mbedtls/tests/suites/test_suite_psa_crypto.function
Gilles Peskine 16c0f4f787 Fix potential memory corruption on MAC/cipher setup failure
When psa_mac_start(), psa_encrypt_setup() or psa_cipher_setup()
failed, depending on when the failure happened, it was possible that
psa_mac_abort() or psa_cipher_abort() would crash because it would try
to call a free() function uninitialized data in the operation
structure. Refactor the functions so that they initialize the
operation structure before doing anything else.

Add non-regression tests and a few more positive and negative unit
tests for psa_mac_start() and psa_cipher_setup() (the latter via
psa_encrypt_setip()).
2018-09-12 16:23:53 +03:00

1803 lines
64 KiB
Plaintext

/* BEGIN_HEADER */
#include <stdint.h>
#include "psa/crypto.h"
#if(UINT32_MAX > SIZE_MAX)
#define PSA_CRYPTO_TEST_SIZE_T_RANGE( x ) ( ( x ) <= SIZE_MAX )
#else
#define PSA_CRYPTO_TEST_SIZE_T_RANGE( x ) 1
#endif
/** Test if a buffer is not all-bits zero.
*
* \param buffer Pointer to the beginning of the buffer.
* \param size Size of the buffer in bytes.
*
* \return 0 if the buffer is all-bits-zero.
* \return A nonzero value otherwise.
*/
int mem_is_nonzero( void *buffer, size_t size )
{
size_t i;
for( i = 0; i < size; i++ )
{
if( ( (unsigned char *) buffer )[i] != 0 )
return( i + 1 );
}
return( 0 );
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_PSA_CRYPTO_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void init_deinit( )
{
psa_status_t status;
int i;
for( i = 0; i <= 1; i++ )
{
status = psa_crypto_init( );
TEST_ASSERT( status == PSA_SUCCESS );
status = psa_crypto_init( );
TEST_ASSERT( status == PSA_SUCCESS );
mbedtls_psa_crypto_free( );
}
}
/* END_CASE */
/* BEGIN_CASE */
void import( data_t *data, int type, int expected_status )
{
int slot = 1;
psa_status_t status;
TEST_ASSERT( data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( data->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
status = psa_import_key( slot, type, data->x, data->len );
TEST_ASSERT( status == (psa_status_t) expected_status );
if( status == PSA_SUCCESS )
TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_export( data_t *data,
int type_arg,
int alg_arg,
int usage_arg,
int expected_bits,
int export_size_delta,
int expected_export_status,
int canonical_input )
{
int slot = 1;
int slot2 = slot + 1;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t status;
unsigned char *exported = NULL;
unsigned char *reexported = NULL;
size_t export_size;
size_t exported_length;
size_t reexported_length;
psa_key_type_t got_type;
size_t got_bits;
psa_key_policy_t policy;
TEST_ASSERT( data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( data->len ) );
export_size = (ssize_t) data->len + export_size_delta;
exported = mbedtls_calloc( 1, export_size );
TEST_ASSERT( exported != NULL );
if( ! canonical_input )
{
reexported = mbedtls_calloc( 1, export_size );
TEST_ASSERT( reexported != NULL );
}
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, usage_arg, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
/* Import the key */
TEST_ASSERT( psa_import_key( slot, type,
data->x, data->len ) == PSA_SUCCESS );
/* Test the key information */
TEST_ASSERT( psa_get_key_information( slot,
&got_type,
&got_bits ) == PSA_SUCCESS );
TEST_ASSERT( got_type == type );
TEST_ASSERT( got_bits == (size_t) expected_bits );
/* Export the key */
status = psa_export_key( slot,
exported, export_size,
&exported_length );
TEST_ASSERT( status == (psa_status_t) expected_export_status );
TEST_ASSERT( ! mem_is_nonzero( exported + exported_length,
export_size - exported_length ) );
if( status != PSA_SUCCESS )
{
TEST_ASSERT( exported_length == 0 );
goto destroy;
}
if( canonical_input )
{
TEST_ASSERT( exported_length == data->len );
TEST_ASSERT( memcmp( exported, data->x, data->len ) == 0 );
}
else
{
TEST_ASSERT( psa_set_key_policy( slot2, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot2, type,
exported,
export_size ) == PSA_SUCCESS );
TEST_ASSERT( psa_export_key( slot2,
reexported,
export_size,
&reexported_length ) == PSA_SUCCESS );
TEST_ASSERT( reexported_length == exported_length );
TEST_ASSERT( memcmp( reexported, exported,
exported_length ) == 0 );
}
destroy:
/* Destroy the key */
TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_information(
slot, NULL, NULL ) == PSA_ERROR_EMPTY_SLOT );
exit:
mbedtls_free( exported );
mbedtls_free( reexported );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_export_public_key( data_t *data,
int type_arg,
int alg_arg,
int expected_bits,
int public_key_expected_length,
int expected_export_status )
{
int slot = 1;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t status;
unsigned char *exported = NULL;
