/* * Implementation of NIST SP 800-38F key wrapping, supporting KW and KWP modes * only * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Definition of Key Wrapping: * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf * RFC 3394 "Advanced Encryption Standard (AES) Key Wrap Algorithm" * RFC 5649 "Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm" * * Note: RFC 3394 defines different methodology for intermediate operations for * the wrapping and unwrapping operation than the definition in NIST SP 800-38F. */ #include "common.h" #if defined(MBEDTLS_NIST_KW_C) #include "mbedtls/nist_kw.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include "mbedtls/constant_time.h" #include #include #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C) #include "mbedtls/platform.h" #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */ #if !defined(MBEDTLS_NIST_KW_ALT) #define KW_SEMIBLOCK_LENGTH 8 #define MIN_SEMIBLOCKS_COUNT 3 /*! The 64-bit default integrity check value (ICV) for KW mode. */ static const unsigned char NIST_KW_ICV1[] = {0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6}; /*! The 32-bit default integrity check value (ICV) for KWP mode. */ static const unsigned char NIST_KW_ICV2[] = {0xA6, 0x59, 0x59, 0xA6}; /* * Initialize context */ void mbedtls_nist_kw_init( mbedtls_nist_kw_context *ctx ) { memset( ctx, 0, sizeof( mbedtls_nist_kw_context ) ); } int mbedtls_nist_kw_setkey( mbedtls_nist_kw_context *ctx, mbedtls_cipher_id_t cipher, const unsigned char *key, unsigned int keybits, const int is_wrap ) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; const mbedtls_cipher_info_t *cipher_info; cipher_info = mbedtls_cipher_info_from_values( cipher, keybits, MBEDTLS_MODE_ECB ); if( cipher_info == NULL ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); if( cipher_info->block_size != 16 ) return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); /* * SP 800-38F currently defines AES cipher as the only block cipher allowed: * "For KW and KWP, the underlying block cipher shall be approved, and the * block size shall be 128 bits. Currently, the AES block cipher, with key * lengths of 128, 192, or 256 bits, is the only block cipher that fits * this profile." * Currently we don't support other 128 bit block ciphers for key wrapping, * such as Camellia and Aria. */ if( cipher != MBEDTLS_CIPHER_ID_AES ) return( MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE ); mbedtls_cipher_free( &ctx->cipher_ctx ); if( ( ret = mbedtls_cipher_setup( &ctx->cipher_ctx, cipher_info ) ) != 0 ) return( ret ); if( ( ret = mbedtls_cipher_setkey( &ctx->cipher_ctx, key, keybits, is_wrap ? MBEDTLS_ENCRYPT : MBEDTLS_DECRYPT ) ) != 0 ) { return( ret ); } return( 0 ); } /* * Free context */ void mbedtls_nist_kw_free( mbedtls_nist_kw_context *ctx ) { mbedtls_cipher_free( &ctx->cipher_ctx ); mbedtls_platform_zeroize( ctx, sizeof( mbedtls_nist_kw_context ) ); } /* * Helper function for Xoring the uint64_t "t" with the encrypted