mbedtls/tests/suites/test_suite_psa_crypto.function
Gilles Peskine 4cf3a43dbd Simplify and expand invalid-handle tests
Simplify invalid-handle tests and make them test more things. Call
these tests in several test functions after destroying a key.
2019-04-24 15:46:04 +02:00

4918 lines
181 KiB
Plaintext

/* BEGIN_HEADER */
#include <stdint.h>
#if defined(MBEDTLS_PSA_CRYPTO_SPM)
#include "spm/psa_defs.h"
#endif
#include "mbedtls/asn1.h"
#include "mbedtls/asn1write.h"
#include "mbedtls/oid.h"
#include "psa/crypto.h"
/** An invalid export length that will never be set by psa_export_key(). */
static const size_t INVALID_EXPORT_LENGTH = ~0U;
/* A hash algorithm that is known to be supported.
*
* This is used in some smoke tests.
*/
#if defined(MBEDTLS_MD2_C)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_MD2
#elif defined(MBEDTLS_MD4_C)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_MD4
#elif defined(MBEDTLS_MD5_C)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_MD5
/* MBEDTLS_RIPEMD160_C omitted. This is necessary for the sake of
* exercise_signature_key() because Mbed TLS doesn't support RIPEMD160
* in RSA PKCS#1v1.5 signatures. A RIPEMD160-only configuration would be
* implausible anyway. */
#elif defined(MBEDTLS_SHA1_C)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_1
#elif defined(MBEDTLS_SHA256_C)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_256
#elif defined(MBEDTLS_SHA512_C)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA_384
#elif defined(MBEDTLS_SHA3_C)
#define KNOWN_SUPPORTED_HASH_ALG PSA_ALG_SHA3_256
#else
#undef KNOWN_SUPPORTED_HASH_ALG
#endif
/* A block cipher that is known to be supported.
*
* For simplicity's sake, stick to block ciphers with 16-byte blocks.
*/
#if defined(MBEDTLS_AES_C)
#define KNOWN_SUPPORTED_BLOCK_CIPHER PSA_KEY_TYPE_AES
#elif defined(MBEDTLS_ARIA_C)
#define KNOWN_SUPPORTED_BLOCK_CIPHER PSA_KEY_TYPE_ARIA
#elif defined(MBEDTLS_CAMELLIA_C)
#define KNOWN_SUPPORTED_BLOCK_CIPHER PSA_KEY_TYPE_CAMELLIA
#undef KNOWN_SUPPORTED_BLOCK_CIPHER
#endif
/* A MAC mode that is known to be supported.
*
* It must either be HMAC with #KNOWN_SUPPORTED_HASH_ALG or
* a block cipher-based MAC with #KNOWN_SUPPORTED_BLOCK_CIPHER.
*
* This is used in some smoke tests.
*/
#if defined(KNOWN_SUPPORTED_HASH_ALG)
#define KNOWN_SUPPORTED_MAC_ALG ( PSA_ALG_HMAC( KNOWN_SUPPORTED_HASH_ALG ) )
#define KNOWN_SUPPORTED_MAC_KEY_TYPE PSA_KEY_TYPE_HMAC
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CMAC_C)
#define KNOWN_SUPPORTED_MAC_ALG PSA_ALG_CMAC
#define KNOWN_SUPPORTED_MAC_KEY_TYPE KNOWN_SUPPORTED_BLOCK_CIPHER
#else
#undef KNOWN_SUPPORTED_MAC_ALG
#undef KNOWN_SUPPORTED_MAC_KEY_TYPE
#endif
/* A cipher algorithm and key type that are known to be supported.
*
* This is used in some smoke tests.
*/
#if defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_CTR)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_CTR
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_CBC)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_CBC_NO_PADDING
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_CFB)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_CFB
#elif defined(KNOWN_SUPPORTED_BLOCK_CIPHER) && defined(MBEDTLS_CIPHER_MODE_OFB)
#define KNOWN_SUPPORTED_BLOCK_CIPHER_ALG PSA_ALG_OFB
#else
#undef KNOWN_SUPPORTED_BLOCK_CIPHER_ALG
#endif
#if defined(KNOWN_SUPPORTED_BLOCK_CIPHER_ALG)
#define KNOWN_SUPPORTED_CIPHER_ALG KNOWN_SUPPORTED_BLOCK_CIPHER_ALG
#define KNOWN_SUPPORTED_CIPHER_KEY_TYPE KNOWN_SUPPORTED_BLOCK_CIPHER
#elif defined(MBEDTLS_RC4_C)
#define KNOWN_SUPPORTED_CIPHER_ALG PSA_ALG_RC4
#define KNOWN_SUPPORTED_CIPHER_KEY_TYPE PSA_KEY_TYPE_RC4
#else
#undef KNOWN_SUPPORTED_CIPHER_ALG
#undef KNOWN_SUPPORTED_CIPHER_KEY_TYPE
#endif
/** Test if a buffer contains a constant byte value.
*
* `mem_is_char(buffer, c, size)` is true after `memset(buffer, c, size)`.
*
* \param buffer Pointer to the beginning of the buffer.
* \param c Expected value of every byte.
* \param size Size of the buffer in bytes.
*
* \return 1 if the buffer is all-bits-zero.
* \return 0 if there is at least one nonzero byte.
*/
static int mem_is_char( void *buffer, unsigned char c, size_t size )
{
size_t i;
for( i = 0; i < size; i++ )
{
if( ( (unsigned char *) buffer )[i] != c )
return( 0 );
}
return( 1 );
}
/* Write the ASN.1 INTEGER with the value 2^(bits-1)+x backwards from *p. */
static int asn1_write_10x( unsigned char **p,
unsigned char *start,
size_t bits,
unsigned char x )
{
int ret;
int len = bits / 8 + 1;
if( bits == 0 )
return( MBEDTLS_ERR_ASN1_INVALID_DATA );
if( bits <= 8 && x >= 1 << ( bits - 1 ) )
return( MBEDTLS_ERR_ASN1_INVALID_DATA );
if( *p < start || *p - start < (ptrdiff_t) len )
return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
*p -= len;
( *p )[len-1] = x;
if( bits % 8 == 0 )
( *p )[1] |= 1;
else
( *p )[0] |= 1 << ( bits % 8 );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, start, len ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, start,
MBEDTLS_ASN1_INTEGER ) );
return( len );
}
static int construct_fake_rsa_key( unsigned char *buffer,
size_t buffer_size,
unsigned char **p,
size_t bits,
int keypair )
{
size_t half_bits = ( bits + 1 ) / 2;
int ret;
int len = 0;
/* Construct something that looks like a DER encoding of
* as defined by PKCS#1 v2.2 (RFC 8017) section A.1.2:
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* otherPrimeInfos OtherPrimeInfos OPTIONAL
* }
* Or, for a public key, the same structure with only
* version, modulus and publicExponent.
*/
*p = buffer + buffer_size;
if( keypair )
{
MBEDTLS_ASN1_CHK_ADD( len, /* pq */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* dq */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* dp */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* q */
asn1_write_10x( p, buffer, half_bits, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* p != q to pass mbedtls sanity checks */
asn1_write_10x( p, buffer, half_bits, 3 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* d */
asn1_write_10x( p, buffer, bits, 1 ) );
}
MBEDTLS_ASN1_CHK_ADD( len, /* e = 65537 */
asn1_write_10x( p, buffer, 17, 1 ) );
MBEDTLS_ASN1_CHK_ADD( len, /* n */
asn1_write_10x( p, buffer, bits, 1 ) );
if( keypair )
MBEDTLS_ASN1_CHK_ADD( len, /* version = 0 */
mbedtls_asn1_write_int( p, buffer, 0 ) );
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_len( p, buffer, len ) );
{
const unsigned char tag =
MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE;
MBEDTLS_ASN1_CHK_ADD( len, mbedtls_asn1_write_tag( p, buffer, tag ) );
}
return( len );
}
int exercise_mac_setup( psa_key_type_t key_type,
const unsigned char *key_bytes,
size_t key_length,
psa_algorithm_t alg,
psa_mac_operation_t *operation,
psa_status_t *status )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type, key_bytes, key_length ) );
*status = psa_mac_sign_setup( operation, handle, alg );
/* Whether setup succeeded or failed, abort must succeed. */
PSA_ASSERT( psa_mac_abort( operation ) );
/* If setup failed, reproduce the failure, so that the caller can
* test the resulting state of the operation object. */
if( *status != PSA_SUCCESS )
{
TEST_EQUAL( psa_mac_sign_setup( operation, handle, alg ),
*status );
}
psa_destroy_key( handle );
return( 1 );
exit:
psa_destroy_key( handle );
return( 0 );
}
int exercise_cipher_setup( psa_key_type_t key_type,
const unsigned char *key_bytes,
size_t key_length,
psa_algorithm_t alg,
psa_cipher_operation_t *operation,
psa_status_t *status )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type, key_bytes, key_length ) );
*status = psa_cipher_encrypt_setup( operation, handle, alg );
/* Whether setup succeeded or failed, abort must succeed. */
PSA_ASSERT( psa_cipher_abort( operation ) );
/* If setup failed, reproduce the failure, so that the caller can
* test the resulting state of the operation object. */
if( *status != PSA_SUCCESS )
{
TEST_EQUAL( psa_cipher_encrypt_setup( operation, handle, alg ),
*status );
}
psa_destroy_key( handle );
return( 1 );
exit:
psa_destroy_key( handle );
return( 0 );
}
static int exercise_mac_key( psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
const unsigned char input[] = "foo";
unsigned char mac[PSA_MAC_MAX_SIZE] = {0};
size_t mac_length = sizeof( mac );
if( usage & PSA_KEY_USAGE_SIGN )
{
PSA_ASSERT( psa_mac_sign_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_sign_finish( &operation,
mac, sizeof( mac ),
&mac_length ) );
}
if( usage & PSA_KEY_USAGE_VERIFY )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_SIGN ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
PSA_ASSERT( psa_mac_verify_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input, sizeof( input ) ) );
TEST_EQUAL( psa_mac_verify_finish( &operation, mac, mac_length ),
verify_status );
}
return( 1 );
exit:
psa_mac_abort( &operation );
return( 0 );
}
static int exercise_cipher_key( psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
unsigned char iv[16] = {0};
size_t iv_length = sizeof( iv );
const unsigned char plaintext[16] = "Hello, world...";
unsigned char ciphertext[32] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
unsigned char decrypted[sizeof( ciphertext )];
size_t part_length;
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
PSA_ASSERT( psa_cipher_encrypt_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_cipher_generate_iv( &operation,
iv, sizeof( iv ),
&iv_length ) );
PSA_ASSERT( psa_cipher_update( &operation,
plaintext, sizeof( plaintext ),
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) );
PSA_ASSERT( psa_cipher_finish( &operation,
ciphertext + ciphertext_length,
sizeof( ciphertext ) - ciphertext_length,
&part_length ) );
ciphertext_length += part_length;
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t status;
int maybe_invalid_padding = 0;
if( ! ( usage & PSA_KEY_USAGE_ENCRYPT ) )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
/* This should be PSA_CIPHER_GET_IV_SIZE but the API doesn't
* have this macro yet. */
iv_length = PSA_BLOCK_CIPHER_BLOCK_SIZE(
psa_get_key_type( &attributes ) );
maybe_invalid_padding = ! PSA_ALG_IS_STREAM_CIPHER( alg );
}
PSA_ASSERT( psa_cipher_decrypt_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, iv_length ) );
PSA_ASSERT( psa_cipher_update( &operation,
ciphertext, ciphertext_length,
decrypted, sizeof( decrypted ),
&part_length ) );
status = psa_cipher_finish( &operation,
decrypted + part_length,
sizeof( decrypted ) - part_length,
&part_length );
/* For a stream cipher, all inputs are valid. For a block cipher,
* if the input is some aribtrary data rather than an actual
ciphertext, a padding error is likely. */
if( maybe_invalid_padding )
TEST_ASSERT( status == PSA_SUCCESS ||
status == PSA_ERROR_INVALID_PADDING );
else
PSA_ASSERT( status );
}
return( 1 );
exit:
psa_cipher_abort( &operation );
return( 0 );
}
static int exercise_aead_key( psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char nonce[16] = {0};
size_t nonce_length = sizeof( nonce );
unsigned char plaintext[16] = "Hello, world...";
unsigned char ciphertext[48] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
size_t plaintext_length = sizeof( ciphertext );
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
PSA_ASSERT( psa_aead_encrypt( handle, alg,
nonce, nonce_length,
NULL, 0,
plaintext, sizeof( plaintext ),
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) );
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_ENCRYPT ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
TEST_EQUAL( psa_aead_decrypt( handle, alg,
nonce, nonce_length,
NULL, 0,
ciphertext, ciphertext_length,
plaintext, sizeof( plaintext ),
&plaintext_length ),
verify_status );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_signature_key( psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char payload[PSA_HASH_MAX_SIZE] = {1};
size_t payload_length = 16;
unsigned char signature[PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE] = {0};
size_t signature_length = sizeof( signature );
psa_algorithm_t hash_alg = PSA_ALG_SIGN_GET_HASH( alg );
/* If the policy allows signing with any hash, just pick one. */
if( PSA_ALG_IS_HASH_AND_SIGN( alg ) && hash_alg == PSA_ALG_ANY_HASH )
{
#if defined(KNOWN_SUPPORTED_HASH_ALG)
hash_alg = KNOWN_SUPPORTED_HASH_ALG;
alg ^= PSA_ALG_ANY_HASH ^ hash_alg;
#else
test_fail( "No hash algorithm for hash-and-sign testing", __LINE__, __FILE__ );
return( 1 );
#endif
}
if( usage & PSA_KEY_USAGE_SIGN )
{
/* Some algorithms require the payload to have the size of
* the hash encoded in the algorithm. Use this input size
* even for algorithms that allow other input sizes. */
if( hash_alg != 0 )
payload_length = PSA_HASH_SIZE( hash_alg );
PSA_ASSERT( psa_asymmetric_sign( handle, alg,
payload, payload_length,
signature, sizeof( signature ),
&signature_length ) );
}
if( usage & PSA_KEY_USAGE_VERIFY )
{
psa_status_t verify_status =
( usage & PSA_KEY_USAGE_SIGN ?