size_t export_size;
size_t exported_length;
psa_key_type_t got_type;
size_t got_bits;
psa_key_policy_t policy;
TEST_ASSERT( data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( data->len ) );
export_size = (ssize_t) data->len;
exported = mbedtls_calloc( 1, export_size );
TEST_ASSERT( exported != NULL );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_EXPORT, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
/* Import the key */
TEST_ASSERT( psa_import_key( slot, type,
data->x, data->len ) == PSA_SUCCESS );
/* Test the key information */
TEST_ASSERT( psa_get_key_information( slot,
&got_type,
&got_bits ) == PSA_SUCCESS );
TEST_ASSERT( got_type == type );
TEST_ASSERT( got_bits == (size_t) expected_bits );
/* Export the key */
status = psa_export_public_key( slot,
exported, export_size,
&exported_length );
TEST_ASSERT( status == (psa_status_t) expected_export_status );
if( status != PSA_SUCCESS )
goto destroy;
TEST_ASSERT( exported_length == (size_t) public_key_expected_length );
destroy:
/* Destroy the key */
TEST_ASSERT( psa_destroy_key( slot ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_information(
slot, NULL, NULL ) == PSA_ERROR_EMPTY_SLOT );
exit:
mbedtls_free( exported );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_policy( int usage_arg, int alg_arg )
{
int key_slot = 1;
psa_algorithm_t alg = alg_arg;
psa_key_usage_t usage = usage_arg;
psa_key_type_t key_type = PSA_KEY_TYPE_AES;
unsigned char key[32] = {0};
psa_key_policy_t policy_set;
psa_key_policy_t policy_get;
memset( key, 0x2a, sizeof( key ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy_set );
psa_key_policy_init( &policy_get );
psa_key_policy_set_usage( &policy_set, usage, alg );
TEST_ASSERT( psa_key_policy_get_usage( &policy_set ) == usage );
TEST_ASSERT( psa_key_policy_get_algorithm( &policy_set ) == alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy_set ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key, sizeof( key ) ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_policy( key_slot, &policy_get ) == PSA_SUCCESS );
TEST_ASSERT( policy_get.usage == policy_set.usage );
TEST_ASSERT( policy_get.alg == policy_set.alg );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_policy_fail( int usage_arg, int alg_arg, int expected_status,
data_t *keypair )
{
int key_slot = 1;
psa_algorithm_t alg = alg_arg;
psa_key_usage_t usage = usage_arg;
size_t signature_length = 0;
psa_key_policy_t policy;
int actual_status = PSA_SUCCESS;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, usage, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
if( usage & PSA_KEY_USAGE_EXPORT )
{
TEST_ASSERT( keypair != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( keypair->len ) );
TEST_ASSERT( psa_import_key( key_slot,
PSA_KEY_TYPE_RSA_KEYPAIR,
keypair->x,
keypair->len ) == PSA_SUCCESS );
actual_status = psa_asymmetric_sign( key_slot, alg,
NULL, 0,
NULL, 0,
NULL, 0, &signature_length );
}
if( usage & PSA_KEY_USAGE_SIGN )
{
TEST_ASSERT( keypair != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( keypair->len ) );
TEST_ASSERT( psa_import_key( key_slot,
PSA_KEY_TYPE_RSA_KEYPAIR,
keypair->x,
keypair->len ) == PSA_SUCCESS );
actual_status = psa_export_key( key_slot, NULL, 0, NULL );
}
TEST_ASSERT( actual_status == expected_status );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_lifetime( int lifetime_arg )
{
int key_slot = 1;
psa_key_type_t key_type = PSA_ALG_CBC_BASE;
unsigned char key[32] = {0};
psa_key_lifetime_t lifetime_set = lifetime_arg;
psa_key_lifetime_t lifetime_get;
memset( key, 0x2a, sizeof( key ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_set_key_lifetime( key_slot,
lifetime_set ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key, sizeof( key ) ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_lifetime( key_slot,
&lifetime_get ) == PSA_SUCCESS );
TEST_ASSERT( lifetime_get == lifetime_set );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_lifetime_set_fail( int key_slot_arg,
int lifetime_arg,
int expected_status_arg )
{
psa_key_slot_t key_slot = key_slot_arg;
psa_key_lifetime_t lifetime_set = lifetime_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
actual_status = psa_set_key_lifetime( key_slot, lifetime_set );
if( actual_status == PSA_SUCCESS )
actual_status = psa_set_key_lifetime( key_slot, lifetime_set );
TEST_ASSERT( expected_status == actual_status );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_setup( int alg_arg,
int expected_status_arg )
{
psa_algorithm_t alg = alg_arg;
psa_hash_operation_t operation;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
status = psa_hash_start( &operation, alg );
psa_hash_abort( &operation );