A. * Defined in NIST SP 800-38F section 6.1 */ static void calc_a_xor_t( unsigned char A[KW_SEMIBLOCK_LENGTH], uint64_t t ) { size_t i = 0; for( i = 0; i < sizeof( t ); i++ ) { A[i] ^= ( t >> ( ( sizeof( t ) - 1 - i ) * 8 ) ) & 0xff; } } /* * KW-AE as defined in SP 800-38F section 6.2 * KWP-AE as defined in SP 800-38F section 6.3 */ int mbedtls_nist_kw_wrap( mbedtls_nist_kw_context *ctx, mbedtls_nist_kw_mode_t mode, const unsigned char *input, size_t in_len, unsigned char *output, size_t *out_len, size_t out_size ) { int ret = 0; size_t semiblocks = 0; size_t s; size_t olen, padlen = 0; uint64_t t = 0; unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2]; unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2]; *out_len = 0; /* * Generate the String to work on */ if( mode == MBEDTLS_KW_MODE_KW ) { if( out_size < in_len + KW_SEMIBLOCK_LENGTH ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } /* * According to SP 800-38F Table 1, the plaintext length for KW * must be between 2 to 2^54-1 semiblocks inclusive. */ if( in_len < 16 || #if SIZE_MAX > 0x1FFFFFFFFFFFFF8 in_len > 0x1FFFFFFFFFFFFF8 || #endif in_len % KW_SEMIBLOCK_LENGTH != 0 ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } memcpy( output, NIST_KW_ICV1, KW_SEMIBLOCK_LENGTH ); memmove( output + KW_SEMIBLOCK_LENGTH, input, in_len ); } else { if( in_len % 8 != 0 ) { padlen = ( 8 - ( in_len % 8 ) ); } if( out_size < in_len + KW_SEMIBLOCK_LENGTH + padlen ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } /* * According to SP 800-38F Table 1, the plaintext length for KWP * must be between 1 and 2^32-1 octets inclusive. */ if( in_len < 1 #if SIZE_MAX > 0xFFFFFFFF || in_len > 0xFFFFFFFF #endif ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } memcpy( output, NIST_KW_ICV2, KW_SEMIBLOCK_LENGTH / 2 ); MBEDTLS_PUT_UINT32_BE( ( in_len & 0xffffffff ), output, KW_SEMIBLOCK_LENGTH / 2 ); memcpy( output + KW_SEMIBLOCK_LENGTH, input, in_len ); memset( output + KW_SEMIBLOCK_LENGTH + in_len, 0, padlen ); } semiblocks = ( ( in_len + padlen ) / KW_SEMIBLOCK_LENGTH ) + 1; s = 6 * ( semiblocks - 1 ); if( mode == MBEDTLS_KW_MODE_KWP && in_len <= KW_SEMIBLOCK_LENGTH ) { memcpy( inbuff, output, 16 ); ret = mbedtls_cipher_update( &ctx->cipher_ctx, inbuff, 16, output, &olen ); if( ret != 0 ) goto cleanup; } else { unsigned char *R2 = output + KW_SEMIBLOCK_LENGTH; unsigned char *A = output; /* * Do the wrapping function W, as defined in RFC 3394 section 2.2.1 */ if( semiblocks < MIN_SEMIBLOCKS_COUNT ) { ret = MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA; goto cleanup; } /* Calculate intermediate values */ for( t = 1; t <= s; t++ ) { memcpy( inbuff, A, KW_SEMIBLOCK_LENGTH ); memcpy( inbuff + KW_SEMIBLOCK_LENGTH, R2, KW_SEMIBLOCK_LENGTH ); ret = mbedtls_cipher_update( &ctx->cipher_ctx, inbuff, 16, outbuff, &olen ); if( ret != 0 ) goto cleanup; memcpy( A, outbuff, KW_SEMIBLOCK_LENGTH ); calc_a_xor_t( A, t ); memcpy( R2, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH ); R2 += KW_SEMIBLOCK_LENGTH; if( R2 >= output + ( semiblocks * KW_SEMIBLOCK_LENGTH ) ) R2 = output + KW_SEMIBLOCK_LENGTH; } } *out_len = semiblocks * KW_SEMIBLOCK_LENGTH; cleanup: if( ret != 0) { memset( output, 0, semiblocks * KW_SEMIBLOCK_LENGTH ); } mbedtls_platform_zeroize( inbuff, KW_SEMIBLOCK_LENGTH * 2 ); mbedtls_platform_zeroize( outbuff, KW_SEMIBLOCK_LENGTH * 2 ); return( ret ); } /* * W-1 function as defined in RFC 3394 section 2.2.2 * This function assumes the following: * 1. Output buffer is at least of size ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH. * 2. The input buffer is of size semiblocks * KW_SEMIBLOCK_LENGTH. * 3. Minimal number of semiblocks is 3. * 4. A is a buffer to hold the first semiblock of the input buffer. */ static int unwrap( mbedtls_nist_kw_context *ctx, const unsigned char *input, size_t semiblocks, unsigned char A[KW_SEMIBLOCK_LENGTH], unsigned char *output, size_t* out_len ) { int ret = 0; const size_t s = 6 * ( semiblocks - 1 ); size_t olen; uint64_t t = 0; unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2]; unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2]; unsigned char *R = NULL; *out_len = 0; if( semiblocks < MIN_SEMIBLOCKS_COUNT ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } memcpy( A, input, KW_SEMIBLOCK_LENGTH ); memmove( output, input + KW_SEMIBLOCK_LENGTH, ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH ); R = output + ( semiblocks - 2 ) * KW_SEMIBLOCK_LENGTH; /* Calculate intermediate values */ for( t = s; t >= 1; t-- ) { calc_a_xor_t( A, t ); memcpy( inbuff, A, KW_SEMIBLOCK_LENGTH ); memcpy( inbuff + KW_SEMIBLOCK_LENGTH, R, KW_SEMIBLOCK_LENGTH ); ret = mbedtls_cipher_update( &ctx->cipher_ctx, inbuff, 16, outbuff, &olen ); if( ret != 0 ) goto cleanup; memcpy( A, outbuff, KW_SEMIBLOCK_LENGTH ); /* Set R as LSB64 of outbuff */ memcpy( R, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH ); if( R == output ) R = output + ( semiblocks - 2 ) * KW_SEMIBLOCK_LENGTH; else R -= KW_SEMIBLOCK_LENGTH; } *out_len = ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH; cleanup: if( ret != 0) memset( output, 0, ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH ); mbedtls_platform_zeroize( inbuff, sizeof( inbuff ) ); mbedtls_platform_zeroize( outbuff, sizeof( outbuff ) ); return( ret ); } /* * KW-AD as defined in SP 800-38F section 6.2 * KWP-AD as defined in SP 800-38F section 6.3 */ int mbedtls_nist_kw_unwrap( mbedtls_nist_kw_context *ctx, mbedtls_nist_kw_mode_t mode, const unsigned char *input, size_t in_len, unsigned char *output, size_t *out_len, size_t out_size ) { int ret = 0; size_t i, olen; unsigned char A[KW_SEMIBLOCK_LENGTH]; unsigned char diff, bad_padding = 0; *out_len = 0; if( out_size < in_len - KW_SEMIBLOCK_LENGTH ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } if( mode == MBEDTLS_KW_MODE_KW ) { /* * According to SP 800-38F Table 1, the ciphertext length for KW * must be between 3 to 2^54 semiblocks inclusive. */ if( in_len < 24 || #if SIZE_MAX > 0x200000000000000 in_len > 0x200000000000000 || #endif in_len % KW_SEMIBLOCK_LENGTH != 0 ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } ret = unwrap( ctx, input, in_len / KW_SEMIBLOCK_LENGTH, A, output, out_len ); if( ret != 0 ) goto cleanup; /* Check ICV in "constant-time" */ diff = mbedtls_ct_memcmp( NIST_KW_ICV1, A, KW_SEMIBLOCK_LENGTH ); if( diff != 0 ) { ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED; goto cleanup; } } else if( mode == MBEDTLS_KW_MODE_KWP ) { size_t padlen = 0; uint32_t Plen; /* * According to SP 800-38F Table 1, the ciphertext length for KWP * must be between 2 to 2^29 semiblocks inclusive. */ if( in_len < KW_SEMIBLOCK_LENGTH * 2 || #if SIZE_MAX > 0x100000000 in_len > 0x100000000 || #endif in_len % KW_SEMIBLOCK_LENGTH != 0 ) { return( MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA ); } if( in_len == KW_SEMIBLOCK_LENGTH * 2 ) { unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2]; ret = mbedtls_cipher_update( &ctx->cipher_ctx, input, 16, outbuff, &olen ); if( ret != 0 ) goto cleanup; memcpy( A, outbuff, KW_SEMIBLOCK_LENGTH ); memcpy( output, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH ); mbedtls_platform_zeroize( outbuff, sizeof( outbuff ) ); *out_len = KW_SEMIBLOCK_LENGTH; } else { /* in_len >= KW_SEMIBLOCK_LENGTH * 3 */ ret = unwrap( ctx, input, in_len / KW_SEMIBLOCK_LENGTH, A, output, out_len ); if( ret != 0 ) goto cleanup; } /* Check ICV in "constant-time" */ diff = mbedtls_ct_memcmp( NIST_KW_ICV2, A, KW_SEMIBLOCK_LENGTH / 2 ); if( diff != 0 ) { ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED; } Plen = MBEDTLS_GET_UINT32_BE( A, KW_SEMIBLOCK_LENGTH / 2 ); /* * Plen is the length of the plaintext, when the input is valid. * If Plen is larger than the plaintext and padding, padlen will be * larger than 8, because of the type wrap around. */ padlen = in_len - KW_SEMIBLOCK_LENGTH - Plen; if ( padlen > 7 ) { padlen &= 7; ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED; } /* Check padding in "constant-time" */ for( diff = 0, i = 0; i < KW_SEMIBLOCK_LENGTH; i++ ) { if( i >= KW_SEMIBLOCK_LENGTH - padlen ) diff |= output[*out_len - KW_SEMIBLOCK_LENGTH + i]; else bad_padding |= output[*out_len - KW_SEMIBLOCK_LENGTH + i]; } if( diff != 0 ) { ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED; } if( ret != 0 ) { goto cleanup; } memset( output + Plen, 0, padlen ); *out_len = Plen; } else { ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE; goto cleanup; } cleanup: if( ret != 0 ) { memset( output, 0, *out_len ); *out_len = 0; } mbedtls_platform_zeroize( &bad_padding, sizeof( bad_padding) ); mbedtls_platform_zeroize( &diff, sizeof( diff ) ); mbedtls_platform_zeroize( A, sizeof( A ) ); return( ret ); } #endif /* !MBEDTLS_NIST_KW_ALT */ #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C) #define KW_TESTS 3 /* * Test vectors taken from NIST * https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/CAVP-TESTING-BLOCK-CIPHER-MODES#KW */ static const unsigned int key_len[KW_TESTS] = { 16, 24, 32 }; static const unsigned char kw_key[KW_TESTS][32] = { { 0x75, 0x75, 0xda, 0x3a, 0x93, 0x60, 0x7c, 0xc2, 0xbf, 0xd8, 0xce, 0xc7, 0xaa, 0xdf, 0xd9, 0xa6 }, { 0x2d, 0x85, 0x26, 0x08, 0x1d, 0x02, 0xfb, 0x5b, 0x85, 0xf6, 0x9a, 0xc2, 0x86, 0xec, 0xd5, 0x7d, 0x40, 0xdf, 0x5d, 0xf3, 0x49, 0x47, 0x44, 0xd3 }, { 0x11, 0x2a, 0xd4, 0x1b, 0x48, 0x56, 0xc7, 0x25, 0x4a, 0x98, 0x48, 0xd3, 0x0f, 0xdd, 0x78, 0x33, 0x5b, 0x03, 0x9a, 0x48, 0xa8, 0x96, 0x2c, 0x4d, 0x1c, 0xb7, 0x8e, 0xab, 0xd5, 0xda, 0xd7, 0x88 } }; static const unsigned char kw_msg[KW_TESTS][40] = { { 0x42, 0x13, 0x6d, 0x3c, 0x38, 0x4a, 0x3e, 0xea, 0xc9, 0x5a, 0x06, 0x6f, 0xd2, 0x8f, 0xed, 0x3f }, { 0x95, 0xc1, 0x1b, 0xf5, 0x35, 0x3a, 0xfe, 0xdb, 0x98, 0xfd, 0xd6, 0xc8, 0xca, 0x6f, 0xdb, 0x6d, 0xa5, 0x4b, 0x74, 0xb4, 0x99, 0x0f, 0xdc, 0x45, 0xc0, 0x9d, 0x15, 0x8f, 0x51, 0xce, 0x62, 0x9d, 0xe2, 0xaf, 0x26, 0xe3, 0x25, 0x0e, 0x6b, 0x4c }, { 0x1b, 0x20, 0xbf, 0x19, 0x90, 0xb0, 0x65, 0xd7, 0x98, 0xe1, 0xb3, 0x22, 0x64, 0xad, 0x50, 0xa8, 0x74, 0x74, 0x92, 0xba, 0x09, 0xa0, 0x4d, 0xd1 } }; static const size_t kw_msg_len[KW_TESTS] = { 16, 40, 24 }; static const size_t kw_out_len[KW_TESTS] = { 24, 48, 32 }; static const unsigned char kw_res[KW_TESTS][48] = { { 0x03, 0x1f, 0x6b, 0xd7, 0xe6, 0x1e, 0x64, 0x3d, 0xf6, 0x85, 0x94, 0x81, 0x6f, 0x64, 0xca, 0xa3, 0xf5, 0x6f, 0xab, 0xea, 0x25, 0x48, 0xf5, 0xfb }, { 0x44, 0x3c, 0x6f, 0x15, 0x09, 0x83, 0x71, 0x91, 0x3e, 0x5c, 0x81, 0x4c, 0xa1, 0xa0, 0x42, 0xec, 0x68, 0x2f, 0x7b, 0x13, 0x6d, 0x24, 0x3a, 0x4d, 0x6c, 0x42, 0x6f, 0xc6, 0x97, 0x15, 0x63, 0xe8, 0xa1, 0x4a, 0x55, 0x8e, 0x09, 0x64, 0x16, 0x19, 0xbf, 0x03, 0xfc, 0xaf, 0x90, 0xb1, 0xfc, 0x2d }, { 0xba, 0x8a, 0x25, 0x9a, 0x47, 0x1b, 0x78, 0x7d, 0xd5, 0xd5, 0x40, 0xec, 0x25, 0xd4, 0x3d, 0x87, 0x20, 0x0f, 0xda, 0xdc, 0x6d, 0x1f, 0x05, 0xd9, 0x16, 0x58, 0x4f, 0xa9, 0xf6, 0xcb, 0xf5, 0x12 } }; static const unsigned char kwp_key[KW_TESTS][32] = { { 0x78, 0x65, 0xe2, 0x0f, 0x3c, 0x21, 0x65, 0x9a, 0xb4, 0x69, 0x0b, 0x62, 0x9c, 0xdf, 0x3c, 0xc4 }, { 0xf5, 0xf8, 0x96, 0xa3, 0xbd, 0x2f, 0x4a, 0x98, 0x23, 0xef, 0x16, 0x2b, 0x00, 0xb8, 0x05, 0xd7, 0xde, 0x1e, 0xa4, 0x66, 0x26, 0x96, 0xa2, 0x58 }, { 0x95, 0xda, 0x27, 0x00, 0xca, 0x6f, 0xd9, 0xa5, 0x25, 0x54, 0xee, 0x2a, 0x8d, 0xf1, 0x38, 0x6f, 0x5b, 0x94, 0xa1, 0xa6, 0x0e, 0xd8, 0xa4, 0xae, 0xf6, 0x0a, 0x8d, 0x61, 0xab, 0x5f, 0x22, 0x5a } }; static const unsigned char kwp_msg[KW_TESTS][31] = { { 0xbd, 0x68, 0x43, 0xd4, 0x20, 0x37, 0x8d, 0xc8, 0x96 }, { 0x6c, 0xcd, 0xd5, 0x85, 0x18, 0x40, 0x97, 0xeb, 0xd5, 0xc3, 0xaf, 0x3e, 0x47, 0xd0, 0x2c, 0x19, 0x14, 0x7b, 0x4d, 0x99, 0x5f, 0x96, 0x43, 0x66, 0x91, 0x56, 0x75, 0x8c, 0x13, 0x16, 0x8f }, { 0xd1 } }; static const size_t kwp_msg_len[KW_TESTS] = { 9, 31, 1 }; static const unsigned char kwp_res[KW_TESTS][48] = { { 0x41, 0xec, 0xa9, 0x56, 0xd4, 0xaa, 0x04, 0x7e, 0xb5, 0xcf, 0x4e, 0xfe, 0x65, 0x96, 0x61, 0xe7, 0x4d, 0xb6, 0xf8, 