PSA_SUCCESS :
PSA_ERROR_INVALID_SIGNATURE );
TEST_EQUAL( psa_asymmetric_verify( handle, alg,
payload, payload_length,
signature, signature_length ),
verify_status );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_asymmetric_encryption_key( psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
unsigned char plaintext[256] = "Hello, world...";
unsigned char ciphertext[256] = "(wabblewebblewibblewobblewubble)";
size_t ciphertext_length = sizeof( ciphertext );
size_t plaintext_length = 16;
if( usage & PSA_KEY_USAGE_ENCRYPT )
{
PSA_ASSERT( psa_asymmetric_encrypt( handle, alg,
plaintext, plaintext_length,
NULL, 0,
ciphertext, sizeof( ciphertext ),
&ciphertext_length ) );
}
if( usage & PSA_KEY_USAGE_DECRYPT )
{
psa_status_t status =
psa_asymmetric_decrypt( handle, alg,
ciphertext, ciphertext_length,
NULL, 0,
plaintext, sizeof( plaintext ),
&plaintext_length );
TEST_ASSERT( status == PSA_SUCCESS ||
( ( usage & PSA_KEY_USAGE_ENCRYPT ) == 0 &&
( status == PSA_ERROR_INVALID_ARGUMENT ||
status == PSA_ERROR_INVALID_PADDING ) ) );
}
return( 1 );
exit:
return( 0 );
}
static int exercise_key_derivation_key( psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
unsigned char label[16] = "This is a label.";
size_t label_length = sizeof( label );
unsigned char seed[16] = "abcdefghijklmnop";
size_t seed_length = sizeof( seed );
unsigned char output[1];
if( usage & PSA_KEY_USAGE_DERIVE )
{
if( PSA_ALG_IS_HKDF( alg ) )
{
PSA_ASSERT( psa_key_derivation_setup( &generator, alg ) );
PSA_ASSERT( psa_key_derivation_input_bytes( &generator,
PSA_KDF_STEP_SALT,
label,
label_length ) );
PSA_ASSERT( psa_key_derivation_input_key( &generator,
PSA_KDF_STEP_SECRET,
handle ) );
PSA_ASSERT( psa_key_derivation_input_bytes( &generator,
PSA_KDF_STEP_INFO,
seed,
seed_length ) );
}
else
{
// legacy
PSA_ASSERT( psa_key_derivation( &generator,
handle, alg,
label, label_length,
seed, seed_length,
sizeof( output ) ) );
}
PSA_ASSERT( psa_generator_read( &generator,
output,
sizeof( output ) ) );
PSA_ASSERT( psa_generator_abort( &generator ) );
}
return( 1 );
exit:
return( 0 );
}
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
static psa_status_t key_agreement_with_self( psa_crypto_generator_t *generator,
psa_key_handle_t handle )
{
psa_key_type_t private_key_type;
psa_key_type_t public_key_type;
size_t key_bits;
uint8_t *public_key = NULL;
size_t public_key_length;
/* Return GENERIC_ERROR if something other than the final call to
* psa_key_agreement fails. This isn't fully satisfactory, but it's
* good enough: callers will report it as a failed test anyway. */
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
private_key_type = psa_get_key_type( &attributes );
key_bits = psa_get_key_bits( &attributes );
public_key_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR( private_key_type );
public_key_length = PSA_KEY_EXPORT_MAX_SIZE( public_key_type, key_bits );
ASSERT_ALLOC( public_key, public_key_length );
PSA_ASSERT( psa_export_public_key( handle,
public_key, public_key_length,
&public_key_length ) );
status = psa_key_agreement( generator, PSA_KDF_STEP_SECRET, handle,
public_key, public_key_length );
exit:
mbedtls_free( public_key );
return( status );
}
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
static psa_status_t raw_key_agreement_with_self( psa_algorithm_t alg,
psa_key_handle_t handle )
{
psa_key_type_t private_key_type;
psa_key_type_t public_key_type;
size_t key_bits;
uint8_t *public_key = NULL;
size_t public_key_length;
uint8_t output[1024];
size_t output_length;
/* Return GENERIC_ERROR if something other than the final call to
* psa_key_agreement fails. This isn't fully satisfactory, but it's
* good enough: callers will report it as a failed test anyway. */
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
private_key_type = psa_get_key_type( &attributes );
key_bits = psa_get_key_bits( &attributes );
public_key_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR( private_key_type );
public_key_length = PSA_KEY_EXPORT_MAX_SIZE( public_key_type, key_bits );
ASSERT_ALLOC( public_key, public_key_length );
PSA_ASSERT( psa_export_public_key( handle,
public_key, public_key_length,
&public_key_length ) );
status = psa_key_agreement_raw_shared_secret(
alg, handle,
public_key, public_key_length,
output, sizeof( output ), &output_length );
exit:
mbedtls_free( public_key );
return( status );
}
static int exercise_raw_key_agreement_key( psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
int ok = 0;
if( usage & PSA_KEY_USAGE_DERIVE )
{
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
PSA_ASSERT( raw_key_agreement_with_self( alg, handle ) );
}
ok = 1;
exit:
return( ok );
}
static int exercise_key_agreement_key( psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
unsigned char output[1];
int ok = 0;
if( usage & PSA_KEY_USAGE_DERIVE )
{
/* We need two keys to exercise key agreement. Exercise the
* private key against its own public key. */
PSA_ASSERT( psa_key_derivation_setup( &generator, alg ) );
PSA_ASSERT( key_agreement_with_self( &generator, handle ) );
PSA_ASSERT( psa_generator_read( &generator,
output,
sizeof( output ) ) );
PSA_ASSERT( psa_generator_abort( &generator ) );
}
ok = 1;
exit:
return( ok );
}
static int is_oid_of_key_type( psa_key_type_t type,
const uint8_t *oid, size_t oid_length )
{
const uint8_t *expected_oid = NULL;
size_t expected_oid_length = 0;
#if defined(MBEDTLS_RSA_C)
if( PSA_KEY_TYPE_IS_RSA( type ) )
{
expected_oid = (uint8_t *) MBEDTLS_OID_PKCS1_RSA;
expected_oid_length = sizeof( MBEDTLS_OID_PKCS1_RSA ) - 1;
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC( type ) )
{
expected_oid = (uint8_t *) MBEDTLS_OID_EC_ALG_UNRESTRICTED;
expected_oid_length = sizeof( MBEDTLS_OID_EC_ALG_UNRESTRICTED ) - 1;
}
else
#endif /* MBEDTLS_ECP_C */
{
char message[40];
mbedtls_snprintf( message, sizeof( message ),
"OID not known for key type=0x%08lx",
(unsigned long) type );
test_fail( message, __LINE__, __FILE__ );
return( 0 );
}
ASSERT_COMPARE( expected_oid, expected_oid_length, oid, oid_length );
return( 1 );
exit:
return( 0 );
}
static int asn1_skip_integer( unsigned char **p, const unsigned char *end,
size_t min_bits, size_t max_bits,
int must_be_odd )
{
size_t len;
size_t actual_bits;
unsigned char msb;
TEST_EQUAL( mbedtls_asn1_get_tag( p, end, &len,
MBEDTLS_ASN1_INTEGER ),
0 );
/* Tolerate a slight departure from DER encoding:
* - 0 may be represented by an empty string or a 1-byte string.
* - The sign bit may be used as a value bit. */
if( ( len == 1 && ( *p )[0] == 0 ) ||
( len > 1 && ( *p )[0] == 0 && ( ( *p )[1] & 0x80 ) != 0 ) )
{
++( *p );
--len;
}
if( min_bits == 0 && len == 0 )
return( 1 );
msb = ( *p )[0];
TEST_ASSERT( msb != 0 );
actual_bits = 8 * ( len - 1 );
while( msb != 0 )
{
msb >>= 1;
++actual_bits;
}
TEST_ASSERT( actual_bits >= min_bits );
TEST_ASSERT( actual_bits <= max_bits );
if( must_be_odd )
TEST_ASSERT( ( ( *p )[len-1] & 1 ) != 0 );
*p += len;
return( 1 );
exit:
return( 0 );
}
static int asn1_get_implicit_tag( unsigned char **p, const unsigned char *end,
size_t *len,
unsigned char n, unsigned char tag )
{
int ret;
ret = mbedtls_asn1_get_tag( p, end, len,
MBEDTLS_ASN1_CONTEXT_SPECIFIC |
MBEDTLS_ASN1_CONSTRUCTED | ( n ) );
if( ret != 0 )
return( ret );
end = *p + *len;
ret = mbedtls_asn1_get_tag( p, end, len, tag );
if( ret != 0 )
return( ret );
if( *p + *len != end )
return( MBEDTLS_ERR_ASN1_LENGTH_MISMATCH );
return( 0 );
}
static int exported_key_sanity_check( psa_key_type_t type, size_t bits,
uint8_t *exported, size_t exported_length )
{
if( PSA_KEY_TYPE_IS_UNSTRUCTURED( type ) )
TEST_EQUAL( exported_length, ( bits + 7 ) / 8 );
else
TEST_ASSERT( exported_length <= PSA_KEY_EXPORT_MAX_SIZE( type, bits ) );
#if defined(MBEDTLS_DES_C)
if( type == PSA_KEY_TYPE_DES )
{
/* Check the parity bits. */
unsigned i;
for( i = 0; i < bits / 8; i++ )
{
unsigned bit_count = 0;
unsigned m;
for( m = 1; m <= 0x100; m <<= 1 )
{
if( exported[i] & m )
++bit_count;
}
TEST_ASSERT( bit_count % 2 != 0 );
}
}
else
#endif
#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PK_PARSE_C)
if( type == PSA_KEY_TYPE_RSA_KEYPAIR )
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
size_t len;
/* RSAPrivateKey ::= SEQUENCE {
* version INTEGER, -- must be 0
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p-1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
*/
TEST_EQUAL( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ), 0 );
TEST_EQUAL( p + len, end );
if( ! asn1_skip_integer( &p, end, 0, 0, 0 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, bits, bits, 1 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 2, bits, 1 ) )
goto exit;
/* Require d to be at least half the size of n. */
if( ! asn1_skip_integer( &p, end, bits / 2, bits, 1 ) )
goto exit;
/* Require p and q to be at most half the size of n, rounded up. */
if( ! asn1_skip_integer( &p, end, bits / 2, bits / 2 + 1, 1 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, bits / 2, bits / 2 + 1, 1 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 1, bits / 2 + 1, 0 ) )
goto exit;
TEST_EQUAL( p, end );
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_KEYPAIR( type ) )
{
/* Just the secret value */
TEST_EQUAL( exported_length, PSA_BITS_TO_BYTES( bits ) );
}
else
#endif /* MBEDTLS_ECP_C */
if( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) )
{
uint8_t *p = exported;
uint8_t *end = exported + exported_length;
size_t len;
#if defined(MBEDTLS_RSA_C)
if( type == PSA_KEY_TYPE_RSA_PUBLIC_KEY )
{
/* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER } -- e
*/
TEST_EQUAL( mbedtls_asn1_get_tag( &p, end, &len,
MBEDTLS_ASN1_SEQUENCE |
MBEDTLS_ASN1_CONSTRUCTED ),
0 );
TEST_EQUAL( p + len, end );
if( ! asn1_skip_integer( &p, end, bits, bits, 1 ) )
goto exit;
if( ! asn1_skip_integer( &p, end, 2, bits, 1 ) )
goto exit;
TEST_EQUAL( p, end );
}
else
#endif /* MBEDTLS_RSA_C */
#if defined(MBEDTLS_ECP_C)
if( PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY( type ) )
{
/* The representation of an ECC public key is:
* - The byte 0x04;
* - `x_P` as a `ceiling(m/8)`-byte string, big-endian;
* - `y_P` as a `ceiling(m/8)`-byte string, big-endian;
* - where m is the bit size associated with the curve.