TEST_ASSERT( status == (psa_status_t) expected_status_arg );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_finish( int alg_arg, data_t *input, data_t *expected_hash )
{
psa_algorithm_t alg = alg_arg;
unsigned char actual_hash[PSA_HASH_MAX_SIZE];
size_t actual_hash_length;
psa_hash_operation_t operation;
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_hash != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_hash->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_start( &operation, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_update( &operation,
input->x, input->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_finish( &operation,
actual_hash, sizeof( actual_hash ),
&actual_hash_length ) == PSA_SUCCESS );
TEST_ASSERT( actual_hash_length == expected_hash->len );
TEST_ASSERT( memcmp( expected_hash->x, actual_hash,
expected_hash->len ) == 0 );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_verify( int alg_arg, data_t *input, data_t *expected_hash )
{
psa_algorithm_t alg = alg_arg;
psa_hash_operation_t operation;
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_hash != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_hash->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_start( &operation, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_update( &operation,
input->x,
input->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_hash_verify( &operation,
expected_hash->x,
expected_hash->len ) == PSA_SUCCESS );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_setup( int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation;
psa_key_policy_t policy;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY,
alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
status = psa_mac_start( &operation, key_slot, alg );
psa_mac_abort( &operation );
TEST_ASSERT( status == (psa_status_t) expected_status_arg );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_verify( int key_type_arg,
data_t *key,
int alg_arg,
data_t *input,
data_t *expected_mac )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation;
psa_key_policy_t policy;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_mac != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_mac->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_start( &operation, key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_destroy_key( key_slot ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_update( &operation,
input->x, input->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_mac_verify( &operation,
expected_mac->x,
expected_mac->len ) == PSA_SUCCESS );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_setup( int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_cipher_operation_t operation;
psa_key_policy_t policy;
psa_status_t status;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
TEST_ASSERT( psa_set_key_policy( key_slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
status = psa_encrypt_setup( &operation, key_slot, alg );
psa_cipher_abort( &operation );
TEST_ASSERT( status == (psa_status_t) expected_status_arg );
exit:
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt( int alg_arg, int key_type_arg,
data_t *key,
data_t *input, data_t *expected_output,
int expected_status )
{
int key_slot = 1;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_output != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) );
memset( iv, 0x2a, sizeof( iv ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_set_iv( &operation,
iv, sizeof( iv ) ) == PSA_SUCCESS );
output_buffer_size = input->len + operation.block_size;
output = mbedtls_calloc( 1, output_buffer_size );
TEST_ASSERT( output != NULL );
TEST_ASSERT( psa_cipher_update( &operation,
input->x, input->len,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
status = psa_cipher_finish( &operation,
output + function_output_length,
output_buffer_size,
&function_output_length );
total_output_length += function_output_length;
TEST_ASSERT( status == (psa_status_t) expected_status );
if( expected_status == PSA_SUCCESS )
{
TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS );
TEST_ASSERT( total_output_length == expected_output->len );
TEST_ASSERT( memcmp( expected_output->x, output,
expected_output->len ) == 0 );
}
exit:
mbedtls_free( output );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_multipart( int alg_arg, int key_type_arg,
data_t *key,
data_t *input,
int first_part_size,
data_t *expected_output )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_output != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) );
memset( iv, 0x2a, sizeof( iv ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_set_iv( &operation,
iv, sizeof( iv ) ) == PSA_SUCCESS );
