort() at any time after the operation * has been initialized with psa_mac_verify_setup(). * * After a successful call to psa_mac_verify_setup(), the application must * eventually terminate the operation through one of the following methods: * - A failed call to psa_mac_update(). * - A call to psa_mac_verify_finish() or psa_mac_abort(). * * \param[out] operation The operation object to use. * \param key Slot containing the key to use for the operation. * \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value * such that #PSA_ALG_IS_MAC(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a MAC algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_mac_verify_setup(psa_mac_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); /** Add a message fragment to a multipart MAC operation. * * The application must call psa_mac_sign_setup() or psa_mac_verify_setup() * before calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active MAC operation. * \param[in] input Buffer containing the message fragment to add to * the MAC calculation. * \param input_length Size of the \p input buffer in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_update(psa_mac_operation_t *operation, const uint8_t *input, size_t input_length); /** Finish the calculation of the MAC of a message. * * The application must call psa_mac_sign_setup() before calling this function. * This function calculates the MAC of the message formed by concatenating * the inputs passed to preceding calls to psa_mac_update(). * * When this function returns, the operation becomes inactive. * * \warning Applications should not call this function if they expect * a specific value for the MAC. Call psa_mac_verify_finish() instead. * Beware that comparing integrity or authenticity data such as * MAC values with a function such as \c memcmp is risky * because the time taken by the comparison may leak information * about the MAC value which could allow an attacker to guess * a valid MAC and thereby bypass security controls. * * \param[in,out] operation Active MAC operation. * \param[out] mac Buffer where the MAC value is to be written. * \param mac_size Size of the \p mac buffer in bytes. * \param[out] mac_length On success, the number of bytes * that make up the MAC value. This is always * #PSA_MAC_FINAL_SIZE(\c key_type, \c key_bits, \c alg) * where \c key_type and \c key_bits are the type and * bit-size respectively of the key and \c alg is the * MAC algorithm that is calculated. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p mac buffer is too small. You can determine a * sufficient buffer size by calling PSA_MAC_FINAL_SIZE(). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_sign_finish(psa_mac_operation_t *operation, uint8_t *mac, size_t mac_size, size_t *mac_length); /** Finish the calculation of the MAC of a message and compare it with * an expected value. * * The application must call psa_mac_verify_setup() before calling this function. * This function calculates the MAC of the message formed by concatenating * the inputs passed to preceding calls to psa_mac_update(). It then * compares the calculated MAC with the expected MAC passed as a * parameter to this function. * * When this function returns, the operation becomes inactive. * * \note Implementations shall make the best effort to ensure that the * comparison between the actual MAC and the expected MAC is performed * in constant time. * * \param[in,out] operation Active MAC operation. * \param[in] mac Buffer containing the expected MAC value. * \param mac_length Size of the \p mac buffer in bytes. * * \retval #PSA_SUCCESS * The expected MAC is identical to the actual MAC of the message. * \retval #PSA_ERROR_INVALID_SIGNATURE * The MAC of the message was calculated successfully, but it * differs from the expected MAC. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or already completed). * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_verify_finish(psa_mac_operation_t *operation, const uint8_t *mac, size_t mac_length); /** Abort a MAC operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_mac_sign_setup() or psa_mac_verify_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_mac_sign_setup() or psa_mac_verify_setup(), whether * it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_mac_operation_t operation = {0}`. * * In particular, calling psa_mac_abort() after the operation has been * terminated by a call to psa_mac_abort(), psa_mac_sign_finish() or * psa_mac_verify_finish() is safe and has no effect. * * \param[in,out] operation Initialized MAC operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active MAC operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_mac_abort(psa_mac_operation_t *operation); /**@}*/ /** \defgroup cipher Symmetric ciphers * @{ */ /** The type of the state data structure for multipart cipher operations. * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_cipher_operation_s psa_cipher_operation_t; /** Set the key for a multipart symmetric encryption operation. * * The sequence of operations to encrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_cipher_encrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call either psa_cipher_generate_iv() or psa_cipher_set_iv() to * generate or set the IV (initialization vector). You should use * psa_cipher_generate_iv() unless the protocol you are implementing * requires a specific IV value. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized with psa_cipher_encrypt_setup(). * * After a successful call to psa_cipher_encrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_cipher_generate_iv(), psa_cipher_set_iv() * or psa_cipher_update(). * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param[out] operation The operation object to use. * \param key Slot containing the key to use for the operation. * \param alg The cipher algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_CIPHER(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a cipher algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); /** Set the key for a multipart symmetric decryption operation. * * The sequence of operations to decrypt a message with a symmetric cipher * is as follows: * -# Allocate an operation object which will be passed to all the functions * listed here. * -# Call psa_cipher_decrypt_setup() to specify the algorithm and key. * The key remains associated with the operation even if the content * of the key slot changes. * -# Call psa_cipher_update() with the IV (initialization vector) for the * decryption. If the IV is prepended to the ciphertext, you can call * psa_cipher_update() on a buffer containing the IV followed by the * beginning of the message. * -# Call psa_cipher_update() zero, one or more times, passing a fragment * of the message each time. * -# Call psa_cipher_finish(). * * The application may call psa_cipher_abort() at any time after the operation * has been initialized with psa_cipher_decrypt_setup(). * * After a successful call to psa_cipher_decrypt_setup(), the application must * eventually terminate the operation. The following events terminate an * operation: * - A failed call to psa_cipher_update(). * - A call to psa_cipher_finish() or psa_cipher_abort(). * * \param[out] operation The operation object to use. * \param key Slot containing the key to use for the operation. * \param alg The cipher algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_CIPHER(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not a cipher algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t *operation, psa_key_slot_t key, psa_algorithm_t alg); /** Generate an IV for a symmetric encryption operation. * * This function generates a random IV (initialization vector), nonce * or initial counter value for the encryption operation as appropriate * for the chosen algorithm, key type and key size. * * The application must call psa_cipher_encrypt_setup() before * calling this function. * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active cipher operation. * \param[out] iv Buffer where the generated IV is to be written. * \param iv_size Size of the \p iv buffer in bytes. * \param[out] iv_length On success, the number of bytes of the * generated IV. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or IV already set). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p iv buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t *operation, unsigned char *iv, size_t iv_size, size_t *iv_length); /** Set the IV for a symmetric encryption or decryption operation. * * This function sets the random IV (initialization vector), nonce * or initial counter value for the encryption or decryption operation. * * The application must call psa_cipher_encrypt_setup() before * calling this function. * * If this function returns an error status, the operation becomes inactive. * * \note When encrypting, applications should use psa_cipher_generate_iv() * instead of this function, unless implementing a protocol that requires * a non-random IV. * * \param[in,out] operation Active cipher operation. * \param[in] iv Buffer containing the IV to use. * \param iv_length Size of the IV in bytes. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, or IV already set). * \retval #PSA_ERROR_INVALID_ARGUMENT * The size of \p iv is not acceptable for the chosen algorithm, * or the chosen algorithm does not use an IV. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_set_iv(psa_cipher_operation_t *operation, const unsigned char *iv, size_t iv_length); /** Encrypt or decrypt a message fragment in an active cipher operation. * * Before calling this function, you must: * 1. Call either psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(). * The choice of setup function determines whether this function * encrypts or decrypts its input. * 2. If the algorithm requires an IV, call psa_cipher_generate_iv() * (recommended when encrypting) or psa_cipher_set_iv(). * * If this function returns an error status, the operation becomes inactive. * * \param[in,out] operation Active cipher operation. * \param[in] input Buffer containing the message fragment to * encrypt or decrypt. * \param input_length Size of the \p input buffer in bytes. * \param[out] output Buffer where the output is to be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, IV required but * not set, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_update(psa_cipher_operation_t *operation, const uint8_t *input, size_t input_length, unsigned char *output, size_t output_size, size_t *output_length); /** Finish encrypting or decrypting a message in a cipher operation. * * The application must call psa_cipher_encrypt_setup() or * psa_cipher_decrypt_setup() before calling this function. The choice * of setup function determines whether this function encrypts or * decrypts its input. * * This function finishes the encryption or decryption of the message * formed by concatenating the inputs passed to preceding calls to * psa_cipher_update(). * * When this function returns, the operation becomes inactive. * * \param[in,out] operation Active cipher operation. * \param[out] output Buffer where the output is to be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_BAD_STATE * The operation state is not valid (not started, IV required but * not set, or already completed). * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_finish(psa_cipher_operation_t *operation, uint8_t *output, size_t output_size, size_t *output_length); /** Abort a cipher operation. * * Aborting an operation frees all associated resources except for the * \p operation structure itself. Once aborted, the operation object * can be reused for another operation by calling * psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() again. * * You may call this function any time after the operation object has * been initialized by any of the following methods: * - A call to psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(), * whether it succeeds or not. * - Initializing the \c struct to all-bits-zero. * - Initializing the \c struct to logical zeros, e.g. * `psa_cipher_operation_t operation = {0}`. * * In particular, calling psa_cipher_abort() after the operation has been * terminated by a call to psa_cipher_abort() or psa_cipher_finish() * is safe and has no effect. * * \param[in,out] operation Initialized cipher operation. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \p operation is not an active cipher operation. * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_cipher_abort(psa_cipher_operation_t *operation); /**@}*/ /** \defgroup aead Authenticated encryption with associated data (AEAD) * @{ */ /** The tag size for an AEAD algorithm, in bytes. * * \param alg An AEAD algorithm * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * * \return The tag size for the specified algorithm. * If the AEAD algorithm does not have an identified * tag that can be distinguished from the rest of * the ciphertext, return 0. * If the AEAD algorithm is not recognized, return 0. * An implementation may return either 0 or a * correct size for an AEAD algorithm that it * recognizes, but does not support. */ #define PSA_AEAD_TAG_LENGTH(alg) \ (PSA_ALG_IS_AEAD(alg) ? \ (((alg) & PSA_ALG_AEAD_TAG_LENGTH_MASK) >> PSA_AEAD_TAG_LENGTH_OFFSET) : \ 0) /** Process an authenticated encryption operation. * * \param key Slot containing the key to use. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * \param[in] nonce Nonce or IV to use. * \param nonce_length Size of the \p nonce buffer in bytes. * \param[in] additional_data Additional data that will be authenticated * but not encrypted. * \param additional_data_length Size of \p additional_data in bytes. * \param[in] plaintext Data that will be authenticated and * encrypted. * \param plaintext_length Size of \p plaintext in bytes. * \param[out] ciphertext Output buffer for the authenticated and * encrypted data. The additional data is not * part of this output. For algorithms where the * encrypted data and the authentication tag * are defined as separate outputs, the * authentication tag is appended to the * encrypted data. * \param ciphertext_size Size of the \p ciphertext buffer in bytes. * This must be at least * #PSA_AEAD_ENCRYPT_OUTPUT_SIZE(\p alg, * \p plaintext_length). * \param[out] ciphertext_length On success, the size of the output * in the \b ciphertext buffer. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not an AEAD algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_aead_encrypt(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *plaintext, size_t plaintext_length, uint8_t *ciphertext, size_t ciphertext_size, size_t *ciphertext_length); /** Process an authenticated decryption operation. * * \param key Slot containing the key to use. * \param alg The AEAD algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_AEAD(\p alg) is true). * \param[in] nonce Nonce or IV to use. * \param nonce_length Size of the \p nonce buffer in bytes. * \param[in] additional_data Additional data that has been authenticated * but not encrypted. * \param additional_data_length Size of \p additional_data in bytes. * \param[in] ciphertext Data that has been authenticated and * encrypted. For algorithms where the * encrypted data and the authentication tag * are defined as separate inputs, the buffer * must contain the encrypted data followed * by the authentication tag. * \param ciphertext_length Size of \p ciphertext in bytes. * \param[out] plaintext Output buffer for the decrypted data. * \param plaintext_size Size of the \p plaintext buffer in bytes. * This must be at least * #PSA_AEAD_DECRYPT_OUTPUT_SIZE(\p alg, * \p ciphertext_length). * \param[out] plaintext_length On success, the size of the output * in the \b plaintext buffer. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_INVALID_SIGNATURE * The ciphertext is not authentic. * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \p key is not compatible with \p alg. * \retval #PSA_ERROR_NOT_SUPPORTED * \p alg is not supported or is not an AEAD algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_aead_decrypt(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *nonce, size_t nonce_length, const uint8_t *additional_data, size_t additional_data_length, const uint8_t *ciphertext, size_t ciphertext_length, uint8_t *plaintext, size_t plaintext_size, size_t *plaintext_length); /**@}*/ /** \defgroup asymmetric Asymmetric cryptography * @{ */ /** * \brief ECDSA signature size for a given curve bit size * * \param curve_bits Curve size in bits. * \return Signature size in bytes. * * \note This macro returns a compile-time constant if its argument is one. */ #define PSA_ECDSA_SIGNATURE_SIZE(curve_bits) \ (PSA_BITS_TO_BYTES(curve_bits) * 2) /** * \brief Sign a hash or short message with a private key. * * Note that to perform a hash-and-sign signature algorithm, you must * first calculate the hash by calling psa_hash_setup(), psa_hash_update() * and psa_hash_finish(). Then pass the resulting hash as the \p hash * parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg) * to determine the hash algorithm to use. * * \param key Key slot containing an asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \p key. * \param[in] hash The hash or message to sign. * \param hash_length Size of the \p hash buffer in bytes. * \param[out] signature Buffer where the signature is to be written. * \param signature_size Size of the \p signature buffer in bytes. * \param[out] signature_length On success, the number of bytes * that make up the returned signature value. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p signature buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \p key. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_sign(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, uint8_t *signature, size_t signature_size, size_t *signature_length); /** * \brief Verify the signature a hash or short message using a public key. * * Note that to perform a hash-and-sign signature algorithm, you must * first calculate the hash by calling psa_hash_setup(), psa_hash_update() * and psa_hash_finish(). Then pass the resulting hash as the \p hash * parameter to this function. You can use #PSA_ALG_SIGN_GET_HASH(\p alg) * to determine the hash algorithm to use. * * \param key Key slot containing a public key or an * asymmetric key pair. * \param alg A signature algorithm that is compatible with * the type of \p key. * \param[in] hash The hash or message whose signature is to be * verified. * \param hash_length Size of the \p hash buffer in bytes. * \param[in] signature Buffer containing the signature to verify. * \param signature_length Size of the \p signature buffer in bytes. * * \retval #PSA_SUCCESS * The signature is valid. * \retval #PSA_ERROR_INVALID_SIGNATURE * The calculation was perfomed successfully, but the passed * signature is not a valid signature. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_verify(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *hash, size_t hash_length, const uint8_t *signature, size_t signature_length); #define PSA_RSA_MINIMUM_PADDING_SIZE(alg) \ (PSA_ALG_IS_RSA_OAEP(alg) ? \ 2 * PSA_HASH_FINAL_SIZE(PSA_ALG_RSA_OAEP_GET_HASH(alg)) + 1 : \ 11 /*PKCS#1v1.5*/) /** * \brief Encrypt a short message with a public key. * * \param key Key slot containing a public key or an * asymmetric key pair. * \param alg An asymmetric encryption algorithm that is * compatible with the type of \p key. * \param[in] input The message to encrypt. * \param input_length Size of the \p input buffer in bytes. * \param[in] salt A salt or label, if supported by the * encryption algorithm. * If the algorithm does not support a * salt, pass \c NULL. * If the algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * * - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is * supported. * \param salt_length Size of the \p salt buffer in bytes. * If \p salt is \c NULL, pass 0. * \param[out] output Buffer where the encrypted message is to * be written. * \param output_size Size of the \p output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \p key. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_encrypt(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length); /** * \brief Decrypt a short message with a private key. * * \param key Key slot containing an asymmetric key pair. * \param alg An asymmetric encryption algorithm that is * compatible with the type of \p key. * \param[in] input The message to decrypt. * \param input_length Size of the \p input buffer in bytes. * \param[in] salt A salt or label, if supported by the * encryption algorithm. * If the algorithm does not support a * salt, pass \c NULL. * If the algorithm supports an optional * salt and you do not want to pass a salt, * pass \c NULL. * * - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is * supported. * \param salt_length Size of the \p salt buffer in bytes. * If \p salt is \c NULL, pass 0. * \param[out] output Buffer where the decrypted message is to * be written. * \param output_size Size of the \c output buffer in bytes. * \param[out] output_length On success, the number of bytes * that make up the returned output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BUFFER_TOO_SMALL * The size of the \p output buffer is too small. You can * determine a sufficient buffer size by calling * #PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(\c key_type, \c key_bits, \p alg) * where \c key_type and \c key_bits are the type and bit-size * respectively of \p key. * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_INVALID_PADDING * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_asymmetric_decrypt(psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *input, size_t input_length, const uint8_t *salt, size_t salt_length, uint8_t *output, size_t output_size, size_t *output_length); /**@}*/ /** \defgroup generators Generators * @{ */ /** The type of the state data structure for generators. * * Before calling any function on a generator, the application must * initialize it by any of the following means: * - Set the structure to all-bits-zero, for example: * \code * psa_crypto_generator_t generator; * memset(&generator, 0, sizeof(generator)); * \endcode * - Initialize the structure to logical zero values, for example: * \code * psa_crypto_generator_t generator = {0}; * \endcode * - Initialize the structure to the initializer #PSA_CRYPTO_GENERATOR_INIT, * for example: * \code * psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT; * \endcode * - Assign the result of the function psa_crypto_generator_init() * to the structure, for example: * \code * psa_crypto_generator_t generator; * generator = psa_crypto_generator_init(); * \endcode * * This is an implementation-defined \c struct. Applications should not * make any assumptions about the content of this structure except * as directed by the documentation of a specific implementation. */ typedef struct psa_crypto_generator_s psa_crypto_generator_t; /** \def PSA_CRYPTO_GENERATOR_INIT * * This macro returns a suitable initializer for a generator object * of type #psa_crypto_generator_t. */ #ifdef __DOXYGEN_ONLY__ /* This is an example definition for documentation purposes. * Implementations should define a suitable value in `crypto_struct.h`. */ #define PSA_CRYPTO_GENERATOR_INIT {0} #endif /** Return an initial value for a generator object. */ static psa_crypto_generator_t psa_crypto_generator_init(void); /** Retrieve the current capacity of a generator. * * The capacity of a generator is the maximum number of bytes that it can * return. Reading *N* bytes from a generator reduces its capacity by *N*. * * \param[in] generator The generator to query. * \param[out] capacity On success, the capacity of the generator. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_COMMUNICATION_FAILURE */ psa_status_t psa_get_generator_capacity(const psa_crypto_generator_t *generator, size_t *capacity); /** Read some data from a generator. * * This function reads and returns a sequence of bytes from a generator. * The data that is read is discarded from the generator. The generator's * capacity is decreased by the number of bytes read. * * \param[in,out] generator The generator object to read from. * \param[out] output Buffer where the generator output will be * written. * \param output_length Number of bytes to output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_INSUFFICIENT_CAPACITY * There were fewer than \p output_length bytes * in the generator. Note that in this case, no * output is written to the output buffer. * The generator's capacity is set to 0, thus * subsequent calls to this function will not * succeed, even with a smaller output buffer. * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_generator_read(psa_crypto_generator_t *generator, uint8_t *output, size_t output_length); /** Create a symmetric key from data read from a generator. * * This function reads a sequence of bytes from a generator and imports * these bytes as a key. * The data that is read is discarded from the generator. The generator's * capacity is decreased by the number of bytes read. * * This function is equivalent to calling #psa_generator_read and * passing the resulting output to #psa_import_key, but * if the implementation provides an isolation boundary then * the key material is not exposed outside the isolation boundary. * * \param key Slot where the key will be stored. This must be a * valid slot for a key of the chosen type. It must * be unoccupied. * \param type Key type (a \c PSA_KEY_TYPE_XXX value). * This must be a symmetric key type. * \param bits Key size in bits. * \param[in,out] generator The generator object to read from. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_INSUFFICIENT_CAPACITY * There were fewer than \p output_length bytes * in the generator. Note that in this case, no * output is written to the output buffer. * The generator's capacity is set to 0, thus * subsequent calls to this function will not * succeed, even with a smaller output buffer. * \retval #PSA_ERROR_NOT_SUPPORTED * The key type or key size is not supported, either by the * implementation in general or in this particular slot. * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_INVALID_ARGUMENT * The key slot is invalid. * \retval #PSA_ERROR_OCCUPIED_SLOT * There is already a key in the specified slot. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_STORAGE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_generator_import_key(psa_key_slot_t key, psa_key_type_t type, size_t bits, psa_crypto_generator_t *generator); /** Abort a generator. * * Once a generator has been aborted, its capacity is zero. * Aborting a generator frees all associated resources except for the * \c generator structure itself. * * This function may be called at any time as long as the generator * object has been initialized to #PSA_CRYPTO_GENERATOR_INIT, to * psa_crypto_generator_init() or a zero value. In particular, it is valid * to call psa_generator_abort() twice, or to call psa_generator_abort() * on a generator that has not been set up. * * Once aborted, the generator object may be called. * * \param[in,out] generator The generator to abort. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_BAD_STATE * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_generator_abort(psa_crypto_generator_t *generator); /** Use the maximum possible capacity for a generator. * * Use this value as the capacity argument when setting up a generator * to indicate that the generator should have the maximum possible capacity. * The value of the maximum possible capacity depends on the generator * algorithm. */ #define PSA_GENERATOR_UNBRIDLED_CAPACITY ((size_t)(-1)) /**@}*/ /** \defgroup derivation Key derivation * @{ */ /** Set up a key derivation operation. * * A key derivation algorithm takes three inputs: a secret input \p key and * two non-secret inputs \p label and p salt. * The result of this function is a byte generator which can * be used to produce keys and other cryptographic material. * * The role of \p label and \p salt is as follows: * - For HKDF (#PSA_ALG_HKDF), \p salt is the salt used in the "extract" step * and \p label is the info string used in the "expand" step. * * \param[in,out] generator The generator object to set up. It must * have been initialized to all-bits-zero, * a logical zero (`{0}`), * \c PSA_CRYPTO_GENERATOR_INIT or * psa_crypto_generator_init(). * \param key Slot containing the secret key to use. * \param alg The key derivation algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_KEY_DERIVATION(\p alg) is true). * \param[in] salt Salt to use. * \param salt_length Size of the \p salt buffer in bytes. * \param[in] label Label to use. * \param label_length Size of the \p label buffer in bytes. * \param capacity The maximum number of bytes that the * generator will be able to provide. * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \c key is not compatible with \c alg, * or \p capacity is too large for the specified algorithm and key. * \retval #PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a key derivation algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_key_derivation(psa_crypto_generator_t *generator, psa_key_slot_t key, psa_algorithm_t alg, const uint8_t *salt, size_t salt_length, const uint8_t *label, size_t label_length, size_t