*/
TEST_EQUAL( p + 1 + 2 * PSA_BITS_TO_BYTES( bits ), end );
TEST_EQUAL( p[0], 4 );
}
else
#endif /* MBEDTLS_ECP_C */
{
char message[47];
mbedtls_snprintf( message, sizeof( message ),
"No sanity check for public key type=0x%08lx",
(unsigned long) type );
test_fail( message, __LINE__, __FILE__ );
return( 0 );
}
}
else
{
/* No sanity checks for other types */
}
return( 1 );
exit:
return( 0 );
}
static int exercise_export_key( psa_key_handle_t handle,
psa_key_usage_t usage )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *exported = NULL;
size_t exported_size = 0;
size_t exported_length = 0;
int ok = 0;
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
if( ( usage & PSA_KEY_USAGE_EXPORT ) == 0 &&
! PSA_KEY_TYPE_IS_PUBLIC_KEY( psa_get_key_type( &attributes ) ) )
{
TEST_EQUAL( psa_export_key( handle, NULL, 0, &exported_length ),
PSA_ERROR_NOT_PERMITTED );
return( 1 );
}
exported_size = PSA_KEY_EXPORT_MAX_SIZE( psa_get_key_type( &attributes ),
psa_get_key_bits( &attributes ) );
ASSERT_ALLOC( exported, exported_size );
PSA_ASSERT( psa_export_key( handle,
exported, exported_size,
&exported_length ) );
ok = exported_key_sanity_check( psa_get_key_type( &attributes ),
psa_get_key_bits( &attributes ),
exported, exported_length );
exit:
mbedtls_free( exported );
return( ok );
}
static int exercise_export_public_key( psa_key_handle_t handle )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_type_t public_type;
uint8_t *exported = NULL;
size_t exported_size = 0;
size_t exported_length = 0;
int ok = 0;
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
if( ! PSA_KEY_TYPE_IS_ASYMMETRIC( psa_get_key_type( &attributes ) ) )
{
TEST_EQUAL( psa_export_public_key( handle, NULL, 0, &exported_length ),
PSA_ERROR_INVALID_ARGUMENT );
return( 1 );
}
public_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(
psa_get_key_type( &attributes ) );
exported_size = PSA_KEY_EXPORT_MAX_SIZE( public_type,
psa_get_key_bits( &attributes ) );
ASSERT_ALLOC( exported, exported_size );
PSA_ASSERT( psa_export_public_key( handle,
exported, exported_size,
&exported_length ) );
ok = exported_key_sanity_check( public_type,
psa_get_key_bits( &attributes ),
exported, exported_length );
exit:
mbedtls_free( exported );
return( ok );
}
/** Do smoke tests on a key.
*
* Perform one of each operation indicated by \p alg (decrypt/encrypt,
* sign/verify, or derivation) that is permitted according to \p usage.
* \p usage and \p alg should correspond to the expected policy on the
* key.
*
* Export the key if permitted by \p usage, and check that the output
* looks sensible. If \p usage forbids export, check that
* \p psa_export_key correctly rejects the attempt. If the key is
* asymmetric, also check \p psa_export_public_key.
*
* If the key fails the tests, this function calls the test framework's
* `test_fail` function and returns false. Otherwise this function returns
* true. Therefore it should be used as follows:
* ```
* if( ! exercise_key( ... ) ) goto exit;
* ```
*
* \param handle The key to exercise. It should be capable of performing
* \p alg.
* \param usage The usage flags to assume.
* \param alg The algorithm to exercise.
*
* \retval 0 The key failed the smoke tests.
* \retval 1 The key passed the smoke tests.
*/
static int exercise_key( psa_key_handle_t handle,
psa_key_usage_t usage,
psa_algorithm_t alg )
{
int ok;
if( alg == 0 )
ok = 1; /* If no algorihm, do nothing (used for raw data "keys"). */
else if( PSA_ALG_IS_MAC( alg ) )
ok = exercise_mac_key( handle, usage, alg );
else if( PSA_ALG_IS_CIPHER( alg ) )
ok = exercise_cipher_key( handle, usage, alg );
else if( PSA_ALG_IS_AEAD( alg ) )
ok = exercise_aead_key( handle, usage, alg );
else if( PSA_ALG_IS_SIGN( alg ) )
ok = exercise_signature_key( handle, usage, alg );
else if( PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) )
ok = exercise_asymmetric_encryption_key( handle, usage, alg );
else if( PSA_ALG_IS_KEY_DERIVATION( alg ) )
ok = exercise_key_derivation_key( handle, usage, alg );
else if( PSA_ALG_IS_RAW_KEY_AGREEMENT( alg ) )
ok = exercise_raw_key_agreement_key( handle, usage, alg );
else if( PSA_ALG_IS_KEY_AGREEMENT( alg ) )
ok = exercise_key_agreement_key( handle, usage, alg );
else
{
char message[40];
mbedtls_snprintf( message, sizeof( message ),
"No code to exercise alg=0x%08lx",
(unsigned long) alg );
test_fail( message, __LINE__, __FILE__ );
ok = 0;
}
ok = ok && exercise_export_key( handle, usage );
ok = ok && exercise_export_public_key( handle );
return( ok );
}
static psa_key_usage_t usage_to_exercise( psa_key_type_t type,
psa_algorithm_t alg )
{
if( PSA_ALG_IS_MAC( alg ) || PSA_ALG_IS_SIGN( alg ) )
{
return( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ?
PSA_KEY_USAGE_VERIFY :
PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY );
}
else if( PSA_ALG_IS_CIPHER( alg ) || PSA_ALG_IS_AEAD( alg ) ||
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION( alg ) )
{
return( PSA_KEY_TYPE_IS_PUBLIC_KEY( type ) ?
PSA_KEY_USAGE_ENCRYPT :
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT );
}
else if( PSA_ALG_IS_KEY_DERIVATION( alg ) ||
PSA_ALG_IS_KEY_AGREEMENT( alg ) )
{
return( PSA_KEY_USAGE_DERIVE );
}
else
{
return( 0 );
}
}
static int test_operations_on_invalid_handle( psa_key_handle_t handle )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t buffer[1];
size_t length;
int ok = 0;
psa_make_key_persistent( &attributes, 0x6964, PSA_KEY_LIFETIME_PERSISTENT );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_ENCRYPT );
psa_set_key_algorithm( &attributes, PSA_ALG_CTR );
psa_set_key_type( &attributes, PSA_KEY_TYPE_AES );
TEST_EQUAL( psa_get_key_attributes( handle, &attributes ),
PSA_ERROR_INVALID_HANDLE );
TEST_EQUAL( psa_get_key_id( &attributes ), 0 );
TEST_EQUAL( psa_get_key_attributes_lifetime( &attributes ), 0 );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ), 0 );
TEST_EQUAL( psa_get_key_algorithm( &attributes ), 0 );
TEST_EQUAL( psa_get_key_type( &attributes ), 0 );
TEST_EQUAL( psa_get_key_bits( &attributes ), 0 );
TEST_EQUAL( psa_export_key( handle,
buffer, sizeof( buffer ), &length ),
PSA_ERROR_INVALID_HANDLE );
TEST_EQUAL( psa_export_public_key( handle,
buffer, sizeof( buffer ), &length ),
PSA_ERROR_INVALID_HANDLE );
TEST_EQUAL( psa_close_key( handle ), PSA_ERROR_INVALID_HANDLE );
TEST_EQUAL( psa_destroy_key( handle ), PSA_ERROR_INVALID_HANDLE );
ok = 1;
exit:
psa_reset_key_attributes( &attributes );
return( ok );
}
/* An overapproximation of the amount of storage needed for a key of the
* given type and with the given content. The API doesn't make it easy
* to find a good value for the size. The current implementation doesn't
* care about the value anyway. */
#define KEY_BITS_FROM_DATA( type, data ) \
( data )->len
typedef enum {
IMPORT_KEY = 0,
GENERATE_KEY = 1,
DERIVE_KEY = 2
} generate_method;
/* END_HEADER */
/* BEGIN_DEPENDENCIES
* depends_on:MBEDTLS_PSA_CRYPTO_C
* END_DEPENDENCIES
*/
/* BEGIN_CASE */
void static_checks( )
{
size_t max_truncated_mac_size =
PSA_ALG_MAC_TRUNCATION_MASK >> PSA_MAC_TRUNCATION_OFFSET;
/* Check that the length for a truncated MAC always fits in the algorithm
* encoding. The shifted mask is the maximum truncated value. The
* untruncated algorithm may be one byte larger. */
TEST_ASSERT( PSA_MAC_MAX_SIZE <= 1 + max_truncated_mac_size );
}
/* END_CASE */
/* BEGIN_CASE */
void attributes_set_get( int id_arg, int lifetime_arg,
int usage_flags_arg, int alg_arg,
int type_arg )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_id_t id = id_arg;
psa_key_lifetime_t lifetime = lifetime_arg;
psa_key_usage_t usage_flags = usage_flags_arg;
psa_algorithm_t alg = alg_arg;
psa_key_type_t type = type_arg;
TEST_EQUAL( psa_get_key_id( &attributes ), 0 );
TEST_EQUAL( psa_get_key_lifetime( &attributes ), 0 );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ), 0 );
TEST_EQUAL( psa_get_key_algorithm( &attributes ), 0 );
TEST_EQUAL( psa_get_key_type( &attributes ), 0 );
psa_make_key_persistent( &attributes, id, lifetime );
psa_set_key_usage_flags( &attributes, usage_flags );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
TEST_EQUAL( psa_get_key_id( &attributes ), id );
TEST_EQUAL( psa_get_key_lifetime( &attributes ), lifetime );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ), usage_flags );
TEST_EQUAL( psa_get_key_algorithm( &attributes ), alg );
TEST_EQUAL( psa_get_key_type( &attributes ), type );
psa_reset_key_attributes( &attributes );
TEST_EQUAL( psa_get_key_id( &attributes ), 0 );
TEST_EQUAL( psa_get_key_lifetime( &attributes ), 0 );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ), 0 );
TEST_EQUAL( psa_get_key_algorithm( &attributes ), 0 );
TEST_EQUAL( psa_get_key_type( &attributes ), 0 );
}
/* END_CASE */
/* BEGIN_CASE */
void import( data_t *data, int type_arg, int expected_status_arg )
{
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_handle_t handle = 0;
psa_key_type_t type = type_arg;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_type( &attributes, type );
status = psa_import_key( &attributes, &handle, data->x, data->len );
TEST_EQUAL( status, expected_status );
if( status != PSA_SUCCESS )
goto exit;
PSA_ASSERT( psa_get_key_attributes( handle, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), type );
PSA_ASSERT( psa_destroy_key( handle ) );
test_operations_on_invalid_handle( handle );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_rsa_made_up( int bits_arg, int keypair, int expected_status_arg )
{
psa_key_handle_t handle = 0;
size_t bits = bits_arg;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
psa_key_type_t type =
keypair ? PSA_KEY_TYPE_RSA_KEYPAIR : PSA_KEY_TYPE_RSA_PUBLIC_KEY;
size_t buffer_size = /* Slight overapproximations */
keypair ? bits * 9 / 16 + 80 : bits / 8 + 20;
unsigned char *buffer = NULL;
unsigned char *p;
int ret;
size_t length;
PSA_ASSERT( psa_crypto_init( ) );
ASSERT_ALLOC( buffer, buffer_size );
TEST_ASSERT( ( ret = construct_fake_rsa_key( buffer, buffer_size, &p,
bits, keypair ) ) >= 0 );
length = ret;
/* Try importing the key */
PSA_ASSERT( psa_allocate_key( &handle ) );
status = psa_import_key_to_handle( handle, type, p, length );
TEST_EQUAL( status, expected_status );
if( status == PSA_SUCCESS )
PSA_ASSERT( psa_destroy_key( handle ) );
exit:
mbedtls_free( buffer );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_export( data_t *data,
int type_arg,
int alg_arg,
int usage_arg,
int expected_bits,
int export_size_delta,
int expected_export_status_arg,
int canonical_input )
{
psa_key_handle_t handle = 0;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_export_status = expected_export_status_arg;
psa_status_t status;
unsigned char *exported = NULL;
unsigned char *reexported = NULL;
size_t export_size;
size_t exported_length = INVALID_EXPORT_LENGTH;
size_t reexported_length;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
export_size = (ptrdiff_t) data->len + export_size_delta;
ASSERT_ALLOC( exported, export_size );
if( ! canonical_input )
ASSERT_ALLOC( reexported, export_size );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage_arg );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
/* Import the key */
PSA_ASSERT( psa_import_key( &attributes, &handle, data->x, data->len ) );
/* Test the key information */
PSA_ASSERT( psa_get_key_attributes( handle, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), type );
TEST_EQUAL( psa_get_key_bits( &got_attributes ), (size_t) expected_bits );
/* Export the key */
status = psa_export_key( handle,
exported, export_size,
&exported_length );
TEST_EQUAL( status, expected_export_status );
/* The exported length must be set by psa_export_key() to a value between 0
* and export_size. On errors, the exported length must be 0. */
TEST_ASSERT( exported_length != INVALID_EXPORT_LENGTH );
TEST_ASSERT( status == PSA_SUCCESS || exported_length == 0 );
TEST_ASSERT( exported_length <= export_size );
TEST_ASSERT( mem_is_char( exported + exported_length, 0,
export_size - exported_length ) );
if( status != PSA_SUCCESS )
{
TEST_EQUAL( exported_length, 0 );
goto destroy;
}
if( ! exercise_export_key( handle, usage_arg ) )
goto exit;
if( canonical_input )
ASSERT_COMPARE( data->x, data->len, exported, exported_length );
else
{
psa_key_handle_t handle2;
PSA_ASSERT( psa_import_key( &attributes, &handle2,
exported, exported_length ) );
PSA_ASSERT( psa_export_key( handle2,