output_buffer_size = input->len + operation.block_size;
output = mbedtls_calloc( 1, output_buffer_size );
TEST_ASSERT( output != NULL );
TEST_ASSERT( (unsigned int) first_part_size < input->len );
TEST_ASSERT( psa_cipher_update( &operation, input->x, first_part_size,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_update( &operation,
input->x + first_part_size,
input->len - first_part_size,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_finish( &operation,
output + function_output_length,
output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS );
TEST_ASSERT( total_output_length == expected_output->len );
TEST_ASSERT( memcmp( expected_output->x, output,
expected_output->len ) == 0 );
exit:
mbedtls_free( output );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt_multipart( int alg_arg, int key_type_arg,
data_t *key,
data_t *input,
int first_part_size,
data_t *expected_output )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_output != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) );
memset( iv, 0x2a, sizeof( iv ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_decrypt_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_set_iv( &operation,
iv, sizeof( iv ) ) == PSA_SUCCESS );
output_buffer_size = input->len + operation.block_size;
output = mbedtls_calloc( 1, output_buffer_size );
TEST_ASSERT( output != NULL );
TEST_ASSERT( (unsigned int) first_part_size < input->len );
TEST_ASSERT( psa_cipher_update( &operation,
input->x, first_part_size,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_update( &operation,
input->x + first_part_size,
input->len - first_part_size,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_finish( &operation,
output + function_output_length,
output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS );
TEST_ASSERT( total_output_length == expected_output->len );
TEST_ASSERT( memcmp( expected_output->x, output,
expected_output->len ) == 0 );
exit:
mbedtls_free( output );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt( int alg_arg, int key_type_arg,
data_t *key,
data_t *input, data_t *expected_output,
int expected_status )
{
int key_slot = 1;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( expected_output != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_output->len ) );
memset( iv, 0x2a, sizeof( iv ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_decrypt_setup( &operation,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_set_iv( &operation,
iv, sizeof( iv ) ) == PSA_SUCCESS );
output_buffer_size = input->len + operation.block_size;
output = mbedtls_calloc( 1, output_buffer_size );
TEST_ASSERT( output != NULL );
TEST_ASSERT( psa_cipher_update( &operation,
input->x, input->len,
output, output_buffer_size,
&function_output_length ) == PSA_SUCCESS );
total_output_length += function_output_length;
status = psa_cipher_finish( &operation,
output + function_output_length,
output_buffer_size,
&function_output_length );
total_output_length += function_output_length;
TEST_ASSERT( status == (psa_status_t) expected_status );
if( expected_status == PSA_SUCCESS )
{
TEST_ASSERT( psa_cipher_abort( &operation ) == PSA_SUCCESS );
TEST_ASSERT( total_output_length == expected_output->len );
TEST_ASSERT( memcmp( expected_output->x, output,
expected_output->len ) == 0 );
}
exit:
mbedtls_free( output );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_verify_output( int alg_arg, int key_type_arg,
data_t *key,
data_t *input )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
size_t iv_size = 16;
size_t iv_length = 0;
unsigned char *output1 = NULL;
size_t output1_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_size = 0;
size_t output2_length = 0;
size_t function_output_length = 0;
psa_cipher_operation_t operation1;
psa_cipher_operation_t operation2;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_setup( &operation1,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_decrypt_setup( &operation2,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_generate_iv( &operation1,
iv, iv_size,
&iv_length ) == PSA_SUCCESS );
output1_size = input->len + operation1.block_size;
output1 = mbedtls_calloc( 1, output1_size );
TEST_ASSERT( output1 != NULL );
TEST_ASSERT( psa_cipher_update( &operation1, input->x, input->len,
output1, output1_size,
&output1_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_finish( &operation1,
output1 + output1_length, output1_size,
&function_output_length ) == PSA_SUCCESS );
output1_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation1 ) == PSA_SUCCESS );
output2_size = output1_length;
output2 = mbedtls_calloc( 1, output2_size );
TEST_ASSERT( output2 != NULL );
TEST_ASSERT( psa_encrypt_set_iv( &operation2,