capacity); /** Set up a key agreement operation. * * A key agreement algorithm takes two inputs: a private key \p private_key * a public key \p peer_key. * The result of this function is a byte generator which can * be used to produce keys and other cryptographic material. * * The resulting generator always has the maximum capacity permitted by * the algorithm. * * \param[in,out] generator The generator object to set up. It must * have been initialized to all-bits-zero, * a logical zero (`{0}`), * \c PSA_CRYPTO_GENERATOR_INIT or * psa_crypto_generator_init(). * \param private_key Slot containing the private key to use. * \param[in] peer_key Public key of the peer. It must be * in the same format that psa_import_key() * accepts. The standard formats for public * keys are documented in the documentation * of psa_export_public_key(). * \param peer_key_length Size of \p peer_key in bytes. * \param alg The key agreement algorithm to compute * (\c PSA_ALG_XXX value such that * #PSA_ALG_IS_KEY_AGREEMENT(\p alg) is true). * * \retval #PSA_SUCCESS * Success. * \retval #PSA_ERROR_EMPTY_SLOT * \retval #PSA_ERROR_NOT_PERMITTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \c private_key is not compatible with \c alg, * or \p peer_key is not valid for \c alg or not compatible with * \c private_key. * \retval #PSA_ERROR_NOT_SUPPORTED * \c alg is not supported or is not a key derivation algorithm. * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED */ psa_status_t psa_key_agreement(psa_crypto_generator_t *generator, psa_key_slot_t private_key, const uint8_t *peer_key, size_t peer_key_length, psa_algorithm_t alg); /**@}*/ /** \defgroup random Random generation * @{ */ /** * \brief Generate random bytes. * * \warning This function **can** fail! Callers MUST check the return status * and MUST NOT use the content of the output buffer if the return * status is not #PSA_SUCCESS. * * \note To generate a key, use psa_generate_key() instead. * * \param[out] output Output buffer for the generated data. * \param output_size Number of bytes to generate and output. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_generate_random(uint8_t *output, size_t output_size); /** Extra parameters for RSA key generation. * * You may pass a pointer to a structure of this type as the \c extra * parameter to psa_generate_key(). */ typedef struct { uint32_t e; /**< Public exponent value. Default: 65537. */ } psa_generate_key_extra_rsa; /** * \brief Generate a key or key pair. * * \param key Slot where the key will be stored. This must be a * valid slot for a key of the chosen type. It must * be unoccupied. * \param type Key type (a \c PSA_KEY_TYPE_XXX value). * \param bits Key size in bits. * \param[in] extra Extra parameters for key generation. The * interpretation of this parameter depends on * \p type. All types support \c NULL to use * default parameters. Implementation that support * the generation of vendor-specific key types * that allow extra parameters shall document * the format of these extra parameters and * the default values. For standard parameters, * the meaning of \p extra is as follows: * - For a symmetric key type (a type such * that #PSA_KEY_TYPE_IS_ASYMMETRIC(\p type) is * false), \p extra must be \c NULL. * - For an elliptic curve key type (a type * such that #PSA_KEY_TYPE_IS_ECC(\p type) is * false), \p extra must be \c NULL. * - For an RSA key (\p type is * #PSA_KEY_TYPE_RSA_KEYPAIR), \p extra is an * optional #psa_generate_key_extra_rsa structure * specifying the public exponent. The * default public exponent used when \p extra * is \c NULL is 65537. * \param extra_size Size of the buffer that \p extra * points to, in bytes. Note that if \p extra is * \c NULL then \p extra_size must be zero. * * \retval #PSA_SUCCESS * \retval #PSA_ERROR_NOT_SUPPORTED * \retval #PSA_ERROR_INVALID_ARGUMENT * \retval #PSA_ERROR_INSUFFICIENT_MEMORY * \retval #PSA_ERROR_INSUFFICIENT_ENTROPY * \retval #PSA_ERROR_COMMUNICATION_FAILURE * \retval #PSA_ERROR_HARDWARE_FAILURE * \retval #PSA_ERROR_TAMPERING_DETECTED * \retval #PSA_ERROR_BAD_STATE * The library has not been previously initialized by psa_crypto_init(). * It is implementation-dependent whether a failure to initialize * results in this error code. */ psa_status_t psa_generate_key(psa_key_slot_t key, psa_key_type_t type, size_t bits, const void *extra, size_t extra_size); /**@}*/ #ifdef __cplusplus } #endif /* The file "crypto_sizes.h" contains definitions for size calculation * macros whose definitions are implementation-specific. */ #include "crypto_sizes.h" /* The file "crypto_struct.h" contains definitions for * implementation-specific structs that are declared above. */ #include "crypto_struct.h" /* The file "crypto_extra.h" contains vendor-specific definitions. This * can include vendor-defined algorithms, extra functions, etc. */ #include "crypto_extra.h" #endif /* PSA_CRYPTO_H */