reexported,
export_size,
&reexported_length ) );
ASSERT_COMPARE( exported, exported_length,
reexported, reexported_length );
PSA_ASSERT( psa_close_key( handle2 ) );
}
TEST_ASSERT( exported_length <= PSA_KEY_EXPORT_MAX_SIZE( type, psa_get_key_bits( &got_attributes ) ) );
destroy:
/* Destroy the key */
PSA_ASSERT( psa_destroy_key( handle ) );
test_operations_on_invalid_handle( handle );
exit:
mbedtls_free( exported );
mbedtls_free( reexported );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void invalid_handle( int handle )
{
PSA_ASSERT( psa_crypto_init( ) );
test_operations_on_invalid_handle( handle );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_export_public_key( data_t *data,
int type_arg,
int alg_arg,
int export_size_delta,
int expected_export_status_arg,
data_t *expected_public_key )
{
psa_key_handle_t handle = 0;
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_export_status = expected_export_status_arg;
psa_status_t status;
unsigned char *exported = NULL;
size_t export_size = expected_public_key->len + export_size_delta;
size_t exported_length = INVALID_EXPORT_LENGTH;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_EXPORT );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
/* Import the key */
PSA_ASSERT( psa_import_key( &attributes, &handle, data->x, data->len ) );
/* Export the public key */
ASSERT_ALLOC( exported, export_size );
status = psa_export_public_key( handle,
exported, export_size,
&exported_length );
TEST_EQUAL( status, expected_export_status );
if( status == PSA_SUCCESS )
{
psa_key_type_t public_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR( type );
size_t bits;
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
bits = psa_get_key_bits( &attributes );
TEST_ASSERT( expected_public_key->len <=
PSA_KEY_EXPORT_MAX_SIZE( public_type, bits ) );
ASSERT_COMPARE( expected_public_key->x, expected_public_key->len,
exported, exported_length );
}
exit:
mbedtls_free( exported );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void import_and_exercise_key( data_t *data,
int type_arg,
int bits_arg,
int alg_arg )
{
psa_key_handle_t handle = 0;
psa_key_type_t type = type_arg;
size_t bits = bits_arg;
psa_algorithm_t alg = alg_arg;
psa_key_usage_t usage = usage_to_exercise( type, alg );
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
/* Import the key */
PSA_ASSERT( psa_import_key( &attributes, &handle, data->x, data->len ) );
/* Test the key information */
PSA_ASSERT( psa_get_key_attributes( handle, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), type );
TEST_EQUAL( psa_get_key_bits( &got_attributes ), bits );
/* Do something with the key according to its type and permitted usage. */
if( ! exercise_key( handle, usage, alg ) )
goto exit;
PSA_ASSERT( psa_destroy_key( handle ) );
test_operations_on_invalid_handle( handle );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_policy( int usage_arg, int alg_arg )
{
psa_key_handle_t handle = 0;
psa_algorithm_t alg = alg_arg;
psa_key_usage_t usage = usage_arg;
psa_key_type_t key_type = PSA_KEY_TYPE_AES;
unsigned char key[32] = {0};
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
memset( key, 0x2a, sizeof( key ) );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, key_type );
PSA_ASSERT( psa_import_key( &attributes, &handle, key, sizeof( key ) ) );
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
TEST_EQUAL( psa_get_key_type( &attributes ), key_type );
TEST_EQUAL( psa_get_key_usage_flags( &attributes ), usage );
TEST_EQUAL( psa_get_key_algorithm( &attributes ), alg );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_policy_init( )
{
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
psa_key_policy_t func = psa_key_policy_init( );
psa_key_policy_t init = PSA_KEY_POLICY_INIT;
psa_key_policy_t zero;
memset( &zero, 0, sizeof( zero ) );
/* A default key policy should not permit any usage. */
TEST_EQUAL( psa_key_policy_get_usage( &func ), 0 );
TEST_EQUAL( psa_key_policy_get_usage( &init ), 0 );
TEST_EQUAL( psa_key_policy_get_usage( &zero ), 0 );
/* A default key policy should not permit any algorithm. */
TEST_EQUAL( psa_key_policy_get_algorithm( &func ), 0 );
TEST_EQUAL( psa_key_policy_get_algorithm( &init ), 0 );
TEST_EQUAL( psa_key_policy_get_algorithm( &zero ), 0 );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_status_t status;
unsigned char mac[PSA_MAC_MAX_SIZE];
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x, key_data->len ) );
status = psa_mac_sign_setup( &operation, handle, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_SIGN ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
psa_mac_abort( &operation );
memset( mac, 0, sizeof( mac ) );
status = psa_mac_verify_setup( &operation, handle, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_VERIFY ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_mac_abort( &operation );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x, key_data->len ) );
status = psa_cipher_encrypt_setup( &operation, handle, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
psa_cipher_abort( &operation );
status = psa_cipher_decrypt_setup( &operation, handle, exercise_alg );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_cipher_abort( &operation );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int nonce_length_arg,
int tag_length_arg,
int exercise_alg )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_status_t status;
unsigned char nonce[16] = {0};
size_t nonce_length = nonce_length_arg;
unsigned char tag[16];
size_t tag_length = tag_length_arg;
size_t output_length;
TEST_ASSERT( nonce_length <= sizeof( nonce ) );
TEST_ASSERT( tag_length <= sizeof( tag ) );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x, key_data->len ) );
status = psa_aead_encrypt( handle, exercise_alg,
nonce, nonce_length,
NULL, 0,
NULL, 0,
tag, tag_length,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
memset( tag, 0, sizeof( tag ) );
status = psa_aead_decrypt( handle, exercise_alg,
nonce, nonce_length,
NULL, 0,
tag, tag_length,
NULL, 0,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 )
TEST_EQUAL( status, PSA_ERROR_INVALID_SIGNATURE );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encryption_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_status_t status;
size_t key_bits;
size_t buffer_length;
unsigned char *buffer = NULL;
size_t output_length;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x, key_data->len ) );
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
buffer_length = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits,
exercise_alg );
ASSERT_ALLOC( buffer, buffer_length );
status = psa_asymmetric_encrypt( handle, exercise_alg,
NULL, 0,
NULL, 0,
buffer, buffer_length,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_ENCRYPT ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
if( buffer_length != 0 )
memset( buffer, 0, buffer_length );
status = psa_asymmetric_decrypt( handle, exercise_alg,
buffer, buffer_length,
NULL, 0,
buffer, buffer_length,
&output_length );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DECRYPT ) != 0 )
TEST_EQUAL( status, PSA_ERROR_INVALID_PADDING );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
mbedtls_free( buffer );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_signature_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg,
int payload_length_arg )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_status_t status;
unsigned char payload[PSA_HASH_MAX_SIZE] = {1};
/* If `payload_length_arg > 0`, `exercise_alg` is supposed to be
* compatible with the policy and `payload_length_arg` is supposed to be
* a valid input length to sign. If `payload_length_arg <= 0`,
* `exercise_alg` is supposed to be forbidden by the policy. */
int compatible_alg = payload_length_arg > 0;
size_t payload_length = compatible_alg ? payload_length_arg : 0;
unsigned char signature[PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE] = {0};
size_t signature_length;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x, key_data->len ) );
status = psa_asymmetric_sign( handle, exercise_alg,
payload, payload_length,
signature, sizeof( signature ),
&signature_length );
if( compatible_alg && ( policy_usage & PSA_KEY_USAGE_SIGN ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
memset( signature, 0, sizeof( signature ) );
status = psa_asymmetric_verify( handle, exercise_alg,
payload, payload_length,
signature, sizeof( signature ) );
if( compatible_alg && ( policy_usage & PSA_KEY_USAGE_VERIFY ) != 0 )
TEST_EQUAL( status, PSA_ERROR_INVALID_SIGNATURE );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_policy( int policy_usage,
int policy_alg,
int key_type,
data_t *key_data,
int exercise_alg )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x, key_data->len ) );
status = psa_key_derivation( &generator, handle,
exercise_alg,
NULL, 0,
NULL, 0,
1 );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DERIVE ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_generator_abort( &generator );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void agreement_key_policy( int policy_usage,
int policy_alg,
int key_type_arg,
data_t *key_data,
int exercise_alg )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_key_type_t key_type = key_type_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x, key_data->len ) );
PSA_ASSERT( psa_key_derivation_setup( &generator, exercise_alg ) );
status = key_agreement_with_self( &generator, handle );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DERIVE ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_generator_abort( &generator );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void raw_agreement_key_policy( int policy_usage,
int policy_alg,
int key_type_arg,
data_t *key_data,
int exercise_alg )
{
psa_key_handle_t handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_key_type_t key_type = key_type_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, policy_usage, policy_alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x, key_data->len ) );
status = raw_key_agreement_with_self( exercise_alg, handle );
if( policy_alg == exercise_alg &&
( policy_usage & PSA_KEY_USAGE_DERIVE ) != 0 )
PSA_ASSERT( status );
else
TEST_EQUAL( status, PSA_ERROR_NOT_PERMITTED );
exit:
psa_generator_abort( &generator );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void copy_key_policy( int source_usage_arg, int source_alg_arg,
int type_arg, data_t *material,
int target_usage_arg, int target_alg_arg,
int constraint_usage_arg, int constraint_alg_arg,
int expected_usage_arg, int expected_alg_arg )
{
psa_key_usage_t source_usage = source_usage_arg;
psa_algorithm_t source_alg = source_alg_arg;
psa_key_handle_t source_handle = 0;
psa_key_policy_t source_policy = PSA_KEY_POLICY_INIT;
psa_key_type_t source_type = type_arg;
size_t source_bits;
psa_key_usage_t target_usage = target_usage_arg;
psa_algorithm_t target_alg = target_alg_arg;
psa_key_handle_t target_handle = 0;
psa_key_policy_t target_policy = PSA_KEY_POLICY_INIT;
psa_key_type_t target_type;
size_t target_bits;
psa_key_usage_t constraint_usage = constraint_usage_arg;
psa_algorithm_t constraint_alg = constraint_alg_arg;
psa_key_policy_t constraint = PSA_KEY_POLICY_INIT;
psa_key_policy_t *p_constraint = NULL;
psa_key_usage_t expected_usage = expected_usage_arg;
psa_algorithm_t expected_alg = expected_alg_arg;
uint8_t *export_buffer = NULL;
if( constraint_usage_arg != -1 )
{
p_constraint = &constraint;
psa_key_policy_set_usage( p_constraint,
constraint_usage, constraint_alg );
}
PSA_ASSERT( psa_crypto_init( ) );
/* Populate the source slot. */
PSA_ASSERT( psa_allocate_key( &source_handle ) );
psa_key_policy_set_usage( &source_policy, source_usage, source_alg );
PSA_ASSERT( psa_set_key_policy( source_handle, &source_policy ) );
PSA_ASSERT( psa_import_key_to_handle( source_handle, source_type,
material->x, material->len ) );
PSA_ASSERT( psa_get_key_information( source_handle, NULL, &source_bits ) );
/* Prepare the target slot. */
PSA_ASSERT( psa_allocate_key( &target_handle ) );
psa_key_policy_set_usage( &target_policy, target_usage, target_alg );
PSA_ASSERT( psa_set_key_policy( target_handle, &target_policy ) );
target_policy = psa_key_policy_init();
/* Copy the key. */
PSA_ASSERT( psa_copy_key_to_handle( source_handle, target_handle, p_constraint ) );