iv, iv_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_update( &operation2, output1, output1_length,
output2, output2_size,
&output2_length ) == PSA_SUCCESS );
function_output_length = 0;
TEST_ASSERT( psa_cipher_finish( &operation2,
output2 + output2_length,
output2_size,
&function_output_length ) == PSA_SUCCESS );
output2_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation1 ) == PSA_SUCCESS );
TEST_ASSERT( input->len == output2_length );
TEST_ASSERT( memcmp( input->x, output2, input->len ) == 0 );
exit:
mbedtls_free( output1 );
mbedtls_free( output2 );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_verify_output_multipart( int alg_arg,
int key_type_arg,
data_t *key,
data_t *input,
int first_part_size )
{
int key_slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
size_t iv_size = 16;
size_t iv_length = 0;
unsigned char *output1 = NULL;
size_t output1_buffer_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_buffer_size = 0;
size_t output2_length = 0;
size_t function_output_length;
psa_cipher_operation_t operation1;
psa_cipher_operation_t operation2;
TEST_ASSERT( key != NULL );
TEST_ASSERT( input != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( key_slot, key_type,
key->x, key->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_setup( &operation1,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_decrypt_setup( &operation2,
key_slot, alg ) == PSA_SUCCESS );
TEST_ASSERT( psa_encrypt_generate_iv( &operation1,
iv, iv_size,
&iv_length ) == PSA_SUCCESS );
output1_buffer_size = input->len + operation1.block_size;
output1 = mbedtls_calloc( 1, output1_buffer_size );
TEST_ASSERT( output1 != NULL );
TEST_ASSERT( (unsigned int) first_part_size < input->len );
TEST_ASSERT( psa_cipher_update( &operation1, input->x, first_part_size,
output1, output1_buffer_size,
&function_output_length ) == PSA_SUCCESS );
output1_length += function_output_length;
TEST_ASSERT( psa_cipher_update( &operation1,
input->x + first_part_size,
input->len - first_part_size,
output1, output1_buffer_size,
&function_output_length ) == PSA_SUCCESS );
output1_length += function_output_length;
TEST_ASSERT( psa_cipher_finish( &operation1,
output1 + output1_length,
output1_buffer_size - output1_length,
&function_output_length ) == PSA_SUCCESS );
output1_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation1 ) == PSA_SUCCESS );
output2_buffer_size = output1_length;
output2 = mbedtls_calloc( 1, output2_buffer_size );
TEST_ASSERT( output2 != NULL );
TEST_ASSERT( psa_encrypt_set_iv( &operation2,
iv, iv_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_cipher_update( &operation2, output1, first_part_size,
output2, output2_buffer_size,
&function_output_length ) == PSA_SUCCESS );
output2_length += function_output_length;
TEST_ASSERT( psa_cipher_update( &operation2,
output1 + first_part_size,
output1_length - first_part_size,
output2, output2_buffer_size,
&function_output_length ) == PSA_SUCCESS );
output2_length += function_output_length;
TEST_ASSERT( psa_cipher_finish( &operation2,
output2 + output2_length,
output2_buffer_size - output2_length,
&function_output_length ) == PSA_SUCCESS );
output2_length += function_output_length;
TEST_ASSERT( psa_cipher_abort( &operation1 ) == PSA_SUCCESS );
TEST_ASSERT( input->len == output2_length );
TEST_ASSERT( memcmp( input->x, output2, input->len ) == 0 );
exit:
mbedtls_free( output1 );
mbedtls_free( output2 );
psa_destroy_key( key_slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt_decrypt( int key_type_arg,
data_t * key_data,
int alg_arg,
data_t * input_data,
data_t * nonce,
data_t * additional_data,
int expected_result_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
unsigned char *output_data2 = NULL;
size_t output_length2 = 0;
size_t tag_length = 16;
psa_status_t expected_result = expected_result_arg;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( nonce != NULL );
TEST_ASSERT( additional_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( nonce->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( additional_data->len ) );
output_size = input_data->len + tag_length;
output_data = mbedtls_calloc( 1, output_size );
TEST_ASSERT( output_data != NULL );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x, key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_aead_encrypt( slot, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length ) == expected_result );
if( PSA_SUCCESS == expected_result )
{
output_data2 = mbedtls_calloc( 1, output_length );
TEST_ASSERT( output_data2 != NULL );
TEST_ASSERT( psa_aead_decrypt( slot, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
output_data, output_length,
output_data2, output_length,
&output_length2 ) == expected_result );