0xc5, 0x64, 0xe2, 0x35, 0x00 }, { 0x4e, 0x9b, 0xc2, 0xbc, 0xbc, 0x6c, 0x1e, 0x13, 0xd3, 0x35, 0xbc, 0xc0, 0xf7, 0x73, 0x6a, 0x88, 0xfa, 0x87, 0x53, 0x66, 0x15, 0xbb, 0x8e, 0x63, 0x8b, 0xcc, 0x81, 0x66, 0x84, 0x68, 0x17, 0x90, 0x67, 0xcf, 0xa9, 0x8a, 0x9d, 0x0e, 0x33, 0x26 }, { 0x06, 0xba, 0x7a, 0xe6, 0xf3, 0x24, 0x8c, 0xfd, 0xcf, 0x26, 0x75, 0x07, 0xfa, 0x00, 0x1b, 0xc4 } }; static const size_t kwp_out_len[KW_TESTS] = { 24, 40, 16 }; int mbedtls_nist_kw_self_test( int verbose ) { mbedtls_nist_kw_context ctx; unsigned char out[48]; size_t olen; int i; int ret = 0; mbedtls_nist_kw_init( &ctx ); for( i = 0; i < KW_TESTS; i++ ) { if( verbose != 0 ) mbedtls_printf( " KW-AES-%u ", (unsigned int) key_len[i] * 8 ); ret = mbedtls_nist_kw_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, kw_key[i], key_len[i] * 8, 1 ); if( ret != 0 ) { if( verbose != 0 ) mbedtls_printf( " KW: setup failed " ); goto end; } ret = mbedtls_nist_kw_wrap( &ctx, MBEDTLS_KW_MODE_KW, kw_msg[i], kw_msg_len[i], out, &olen, sizeof( out ) ); if( ret != 0 || kw_out_len[i] != olen || memcmp( out, kw_res[i], kw_out_len[i] ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed. "); ret = 1; goto end; } if( ( ret = mbedtls_nist_kw_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, kw_key[i], key_len[i] * 8, 0 ) ) != 0 ) { if( verbose != 0 ) mbedtls_printf( " KW: setup failed "); goto end; } ret = mbedtls_nist_kw_unwrap( &ctx, MBEDTLS_KW_MODE_KW, out, olen, out, &olen, sizeof( out ) ); if( ret != 0 || olen != kw_msg_len[i] || memcmp( out, kw_msg[i], kw_msg_len[i] ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed\n" ); ret = 1; goto end; } if( verbose != 0 ) mbedtls_printf( " passed\n" ); } for( i = 0; i < KW_TESTS; i++ ) { olen = sizeof( out ); if( verbose != 0 ) mbedtls_printf( " KWP-AES-%u ", (unsigned int) key_len[i] * 8 ); ret = mbedtls_nist_kw_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, kwp_key[i], key_len[i] * 8, 1 ); if( ret != 0 ) { if( verbose != 0 ) mbedtls_printf( " KWP: setup failed " ); goto end; } ret = mbedtls_nist_kw_wrap( &ctx, MBEDTLS_KW_MODE_KWP, kwp_msg[i], kwp_msg_len[i], out, &olen, sizeof( out ) ); if( ret != 0 || kwp_out_len[i] != olen || memcmp( out, kwp_res[i], kwp_out_len[i] ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed. "); ret = 1; goto end; } if( ( ret = mbedtls_nist_kw_setkey( &ctx, MBEDTLS_CIPHER_ID_AES, kwp_key[i], key_len[i] * 8, 0 ) ) != 0 ) { if( verbose != 0 ) mbedtls_printf( " KWP: setup failed "); goto end; } ret = mbedtls_nist_kw_unwrap( &ctx, MBEDTLS_KW_MODE_KWP, out, olen, out, &olen, sizeof( out ) ); if( ret != 0 || olen != kwp_msg_len[i] || memcmp( out, kwp_msg[i], kwp_msg_len[i] ) != 0 ) { if( verbose != 0 ) mbedtls_printf( "failed. "); ret = 1; goto end; } if( verbose != 0 ) mbedtls_printf( " passed\n" ); } end: mbedtls_nist_kw_free( &ctx ); if( verbose != 0 ) mbedtls_printf( "\n" ); return( ret ); } #endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */ #endif /* MBEDTLS_NIST_KW_C */