/* Destroy the source to ensure that this doesn't affect the target. */
PSA_ASSERT( psa_destroy_key( source_handle ) );
/* Test that the target slot has the expected content and policy. */
PSA_ASSERT( psa_get_key_information( target_handle,
&target_type, &target_bits ) );
TEST_EQUAL( source_type, target_type );
TEST_EQUAL( source_bits, target_bits );
PSA_ASSERT( psa_get_key_policy( target_handle, &target_policy ) );
TEST_EQUAL( expected_usage, psa_key_policy_get_usage( &target_policy ) );
TEST_EQUAL( expected_alg, psa_key_policy_get_algorithm( &target_policy ) );
if( expected_usage & PSA_KEY_USAGE_EXPORT )
{
size_t length;
ASSERT_ALLOC( export_buffer, material->len );
PSA_ASSERT( psa_export_key( target_handle, export_buffer,
material->len, &length ) );
ASSERT_COMPARE( material->x, material->len,
export_buffer, length );
}
if( ! exercise_key( target_handle, expected_usage, expected_alg ) )
goto exit;
PSA_ASSERT( psa_close_key( target_handle ) );
exit:
mbedtls_psa_crypto_free( );
mbedtls_free( export_buffer );
}
/* END_CASE */
/* BEGIN_CASE */
void copy_fail( int source_usage_arg, int source_alg_arg,
int type_arg, data_t *material,
int target_usage_arg, int target_alg_arg,
int constraint_usage_arg, int constraint_alg_arg,
int expected_status_arg )
{
/* Test copy failure into an empty slot. There is a test for copy failure
* into an occupied slot in
* test_suite_psa_crypto_slot_management.function. */
psa_key_usage_t source_usage = source_usage_arg;
psa_algorithm_t source_alg = source_alg_arg;
psa_key_handle_t source_handle = 0;
psa_key_policy_t source_policy = PSA_KEY_POLICY_INIT;
psa_key_type_t source_type = type_arg;
size_t source_bits;
psa_key_usage_t target_usage = target_usage_arg;
psa_algorithm_t target_alg = target_alg_arg;
psa_key_handle_t target_handle = 0;
psa_key_policy_t target_policy = PSA_KEY_POLICY_INIT;
psa_key_type_t target_type;
size_t target_bits;
psa_key_usage_t constraint_usage = constraint_usage_arg;
psa_algorithm_t constraint_alg = constraint_alg_arg;
psa_key_policy_t constraint = PSA_KEY_POLICY_INIT;
psa_key_policy_t *p_constraint = NULL;
psa_status_t expected_status = expected_status_arg;
if( constraint_usage_arg != -1 )
{
p_constraint = &constraint;
psa_key_policy_set_usage( p_constraint,
constraint_usage, constraint_alg );
}
PSA_ASSERT( psa_crypto_init( ) );
/* Populate the source slot. */
PSA_ASSERT( psa_allocate_key( &source_handle ) );
psa_key_policy_set_usage( &source_policy, source_usage, source_alg );
PSA_ASSERT( psa_set_key_policy( source_handle, &source_policy ) );
PSA_ASSERT( psa_import_key_to_handle( source_handle, source_type,
material->x, material->len ) );
PSA_ASSERT( psa_get_key_information( source_handle, NULL, &source_bits ) );
/* Prepare the target slot. */
PSA_ASSERT( psa_allocate_key( &target_handle ) );
psa_key_policy_set_usage( &target_policy, target_usage, target_alg );
PSA_ASSERT( psa_set_key_policy( target_handle, &target_policy ) );
target_policy = psa_key_policy_init();
/* Copy the key. */
TEST_EQUAL( psa_copy_key_to_handle( source_handle, target_handle, p_constraint ),
expected_status );
/* Test that the target slot is unaffected. */
TEST_EQUAL( psa_get_key_information( target_handle,
&target_type, &target_bits ),
PSA_ERROR_DOES_NOT_EXIST );
PSA_ASSERT( psa_get_key_policy( target_handle, &target_policy ) );
TEST_EQUAL( target_usage, psa_key_policy_get_usage( &target_policy ) );
TEST_EQUAL( target_alg, psa_key_policy_get_algorithm( &target_policy ) );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_operation_init( )
{
const uint8_t input[1] = { 0 };
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
psa_hash_operation_t func = psa_hash_operation_init( );
psa_hash_operation_t init = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t zero;
memset( &zero, 0, sizeof( zero ) );
/* A freshly-initialized hash operation should not be usable. */
TEST_EQUAL( psa_hash_update( &func, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_hash_update( &init, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_hash_update( &zero, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
/* A default hash operation should be abortable without error. */
PSA_ASSERT( psa_hash_abort( &func ) );
PSA_ASSERT( psa_hash_abort( &init ) );
PSA_ASSERT( psa_hash_abort( &zero ) );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_setup( int alg_arg,
int expected_status_arg )
{
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
status = psa_hash_setup( &operation, alg );
TEST_EQUAL( status, expected_status );
/* Whether setup succeeded or failed, abort must succeed. */
PSA_ASSERT( psa_hash_abort( &operation ) );
/* If setup failed, reproduce the failure, so as to
* test the resulting state of the operation object. */
if( status != PSA_SUCCESS )
TEST_EQUAL( psa_hash_setup( &operation, alg ), status );
/* Now the operation object should be reusable. */
#if defined(KNOWN_SUPPORTED_HASH_ALG)
PSA_ASSERT( psa_hash_setup( &operation, KNOWN_SUPPORTED_HASH_ALG ) );
PSA_ASSERT( psa_hash_abort( &operation ) );
#endif
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void hash_bad_order( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char input[] = "";
/* SHA-256 hash of an empty string */
const unsigned char valid_hash[] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8,
0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 };
unsigned char hash[sizeof(valid_hash)] = { 0 };
size_t hash_len;
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
PSA_ASSERT( psa_crypto_init( ) );
/* Call setup twice in a row. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
TEST_EQUAL( psa_hash_setup( &operation, alg ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call update without calling setup beforehand. */
TEST_EQUAL( psa_hash_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call update after finish. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
PSA_ASSERT( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ) );
TEST_EQUAL( psa_hash_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call verify without calling setup beforehand. */
TEST_EQUAL( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call verify after finish. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
PSA_ASSERT( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ) );
TEST_EQUAL( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call verify twice in a row. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
PSA_ASSERT( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ) );
TEST_EQUAL( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call finish without calling setup beforehand. */
TEST_EQUAL( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call finish twice in a row. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
PSA_ASSERT( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ) );
TEST_EQUAL( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
/* Call finish after calling verify. */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
PSA_ASSERT( psa_hash_verify( &operation,
valid_hash, sizeof( valid_hash ) ) );
TEST_EQUAL( psa_hash_finish( &operation,
hash, sizeof( hash ), &hash_len ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_abort( &operation ) );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SHA256_C */
void hash_verify_bad_args( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
/* SHA-256 hash of an empty string with 2 extra bytes (0xaa and 0xbb)
* appended to it */
unsigned char hash[] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8,
0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55, 0xaa, 0xbb };
size_t expected_size = PSA_HASH_SIZE( alg );
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
PSA_ASSERT( psa_crypto_init( ) );
/* psa_hash_verify with a smaller hash than expected */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
TEST_EQUAL( psa_hash_verify( &operation, hash, expected_size - 1 ),
PSA_ERROR_INVALID_SIGNATURE );
/* psa_hash_verify with a non-matching hash */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
TEST_EQUAL( psa_hash_verify( &operation, hash + 1, expected_size ),
PSA_ERROR_INVALID_SIGNATURE );
/* psa_hash_verify with a hash longer than expected */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
TEST_EQUAL( psa_hash_verify( &operation, hash, sizeof( hash ) ),
PSA_ERROR_INVALID_SIGNATURE );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SHA256_C */
void hash_finish_bad_args( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char hash[PSA_HASH_MAX_SIZE];
size_t expected_size = PSA_HASH_SIZE( alg );
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;
size_t hash_len;
PSA_ASSERT( psa_crypto_init( ) );
/* psa_hash_finish with a smaller hash buffer than expected */
PSA_ASSERT( psa_hash_setup( &operation, alg ) );
TEST_EQUAL( psa_hash_finish( &operation,
hash, expected_size - 1, &hash_len ),
PSA_ERROR_BUFFER_TOO_SMALL );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SHA256_C */
void hash_clone_source_state( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char hash[PSA_HASH_MAX_SIZE];
psa_hash_operation_t op_source = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_init = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_setup = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_finished = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_aborted = PSA_HASH_OPERATION_INIT;
size_t hash_len;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_hash_setup( &op_source, alg ) );
PSA_ASSERT( psa_hash_setup( &op_setup, alg ) );
PSA_ASSERT( psa_hash_setup( &op_finished, alg ) );
PSA_ASSERT( psa_hash_finish( &op_finished,
hash, sizeof( hash ), &hash_len ) );
PSA_ASSERT( psa_hash_setup( &op_aborted, alg ) );
PSA_ASSERT( psa_hash_abort( &op_aborted ) );
TEST_EQUAL( psa_hash_clone( &op_source, &op_setup ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_hash_clone( &op_source, &op_init ) );
PSA_ASSERT( psa_hash_finish( &op_init,
hash, sizeof( hash ), &hash_len ) );
PSA_ASSERT( psa_hash_clone( &op_source, &op_finished ) );
PSA_ASSERT( psa_hash_finish( &op_finished,
hash, sizeof( hash ), &hash_len ) );
PSA_ASSERT( psa_hash_clone( &op_source, &op_aborted ) );
PSA_ASSERT( psa_hash_finish( &op_aborted,
hash, sizeof( hash ), &hash_len ) );
exit:
psa_hash_abort( &op_source );
psa_hash_abort( &op_init );
psa_hash_abort( &op_setup );
psa_hash_abort( &op_finished );
psa_hash_abort( &op_aborted );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SHA256_C */
void hash_clone_target_state( )
{
psa_algorithm_t alg = PSA_ALG_SHA_256;
unsigned char hash[PSA_HASH_MAX_SIZE];
psa_hash_operation_t op_init = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_setup = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_finished = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_aborted = PSA_HASH_OPERATION_INIT;
psa_hash_operation_t op_target = PSA_HASH_OPERATION_INIT;
size_t hash_len;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_hash_setup( &op_setup, alg ) );
PSA_ASSERT( psa_hash_setup( &op_finished, alg ) );
PSA_ASSERT( psa_hash_finish( &op_finished,
hash, sizeof( hash ), &hash_len ) );
PSA_ASSERT( psa_hash_setup( &op_aborted, alg ) );
PSA_ASSERT( psa_hash_abort( &op_aborted ) );
PSA_ASSERT( psa_hash_clone( &op_setup, &op_target ) );
PSA_ASSERT( psa_hash_finish( &op_target,
hash, sizeof( hash ), &hash_len ) );
TEST_EQUAL( psa_hash_clone( &op_init, &op_target ), PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_hash_clone( &op_finished, &op_target ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_hash_clone( &op_aborted, &op_target ),
PSA_ERROR_BAD_STATE );
exit:
psa_hash_abort( &op_target );
psa_hash_abort( &op_init );
psa_hash_abort( &op_setup );
psa_hash_abort( &op_finished );
psa_hash_abort( &op_aborted );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_operation_init( )
{
const uint8_t input[1] = { 0 };
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
psa_mac_operation_t func = psa_mac_operation_init( );
psa_mac_operation_t init = PSA_MAC_OPERATION_INIT;
psa_mac_operation_t zero;
memset( &zero, 0, sizeof( zero ) );
/* A freshly-initialized MAC operation should not be usable. */
TEST_EQUAL( psa_mac_update( &func,
input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_mac_update( &init,
input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_mac_update( &zero,