TEST_ASSERT( memcmp( input_data->x, output_data2,
input_data->len ) == 0 );
}
exit:
psa_destroy_key( slot );
mbedtls_free( output_data );
mbedtls_free( output_data2 );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt( int key_type_arg, data_t * key_data,
int alg_arg, data_t * input_data,
data_t * additional_data, data_t * nonce,
data_t * expected_result )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
size_t tag_length = 16;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( additional_data != NULL );
TEST_ASSERT( nonce != NULL );
TEST_ASSERT( expected_result != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( additional_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( nonce->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_result->len ) );
output_size = input_data->len + tag_length;
output_data = mbedtls_calloc( 1, output_size );
TEST_ASSERT( output_data != NULL );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT , alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_aead_encrypt( slot, alg,
nonce->x, nonce->len,
additional_data->x, additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length ) == PSA_SUCCESS );
TEST_ASSERT( memcmp( output_data, expected_result->x,
output_length ) == 0 );
exit:
psa_destroy_key( slot );
mbedtls_free( output_data );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_decrypt( int key_type_arg, data_t * key_data,
int alg_arg, data_t * input_data,
data_t * additional_data, data_t * nonce,
data_t * expected_data, int expected_result_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
size_t tag_length = 16;
psa_key_policy_t policy;
psa_status_t expected_result = expected_result_arg;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( additional_data != NULL );
TEST_ASSERT( nonce != NULL );
TEST_ASSERT( expected_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( additional_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( nonce->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_data->len ) );
output_size = input_data->len + tag_length;
output_data = mbedtls_calloc( 1, output_size );
TEST_ASSERT( output_data != NULL );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT , alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_aead_decrypt( slot, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length ) == expected_result );
if( expected_result == PSA_SUCCESS )
{
TEST_ASSERT( memcmp( output_data, expected_data->x,
output_length ) == 0 );
}
exit:
psa_destroy_key( slot );
mbedtls_free( output_data );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void signature_size( int type_arg,
int bits,
int alg_arg,
int expected_size_arg )
{
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
size_t actual_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( type, bits, alg );
TEST_ASSERT( actual_size == (size_t) expected_size_arg );
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void sign_deterministic( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
data_t *output_data )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( output_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( output_data->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_get_key_information( slot,
NULL,
&key_bits ) == PSA_SUCCESS );
signature_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( key_type,
key_bits, alg );
TEST_ASSERT( signature_size != 0 );
signature = mbedtls_calloc( 1, signature_size );
TEST_ASSERT( signature != NULL );
TEST_ASSERT( psa_asymmetric_sign( slot, alg,
input_data->x, input_data->len,
NULL, 0,
signature, signature_size,
&signature_length ) == PSA_SUCCESS );
TEST_ASSERT( signature_length == output_data->len );
TEST_ASSERT( memcmp( signature, output_data->x,
output_data->len ) == 0 );
exit:
psa_destroy_key( slot );
mbedtls_free( signature );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
int signature_size, int expected_status_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
unsigned char *signature = NULL;
size_t signature_length = 0xdeadbeef;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
signature = mbedtls_calloc( 1, signature_size );
TEST_ASSERT( signature != NULL );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
actual_status = psa_asymmetric_sign( slot, alg,
input_data->x, input_data->len,
NULL, 0,
signature, signature_size,
&signature_length );
TEST_ASSERT( actual_status == expected_status );
TEST_ASSERT( signature_length == 0 );
exit:
psa_destroy_key( slot );
mbedtls_free( signature );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_verify( int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( hash_data != NULL );