input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
/* A default MAC operation should be abortable without error. */
PSA_ASSERT( psa_mac_abort( &func ) );
PSA_ASSERT( psa_mac_abort( &init ) );
PSA_ASSERT( psa_mac_abort( &zero ) );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_setup( int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg )
{
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_status_t status = PSA_ERROR_GENERIC_ERROR;
#if defined(KNOWN_SUPPORTED_MAC_ALG)
const uint8_t smoke_test_key_data[16] = "kkkkkkkkkkkkkkkk";
#endif
PSA_ASSERT( psa_crypto_init( ) );
if( ! exercise_mac_setup( key_type, key->x, key->len, alg,
&operation, &status ) )
goto exit;
TEST_EQUAL( status, expected_status );
/* The operation object should be reusable. */
#if defined(KNOWN_SUPPORTED_MAC_ALG)
if( ! exercise_mac_setup( KNOWN_SUPPORTED_MAC_KEY_TYPE,
smoke_test_key_data,
sizeof( smoke_test_key_data ),
KNOWN_SUPPORTED_MAC_ALG,
&operation, &status ) )
goto exit;
TEST_EQUAL( status, PSA_SUCCESS );
#endif
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_bad_order( )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = PSA_KEY_TYPE_HMAC;
psa_algorithm_t alg = PSA_ALG_HMAC(PSA_ALG_SHA_256);
const uint8_t key[] = {
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa };
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
uint8_t sign_mac[PSA_MAC_MAX_SIZE + 10] = { 0 };
size_t sign_mac_length = 0;
const uint8_t input[] = { 0xbb, 0xbb, 0xbb, 0xbb };
const uint8_t verify_mac[] = {
0x74, 0x65, 0x93, 0x8c, 0xeb, 0x1d, 0xb3, 0x76, 0x5a, 0x38, 0xe7, 0xdd,
0x85, 0xc5, 0xad, 0x4f, 0x07, 0xe7, 0xd5, 0xb2, 0x64, 0xf0, 0x1a, 0x1a,
0x2c, 0xf9, 0x18, 0xca, 0x59, 0x7e, 0x5d, 0xf6 };
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY,
alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key, sizeof(key) ) );
/* Call update without calling setup beforehand. */
TEST_EQUAL( psa_mac_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call sign finish without calling setup beforehand. */
TEST_EQUAL( psa_mac_sign_finish( &operation, sign_mac, sizeof( sign_mac ),
&sign_mac_length),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call verify finish without calling setup beforehand. */
TEST_EQUAL( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call setup twice in a row. */
PSA_ASSERT( psa_mac_sign_setup( &operation,
handle, alg ) );
TEST_EQUAL( psa_mac_sign_setup( &operation,
handle, alg ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call update after sign finish. */
PSA_ASSERT( psa_mac_sign_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_sign_finish( &operation,
sign_mac, sizeof( sign_mac ),
&sign_mac_length ) );
TEST_EQUAL( psa_mac_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call update after verify finish. */
PSA_ASSERT( psa_mac_verify_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ) );
TEST_EQUAL( psa_mac_update( &operation, input, sizeof( input ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call sign finish twice in a row. */
PSA_ASSERT( psa_mac_sign_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_sign_finish( &operation,
sign_mac, sizeof( sign_mac ),
&sign_mac_length ) );
TEST_EQUAL( psa_mac_sign_finish( &operation,
sign_mac, sizeof( sign_mac ),
&sign_mac_length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Call verify finish twice in a row. */
PSA_ASSERT( psa_mac_verify_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
PSA_ASSERT( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ) );
TEST_EQUAL( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Setup sign but try verify. */
PSA_ASSERT( psa_mac_sign_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
TEST_EQUAL( psa_mac_verify_finish( &operation,
verify_mac, sizeof( verify_mac ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
/* Setup verify but try sign. */
PSA_ASSERT( psa_mac_verify_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_mac_update( &operation, input, sizeof( input ) ) );
TEST_EQUAL( psa_mac_sign_finish( &operation,
sign_mac, sizeof( sign_mac ),
&sign_mac_length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_mac_abort( &operation ) );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_sign( int key_type_arg,
data_t *key,
int alg_arg,
data_t *input,
data_t *expected_mac )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
/* Leave a little extra room in the output buffer. At the end of the
* test, we'll check that the implementation didn't overwrite onto
* this extra room. */
uint8_t actual_mac[PSA_MAC_MAX_SIZE + 10];
size_t mac_buffer_size =
PSA_MAC_FINAL_SIZE( key_type, PSA_BYTES_TO_BITS( key->len ), alg );
size_t mac_length = 0;
memset( actual_mac, '+', sizeof( actual_mac ) );
TEST_ASSERT( mac_buffer_size <= PSA_MAC_MAX_SIZE );
TEST_ASSERT( expected_mac->len <= mac_buffer_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key->x, key->len ) );
/* Calculate the MAC. */
PSA_ASSERT( psa_mac_sign_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_mac_update( &operation,
input->x, input->len ) );
PSA_ASSERT( psa_mac_sign_finish( &operation,
actual_mac, mac_buffer_size,
&mac_length ) );
/* Compare with the expected value. */
ASSERT_COMPARE( expected_mac->x, expected_mac->len,
actual_mac, mac_length );
/* Verify that the end of the buffer is untouched. */
TEST_ASSERT( mem_is_char( actual_mac + mac_length, '+',
sizeof( actual_mac ) - mac_length ) );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void mac_verify( int key_type_arg,
data_t *key,
int alg_arg,
data_t *input,
data_t *expected_mac )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
TEST_ASSERT( expected_mac->len <= PSA_MAC_MAX_SIZE );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key->x, key->len ) );
PSA_ASSERT( psa_mac_verify_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_destroy_key( handle ) );
PSA_ASSERT( psa_mac_update( &operation,
input->x, input->len ) );
PSA_ASSERT( psa_mac_verify_finish( &operation,
expected_mac->x,
expected_mac->len ) );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_operation_init( )
{
const uint8_t input[1] = { 0 };
unsigned char output[1] = { 0 };
size_t output_length;
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
psa_cipher_operation_t func = psa_cipher_operation_init( );
psa_cipher_operation_t init = PSA_CIPHER_OPERATION_INIT;
psa_cipher_operation_t zero;
memset( &zero, 0, sizeof( zero ) );
/* A freshly-initialized cipher operation should not be usable. */
TEST_EQUAL( psa_cipher_update( &func,
input, sizeof( input ),
output, sizeof( output ),
&output_length ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_cipher_update( &init,
input, sizeof( input ),
output, sizeof( output ),
&output_length ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_cipher_update( &zero,
input, sizeof( input ),
output, sizeof( output ),
&output_length ),
PSA_ERROR_BAD_STATE );
/* A default cipher operation should be abortable without error. */
PSA_ASSERT( psa_cipher_abort( &func ) );
PSA_ASSERT( psa_cipher_abort( &init ) );
PSA_ASSERT( psa_cipher_abort( &zero ) );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_setup( int key_type_arg,
data_t *key,
int alg_arg,
int expected_status_arg )
{
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_status_t status;
#if defined(KNOWN_SUPPORTED_MAC_ALG)
const uint8_t smoke_test_key_data[16] = "kkkkkkkkkkkkkkkk";
#endif
PSA_ASSERT( psa_crypto_init( ) );
if( ! exercise_cipher_setup( key_type, key->x, key->len, alg,
&operation, &status ) )
goto exit;
TEST_EQUAL( status, expected_status );
/* The operation object should be reusable. */
#if defined(KNOWN_SUPPORTED_CIPHER_ALG)
if( ! exercise_cipher_setup( KNOWN_SUPPORTED_CIPHER_KEY_TYPE,
smoke_test_key_data,
sizeof( smoke_test_key_data ),
KNOWN_SUPPORTED_CIPHER_ALG,
&operation, &status ) )
goto exit;
TEST_EQUAL( status, PSA_SUCCESS );
#endif
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_bad_order( )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = PSA_KEY_TYPE_AES;
psa_algorithm_t alg = PSA_ALG_CBC_PKCS7;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
unsigned char iv[PSA_BLOCK_CIPHER_BLOCK_SIZE(PSA_KEY_TYPE_AES)] = { 0 };
const uint8_t key[] = {
0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa,
0xaa, 0xaa, 0xaa, 0xaa };
const uint8_t text[] = {
0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0xbb,
0xbb, 0xbb, 0xbb, 0xbb };
uint8_t buffer[PSA_BLOCK_CIPHER_BLOCK_SIZE(PSA_KEY_TYPE_AES)] = { 0 };
size_t length = 0;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key, sizeof(key) ) );
/* Call encrypt setup twice in a row. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, handle, alg ) );
TEST_EQUAL( psa_cipher_encrypt_setup( &operation, handle, alg ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call decrypt setup twice in a row. */
PSA_ASSERT( psa_cipher_decrypt_setup( &operation, handle, alg ) );
TEST_EQUAL( psa_cipher_decrypt_setup( &operation, handle, alg ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Generate an IV without calling setup beforehand. */
TEST_EQUAL( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Generate an IV twice in a row. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, handle, alg ) );
PSA_ASSERT( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ) );
TEST_EQUAL( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Generate an IV after it's already set. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, handle, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
TEST_EQUAL( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Set an IV without calling setup beforehand. */
TEST_EQUAL( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Set an IV after it's already set. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, handle, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
TEST_EQUAL( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Set an IV after it's already generated. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, handle, alg ) );
PSA_ASSERT( psa_cipher_generate_iv( &operation,
buffer, sizeof( buffer ),
&length ) );
TEST_EQUAL( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call update without calling setup beforehand. */
TEST_EQUAL( psa_cipher_update( &operation,
text, sizeof( text ),
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call update without an IV where an IV is required. */
TEST_EQUAL( psa_cipher_update( &operation,
text, sizeof( text ),
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call update after finish. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, handle, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
PSA_ASSERT( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ) );
TEST_EQUAL( psa_cipher_update( &operation,
text, sizeof( text ),
buffer, sizeof( buffer ),
&length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call finish without calling setup beforehand. */
TEST_EQUAL( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call finish without an IV where an IV is required. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, handle, alg ) );
/* Not calling update means we are encrypting an empty buffer, which is OK
* for cipher modes with padding. */
TEST_EQUAL( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
/* Call finish twice in a row. */
PSA_ASSERT( psa_cipher_encrypt_setup( &operation, handle, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
PSA_ASSERT( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ) );
TEST_EQUAL( psa_cipher_finish( &operation,
buffer, sizeof( buffer ), &length ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_cipher_abort( &operation ) );
exit:
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt( int alg_arg, int key_type_arg,
data_t *key,
data_t *input, data_t *expected_output,
int expected_status_arg )
{
psa_key_handle_t handle = 0;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
unsigned char iv[16] = {0};
size_t iv_size;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
memset( iv, 0x2a, iv_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key->x, key->len ) );
PSA_ASSERT( psa_cipher_encrypt_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, iv_size ) );
output_buffer_size = ( (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ) );
ASSERT_ALLOC( output, output_buffer_size );
PSA_ASSERT( psa_cipher_update( &operation,