TEST_ASSERT( signature_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( hash_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( signature_data->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_asymmetric_verify( slot, alg,
hash_data->x, hash_data->len,
NULL, 0,
signature_data->x,
signature_data->len ) == PSA_SUCCESS );
exit:
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_verify_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data,
int expected_status_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( hash_data != NULL );
TEST_ASSERT( signature_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( hash_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( signature_data->len ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
actual_status = psa_asymmetric_verify( slot, alg,
hash_data->x, hash_data->len,
NULL, 0,
signature_data->x,
signature_data->len );
TEST_ASSERT( actual_status == expected_status );
exit:
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt_decrypt( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = 0;
size_t output_length = 0;
unsigned char *output2 = NULL;
size_t output2_size = 0;
size_t output2_length = 0;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
output_size = key_data->len;
output2_size = output_size;
output = mbedtls_calloc( 1, output_size );
TEST_ASSERT( output != NULL );
output2 = mbedtls_calloc( 1, output2_size );
TEST_ASSERT( output2 != NULL );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
/* We test encryption by checking that encrypt-then-decrypt gives back
* the original plaintext because of the non-optional random
* part of encryption process which prevents using fixed vectors. */
TEST_ASSERT( psa_asymmetric_encrypt( slot, alg,
input_data->x, input_data->len,
NULL, 0,
output, output_size,
&output_length ) == PSA_SUCCESS );
TEST_ASSERT( psa_asymmetric_decrypt( slot, alg,
output, output_length,
NULL, 0,
output2, output2_size,
&output2_length ) == PSA_SUCCESS );
TEST_ASSERT( memcmp( input_data->x, output2,
input_data->len ) == 0 );
exit:
psa_destroy_key( slot );
mbedtls_free( output );
mbedtls_free( output2 );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
int expected_status_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = 0;
size_t output_length = 0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
output_size = key_data->len;
output = mbedtls_calloc( 1, output_size );
TEST_ASSERT( output != NULL );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
actual_status = psa_asymmetric_encrypt( slot, alg,
input_data->x, input_data->len,
NULL, 0,
output, output_size,
&output_length );
TEST_ASSERT( actual_status == expected_status );
exit:
psa_destroy_key( slot );
mbedtls_free( output );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
data_t *expected_data, int expected_size )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = 0;
size_t output_length = 0;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( expected_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( expected_data->len ) );
output_size = key_data->len;
output = mbedtls_calloc( 1, output_size );
TEST_ASSERT( output != NULL );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
TEST_ASSERT( psa_asymmetric_decrypt( slot, alg,
input_data->x, input_data->len,
NULL, 0,
output,
output_size,
&output_length ) == PSA_SUCCESS );
TEST_ASSERT( (size_t) expected_size == output_length );
TEST_ASSERT( memcmp( expected_data->x, output, output_length ) == 0 );
exit:
psa_destroy_key( slot );
mbedtls_free( output );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
int expected_status_arg )
{
int slot = 1;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = 0;
size_t output_length = 0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_policy_t policy;
TEST_ASSERT( key_data != NULL );
TEST_ASSERT( input_data != NULL );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( key_data->len ) );
TEST_ASSERT( PSA_CRYPTO_TEST_SIZE_T_RANGE( input_data->len ) );
output_size = key_data->len;
output = mbedtls_calloc( 1, output_size );
TEST_ASSERT( output != NULL );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
TEST_ASSERT( psa_import_key( slot, key_type,
key_data->x,
key_data->len ) == PSA_SUCCESS );
actual_status = psa_asymmetric_decrypt( slot, alg,
input_data->x, input_data->len,
NULL, 0,
output, output_size,
&output_length );
TEST_ASSERT( actual_status == expected_status );
exit:
psa_destroy_key( slot );
mbedtls_free( output );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void generate_random( int bytes, int retries )
{
const unsigned char trail[] = "foobar";
unsigned char *buffer1 = mbedtls_calloc( 1, bytes + sizeof( trail ) );
unsigned char *buffer2 = mbedtls_calloc( 1, bytes );
TEST_ASSERT( buffer1 != NULL );