input->x, input->len,
output, output_buffer_size,
&function_output_length ) );
total_output_length += function_output_length;
status = psa_cipher_finish( &operation,
output + total_output_length,
output_buffer_size - total_output_length,
&function_output_length );
total_output_length += function_output_length;
TEST_EQUAL( status, expected_status );
if( expected_status == PSA_SUCCESS )
{
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
}
exit:
mbedtls_free( output );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_encrypt_multipart( int alg_arg, int key_type_arg,
data_t *key,
data_t *input,
int first_part_size_arg,
int output1_length_arg, int output2_length_arg,
data_t *expected_output )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t first_part_size = first_part_size_arg;
size_t output1_length = output1_length_arg;
size_t output2_length = output2_length_arg;
unsigned char iv[16] = {0};
size_t iv_size;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
memset( iv, 0x2a, iv_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key->x, key->len ) );
PSA_ASSERT( psa_cipher_encrypt_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
output_buffer_size = ( (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ) );
ASSERT_ALLOC( output, output_buffer_size );
TEST_ASSERT( first_part_size <= input->len );
PSA_ASSERT( psa_cipher_update( &operation, input->x, first_part_size,
output, output_buffer_size,
&function_output_length ) );
TEST_ASSERT( function_output_length == output1_length );
total_output_length += function_output_length;
PSA_ASSERT( psa_cipher_update( &operation,
input->x + first_part_size,
input->len - first_part_size,
output + total_output_length,
output_buffer_size - total_output_length,
&function_output_length ) );
TEST_ASSERT( function_output_length == output2_length );
total_output_length += function_output_length;
PSA_ASSERT( psa_cipher_finish( &operation,
output + total_output_length,
output_buffer_size - total_output_length,
&function_output_length ) );
total_output_length += function_output_length;
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
exit:
mbedtls_free( output );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt_multipart( int alg_arg, int key_type_arg,
data_t *key,
data_t *input,
int first_part_size_arg,
int output1_length_arg, int output2_length_arg,
data_t *expected_output )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t first_part_size = first_part_size_arg;
size_t output1_length = output1_length_arg;
size_t output2_length = output2_length_arg;
unsigned char iv[16] = {0};
size_t iv_size;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
memset( iv, 0x2a, iv_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key->x, key->len ) );
PSA_ASSERT( psa_cipher_decrypt_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, sizeof( iv ) ) );
output_buffer_size = ( (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ) );
ASSERT_ALLOC( output, output_buffer_size );
TEST_ASSERT( first_part_size <= input->len );
PSA_ASSERT( psa_cipher_update( &operation,
input->x, first_part_size,
output, output_buffer_size,
&function_output_length ) );
TEST_ASSERT( function_output_length == output1_length );
total_output_length += function_output_length;
PSA_ASSERT( psa_cipher_update( &operation,
input->x + first_part_size,
input->len - first_part_size,
output + total_output_length,
output_buffer_size - total_output_length,
&function_output_length ) );
TEST_ASSERT( function_output_length == output2_length );
total_output_length += function_output_length;
PSA_ASSERT( psa_cipher_finish( &operation,
output + total_output_length,
output_buffer_size - total_output_length,
&function_output_length ) );
total_output_length += function_output_length;
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
exit:
mbedtls_free( output );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_decrypt( int alg_arg, int key_type_arg,
data_t *key,
data_t *input, data_t *expected_output,
int expected_status_arg )
{
psa_key_handle_t handle = 0;
psa_status_t status;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
unsigned char iv[16] = {0};
size_t iv_size;
unsigned char *output = NULL;
size_t output_buffer_size = 0;
size_t function_output_length = 0;
size_t total_output_length = 0;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
iv_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type );
memset( iv, 0x2a, iv_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key->x, key->len ) );
PSA_ASSERT( psa_cipher_decrypt_setup( &operation,
handle, alg ) );
PSA_ASSERT( psa_cipher_set_iv( &operation,
iv, iv_size ) );
output_buffer_size = ( (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ) );
ASSERT_ALLOC( output, output_buffer_size );
PSA_ASSERT( psa_cipher_update( &operation,
input->x, input->len,
output, output_buffer_size,
&function_output_length ) );
total_output_length += function_output_length;
status = psa_cipher_finish( &operation,
output + total_output_length,
output_buffer_size - total_output_length,
&function_output_length );
total_output_length += function_output_length;
TEST_EQUAL( status, expected_status );
if( expected_status == PSA_SUCCESS )
{
PSA_ASSERT( psa_cipher_abort( &operation ) );
ASSERT_COMPARE( expected_output->x, expected_output->len,
output, total_output_length );
}
exit:
mbedtls_free( output );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_verify_output( int alg_arg, int key_type_arg,
data_t *key,
data_t *input )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char iv[16] = {0};
size_t iv_size = 16;
size_t iv_length = 0;
unsigned char *output1 = NULL;
size_t output1_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_size = 0;
size_t output2_length = 0;
size_t function_output_length = 0;
psa_cipher_operation_t operation1 = PSA_CIPHER_OPERATION_INIT;
psa_cipher_operation_t operation2 = PSA_CIPHER_OPERATION_INIT;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key->x, key->len ) );
PSA_ASSERT( psa_cipher_encrypt_setup( &operation1,
handle, alg ) );
PSA_ASSERT( psa_cipher_decrypt_setup( &operation2,
handle, alg ) );
PSA_ASSERT( psa_cipher_generate_iv( &operation1,
iv, iv_size,
&iv_length ) );
output1_size = ( (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ) );
ASSERT_ALLOC( output1, output1_size );
PSA_ASSERT( psa_cipher_update( &operation1, input->x, input->len,
output1, output1_size,
&output1_length ) );
PSA_ASSERT( psa_cipher_finish( &operation1,
output1 + output1_length,
output1_size - output1_length,
&function_output_length ) );
output1_length += function_output_length;
PSA_ASSERT( psa_cipher_abort( &operation1 ) );
output2_size = output1_length;
ASSERT_ALLOC( output2, output2_size );
PSA_ASSERT( psa_cipher_set_iv( &operation2,
iv, iv_length ) );
PSA_ASSERT( psa_cipher_update( &operation2, output1, output1_length,
output2, output2_size,
&output2_length ) );
function_output_length = 0;
PSA_ASSERT( psa_cipher_finish( &operation2,
output2 + output2_length,
output2_size - output2_length,
&function_output_length ) );
output2_length += function_output_length;
PSA_ASSERT( psa_cipher_abort( &operation2 ) );
ASSERT_COMPARE( input->x, input->len, output2, output2_length );
exit:
mbedtls_free( output1 );
mbedtls_free( output2 );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void cipher_verify_output_multipart( int alg_arg,
int key_type_arg,
data_t *key,
data_t *input,
int first_part_size_arg )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t first_part_size = first_part_size_arg;
unsigned char iv[16] = {0};
size_t iv_size = 16;
size_t iv_length = 0;
unsigned char *output1 = NULL;
size_t output1_buffer_size = 0;
size_t output1_length = 0;
unsigned char *output2 = NULL;
size_t output2_buffer_size = 0;
size_t output2_length = 0;
size_t function_output_length;
psa_cipher_operation_t operation1 = PSA_CIPHER_OPERATION_INIT;
psa_cipher_operation_t operation2 = PSA_CIPHER_OPERATION_INIT;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key->x, key->len ) );
PSA_ASSERT( psa_cipher_encrypt_setup( &operation1,
handle, alg ) );
PSA_ASSERT( psa_cipher_decrypt_setup( &operation2,
handle, alg ) );
PSA_ASSERT( psa_cipher_generate_iv( &operation1,
iv, iv_size,
&iv_length ) );
output1_buffer_size = ( (size_t) input->len +
PSA_BLOCK_CIPHER_BLOCK_SIZE( key_type ) );
ASSERT_ALLOC( output1, output1_buffer_size );
TEST_ASSERT( first_part_size <= input->len );
PSA_ASSERT( psa_cipher_update( &operation1, input->x, first_part_size,
output1, output1_buffer_size,
&function_output_length ) );
output1_length += function_output_length;
PSA_ASSERT( psa_cipher_update( &operation1,
input->x + first_part_size,
input->len - first_part_size,
output1, output1_buffer_size,
&function_output_length ) );
output1_length += function_output_length;
PSA_ASSERT( psa_cipher_finish( &operation1,
output1 + output1_length,
output1_buffer_size - output1_length,
&function_output_length ) );
output1_length += function_output_length;
PSA_ASSERT( psa_cipher_abort( &operation1 ) );
output2_buffer_size = output1_length;
ASSERT_ALLOC( output2, output2_buffer_size );
PSA_ASSERT( psa_cipher_set_iv( &operation2,
iv, iv_length ) );
PSA_ASSERT( psa_cipher_update( &operation2, output1, first_part_size,
output2, output2_buffer_size,
&function_output_length ) );
output2_length += function_output_length;
PSA_ASSERT( psa_cipher_update( &operation2,
output1 + first_part_size,
output1_length - first_part_size,
output2, output2_buffer_size,
&function_output_length ) );
output2_length += function_output_length;
PSA_ASSERT( psa_cipher_finish( &operation2,
output2 + output2_length,
output2_buffer_size - output2_length,
&function_output_length ) );
output2_length += function_output_length;
PSA_ASSERT( psa_cipher_abort( &operation2 ) );
ASSERT_COMPARE( input->x, input->len, output2, output2_length );
exit:
mbedtls_free( output1 );
mbedtls_free( output2 );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt_decrypt( int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
int expected_result_arg )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
unsigned char *output_data2 = NULL;
size_t output_length2 = 0;
size_t tag_length = 16;
psa_status_t expected_result = expected_result_arg;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
output_size = input_data->len + tag_length;
ASSERT_ALLOC( output_data, output_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x, key_data->len ) );
TEST_EQUAL( psa_aead_encrypt( handle, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length ),
expected_result );
if( PSA_SUCCESS == expected_result )
{
ASSERT_ALLOC( output_data2, output_length );
TEST_EQUAL( psa_aead_decrypt( handle, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
output_data, output_length,
output_data2, output_length,
&output_length2 ),
expected_result );
ASSERT_COMPARE( input_data->x, input_data->len,
output_data2, output_length2 );
}
exit:
psa_destroy_key( handle );
mbedtls_free( output_data );
mbedtls_free( output_data2 );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_encrypt( int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
data_t *expected_result )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
size_t tag_length = 16;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
output_size = input_data->len + tag_length;
ASSERT_ALLOC( output_data, output_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT , alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
PSA_ASSERT( psa_aead_encrypt( handle, alg,
nonce->x, nonce->len,
additional_data->x, additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length ) );
ASSERT_COMPARE( expected_result->x, expected_result->len,
output_data, output_length );
exit:
psa_destroy_key( handle );
mbedtls_free( output_data );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void aead_decrypt( int key_type_arg, data_t *key_data,
int alg_arg,
data_t *nonce,
data_t *additional_data,
data_t *input_data,
data_t *expected_data,
int expected_result_arg )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output_data = NULL;
size_t output_size = 0;
size_t output_length = 0;
size_t tag_length = 16;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_status_t expected_result = expected_result_arg;
output_size = input_data->len + tag_length;