TEST_ASSERT( buffer2 != NULL );
memcpy( buffer1 + bytes, trail, sizeof( trail ) );
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
TEST_ASSERT( psa_generate_random( buffer1, bytes ) == PSA_SUCCESS );
/* Check that no more than bytes have been overwritten */
TEST_ASSERT( memcmp( buffer1 + bytes, trail, sizeof( trail ) ) == 0 );
if( bytes == 0 )
goto exit;
/* We can't validate that the data is really random, but we can
* validate that it doesn't repeat between calls. There's a
* 1/256^bytes chance that it does repeat, of course, so allow
* a few retries. */
++retries; /* The first time isn't a REtry */
do
{
--retries;
TEST_ASSERT( psa_generate_random( buffer2, bytes ) == PSA_SUCCESS );
}
while( memcmp( buffer1, buffer2, bytes ) == 0 && retries >= -1 );
TEST_ASSERT( retries >= 0 );
exit:
mbedtls_psa_crypto_free( );
mbedtls_free( buffer1 );
mbedtls_free( buffer2 );
}
/* END_CASE */
/* BEGIN_CASE */
void generate_key( int type_arg,
int bits_arg,
int usage_arg,
int alg_arg,
int expected_status_arg )
{
int slot = 1;
psa_key_type_t type = type_arg;
psa_key_usage_t usage = usage_arg;
size_t bits = bits_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_key_type_t got_type;
size_t got_bits;
unsigned char exported[616] = {0}; /* enough for a 1024-bit RSA key */
size_t exported_length;
psa_status_t expected_export_status =
usage & PSA_KEY_USAGE_EXPORT ? PSA_SUCCESS : PSA_ERROR_NOT_PERMITTED;
psa_status_t expected_info_status =
expected_status == PSA_SUCCESS ? PSA_SUCCESS : PSA_ERROR_EMPTY_SLOT;
psa_key_policy_t policy;
TEST_ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
psa_key_policy_init( &policy );
psa_key_policy_set_usage( &policy, usage, alg );
TEST_ASSERT( psa_set_key_policy( slot, &policy ) == PSA_SUCCESS );
/* Generate a key */
TEST_ASSERT( psa_generate_key( slot, type, bits,
NULL, 0 ) == expected_status );
/* Test the key information */
TEST_ASSERT( psa_get_key_information( slot,
&got_type,
&got_bits ) == expected_info_status );
if( expected_info_status != PSA_SUCCESS )
goto exit;
TEST_ASSERT( got_type == type );
TEST_ASSERT( got_bits == bits );
/* Export the key */
TEST_ASSERT( psa_export_key( slot,
exported, sizeof( exported ),
&exported_length ) == expected_export_status );
if( expected_export_status == PSA_SUCCESS )
{
if( PSA_KEY_TYPE_IS_RAW_BYTES( type ) )
TEST_ASSERT( exported_length == ( bits + 7 ) / 8 );
#if defined(MBEDTLS_DES_C)
if( type == PSA_KEY_TYPE_DES )
{
/* Check the parity bits. */
unsigned i;
for( i = 0; i < bits / 8; i++ )
{
unsigned bit_count = 0;
unsigned m;
for( m = 1; m <= 0x100; m <<= 1 )
{
if( exported[i] & m )
++bit_count;
}
TEST_ASSERT( bit_count % 2 != 0 );
}
}
#endif
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C)
if( type == PSA_KEY_TYPE_RSA_KEYPAIR )
{
/* Sanity check: does this look like the beginning of a PKCS#8
* RSA key pair? Assumes bits is a multiple of 8. */
size_t n_bytes = bits / 8 + 1;
size_t n_encoded_bytes;
unsigned char *n_end;
TEST_ASSERT( exported_length >= 7 + ( n_bytes + 3 ) * 9 / 2 );
TEST_ASSERT( exported[0] == 0x30 );
TEST_ASSERT( exported[1] == 0x82 ); // assumes >=416-bit key
TEST_ASSERT( exported[4] == 0x02 );
TEST_ASSERT( exported[5] == 0x01 );
TEST_ASSERT( exported[6] == 0x00 );
TEST_ASSERT( exported[7] == 0x02 );
n_encoded_bytes = exported[8];
n_end = exported + 9 + n_encoded_bytes;
if( n_encoded_bytes & 0x80 )
{
n_encoded_bytes = ( n_encoded_bytes & 0x7f ) << 7;
n_encoded_bytes |= exported[9] & 0x7f;
n_end += 1;
}
/* The encoding of n should start with a 0 byte since it should
* have its high bit set. However Mbed TLS is not compliant and
* generates an invalid, but widely tolerated, encoding of
* positive INTEGERs with a bit size that is a multiple of 8
* with no leading 0 byte. Accept this here. */
TEST_ASSERT( n_bytes == n_encoded_bytes ||
n_bytes == n_encoded_bytes + 1 );
if( n_bytes == n_encoded_bytes )
TEST_ASSERT( exported[n_encoded_bytes <= 127 ? 9 : 10] == 0x00 );
/* Sanity check: e must be 3 */
TEST_ASSERT( n_end[0] == 0x02 );
TEST_ASSERT( n_end[1] == 0x03 );
TEST_ASSERT( n_end[2] == 0x01 );
TEST_ASSERT( n_end[3] == 0x00 );
TEST_ASSERT( n_end[4] == 0x01 );
TEST_ASSERT( n_end[5] == 0x02 );
}
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC( type ) )
{
/* Sanity check: does this look like the beginning of a PKCS#8
* elliptic curve key pair? */
TEST_ASSERT( exported_length >= bits * 3 / 8 + 10 );
TEST_ASSERT( exported[0] == 0x30 );
}
#endif /* MBEDTLS_ECP_C */
}
/* We should do something with the key according to its permitted usage.
* This would require figuring out what the key type allows or
* specifying it somehow in the test data. */
exit:
psa_destroy_key( slot );
mbedtls_psa_crypto_free( );
}
/* END_CASE */