ASSERT_ALLOC( output_data, output_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT , alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
TEST_EQUAL( psa_aead_decrypt( handle, alg,
nonce->x, nonce->len,
additional_data->x,
additional_data->len,
input_data->x, input_data->len,
output_data, output_size,
&output_length ),
expected_result );
if( expected_result == PSA_SUCCESS )
ASSERT_COMPARE( expected_data->x, expected_data->len,
output_data, output_length );
exit:
psa_destroy_key( handle );
mbedtls_free( output_data );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void signature_size( int type_arg,
int bits,
int alg_arg,
int expected_size_arg )
{
psa_key_type_t type = type_arg;
psa_algorithm_t alg = alg_arg;
size_t actual_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( type, bits, alg );
TEST_EQUAL( actual_size, (size_t) expected_size_arg );
exit:
;
}
/* END_CASE */
/* BEGIN_CASE */
void sign_deterministic( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
data_t *output_data )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
/* Allocate a buffer which has the size advertized by the
* library. */
signature_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( key_type,
key_bits, alg );
TEST_ASSERT( signature_size != 0 );
TEST_ASSERT( signature_size <= PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE );
ASSERT_ALLOC( signature, signature_size );
/* Perform the signature. */
PSA_ASSERT( psa_asymmetric_sign( handle, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ) );
/* Verify that the signature is what is expected. */
ASSERT_COMPARE( output_data->x, output_data->len,
signature, signature_length );
exit:
psa_destroy_key( handle );
mbedtls_free( signature );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data,
int signature_size_arg, int expected_status_arg )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t signature_size = signature_size_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
unsigned char *signature = NULL;
size_t signature_length = 0xdeadbeef;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
ASSERT_ALLOC( signature, signature_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_SIGN, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
actual_status = psa_asymmetric_sign( handle, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length );
TEST_EQUAL( actual_status, expected_status );
/* The value of *signature_length is unspecified on error, but
* whatever it is, it should be less than signature_size, so that
* if the caller tries to read *signature_length bytes without
* checking the error code then they don't overflow a buffer. */
TEST_ASSERT( signature_length <= signature_size );
exit:
psa_destroy_key( handle );
mbedtls_free( signature );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void sign_verify( int key_type_arg, data_t *key_data,
int alg_arg, data_t *input_data )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *signature = NULL;
size_t signature_size;
size_t signature_length = 0xdeadbeef;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_SIGN | PSA_KEY_USAGE_VERIFY,
alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
/* Allocate a buffer which has the size advertized by the
* library. */
signature_size = PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE( key_type,
key_bits, alg );
TEST_ASSERT( signature_size != 0 );
TEST_ASSERT( signature_size <= PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE );
ASSERT_ALLOC( signature, signature_size );
/* Perform the signature. */
PSA_ASSERT( psa_asymmetric_sign( handle, alg,
input_data->x, input_data->len,
signature, signature_size,
&signature_length ) );
/* Check that the signature length looks sensible. */
TEST_ASSERT( signature_length <= signature_size );
TEST_ASSERT( signature_length > 0 );
/* Use the library to verify that the signature is correct. */
PSA_ASSERT( psa_asymmetric_verify(
handle, alg,
input_data->x, input_data->len,
signature, signature_length ) );
if( input_data->len != 0 )
{
/* Flip a bit in the input and verify that the signature is now
* detected as invalid. Flip a bit at the beginning, not at the end,
* because ECDSA may ignore the last few bits of the input. */
input_data->x[0] ^= 1;
TEST_EQUAL( psa_asymmetric_verify( handle, alg,
input_data->x, input_data->len,
signature, signature_length ),
PSA_ERROR_INVALID_SIGNATURE );
}
exit:
psa_destroy_key( handle );
mbedtls_free( signature );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_verify( int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
TEST_ASSERT( signature_data->len <= PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
PSA_ASSERT( psa_asymmetric_verify( handle, alg,
hash_data->x, hash_data->len,
signature_data->x,
signature_data->len ) );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_verify_fail( int key_type_arg, data_t *key_data,
int alg_arg, data_t *hash_data,
data_t *signature_data,
int expected_status_arg )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_VERIFY, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
actual_status = psa_asymmetric_verify( handle, alg,
hash_data->x, hash_data->len,
signature_data->x,
signature_data->len );
TEST_EQUAL( actual_status, expected_status );
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
int expected_output_length_arg,
int expected_status_arg )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t expected_output_length = expected_output_length_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size;
size_t output_length = ~0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
/* Import the key */
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_ENCRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
/* Determine the maximum output length */
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits, alg );
ASSERT_ALLOC( output, output_size );
/* Encrypt the input */
actual_status = psa_asymmetric_encrypt( handle, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length );
TEST_EQUAL( actual_status, expected_status );
TEST_EQUAL( output_length, expected_output_length );
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if( label->len == 0 )
{
output_length = ~0;
if( output_size != 0 )
memset( output, 0, output_size );
actual_status = psa_asymmetric_encrypt( handle, alg,
input_data->x, input_data->len,
NULL, label->len,
output, output_size,
&output_length );
TEST_EQUAL( actual_status, expected_status );
TEST_EQUAL( output_length, expected_output_length );
}
exit:
psa_destroy_key( handle );
mbedtls_free( output );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_encrypt_decrypt( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t key_bits;
unsigned char *output = NULL;
size_t output_size;
size_t output_length = ~0;
unsigned char *output2 = NULL;
size_t output2_size;
size_t output2_length = ~0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
/* Determine the maximum ciphertext length */
PSA_ASSERT( psa_get_key_attributes( handle, &attributes ) );
key_bits = psa_get_key_bits( &attributes );
output_size = PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE( key_type, key_bits, alg );
ASSERT_ALLOC( output, output_size );
output2_size = input_data->len;
ASSERT_ALLOC( output2, output2_size );
/* We test encryption by checking that encrypt-then-decrypt gives back
* the original plaintext because of the non-optional random
* part of encryption process which prevents using fixed vectors. */
PSA_ASSERT( psa_asymmetric_encrypt( handle, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length ) );
/* We don't know what ciphertext length to expect, but check that
* it looks sensible. */
TEST_ASSERT( output_length <= output_size );
PSA_ASSERT( psa_asymmetric_decrypt( handle, alg,
output, output_length,
label->x, label->len,
output2, output2_size,
&output2_length ) );
ASSERT_COMPARE( input_data->x, input_data->len,
output2, output2_length );
exit:
psa_destroy_key( handle );
mbedtls_free( output );
mbedtls_free( output2 );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
data_t *expected_data )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = 0;
size_t output_length = ~0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
output_size = expected_data->len;
ASSERT_ALLOC( output, output_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
PSA_ASSERT( psa_asymmetric_decrypt( handle, alg,
input_data->x, input_data->len,
label->x, label->len,
output,
output_size,
&output_length ) );
ASSERT_COMPARE( expected_data->x, expected_data->len,
output, output_length );
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if( label->len == 0 )
{
output_length = ~0;
if( output_size != 0 )
memset( output, 0, output_size );
PSA_ASSERT( psa_asymmetric_decrypt( handle, alg,
input_data->x, input_data->len,
NULL, label->len,
output,
output_size,
&output_length ) );
ASSERT_COMPARE( expected_data->x, expected_data->len,
output, output_length );
}
exit:
psa_destroy_key( handle );
mbedtls_free( output );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void asymmetric_decrypt_fail( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *input_data,
data_t *label,
int output_size_arg,
int expected_status_arg )
{
psa_key_handle_t handle = 0;
psa_key_type_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
unsigned char *output = NULL;
size_t output_size = output_size_arg;
size_t output_length = ~0;
psa_status_t actual_status;
psa_status_t expected_status = expected_status_arg;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
ASSERT_ALLOC( output, output_size );
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DECRYPT, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
actual_status = psa_asymmetric_decrypt( handle, alg,
input_data->x, input_data->len,
label->x, label->len,
output, output_size,
&output_length );
TEST_EQUAL( actual_status, expected_status );
TEST_ASSERT( output_length <= output_size );
/* If the label is empty, the test framework puts a non-null pointer
* in label->x. Test that a null pointer works as well. */
if( label->len == 0 )
{
output_length = ~0;
if( output_size != 0 )
memset( output, 0, output_size );
actual_status = psa_asymmetric_decrypt( handle, alg,
input_data->x, input_data->len,
NULL, label->len,
output, output_size,
&output_length );
TEST_EQUAL( actual_status, expected_status );
TEST_ASSERT( output_length <= output_size );
}
exit:
psa_destroy_key( handle );
mbedtls_free( output );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void crypto_generator_init( )
{
/* Test each valid way of initializing the object, except for `= {0}`, as
* Clang 5 complains when `-Wmissing-field-initializers` is used, even
* though it's OK by the C standard. We could test for this, but we'd need
* to supress the Clang warning for the test. */
size_t capacity;
psa_crypto_generator_t func = psa_crypto_generator_init( );
psa_crypto_generator_t init = PSA_CRYPTO_GENERATOR_INIT;
psa_crypto_generator_t zero;
memset( &zero, 0, sizeof( zero ) );
/* A default generator should not be able to report its capacity. */
TEST_EQUAL( psa_get_generator_capacity( &func, &capacity ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_get_generator_capacity( &init, &capacity ),
PSA_ERROR_BAD_STATE );
TEST_EQUAL( psa_get_generator_capacity( &zero, &capacity ),
PSA_ERROR_BAD_STATE );
/* A default generator should be abortable without error. */
PSA_ASSERT( psa_generator_abort(&func) );
PSA_ASSERT( psa_generator_abort(&init) );
PSA_ASSERT( psa_generator_abort(&zero) );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_setup( int key_type_arg,
data_t *key_data,
int alg_arg,
data_t *salt,
data_t *label,
int requested_capacity_arg,
int expected_status_arg )
{
psa_key_handle_t handle = 0;
size_t key_type = key_type_arg;
psa_algorithm_t alg = alg_arg;
size_t requested_capacity = requested_capacity_arg;
psa_status_t expected_status = expected_status_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data->x,
key_data->len ) );
TEST_EQUAL( psa_key_derivation( &generator, handle, alg,
salt->x, salt->len,
label->x, label->len,
requested_capacity ),
expected_status );
exit:
psa_generator_abort( &generator );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void test_derive_invalid_generator_state( )
{
psa_key_handle_t handle = 0;
size_t key_type = PSA_KEY_TYPE_DERIVE;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_algorithm_t alg = PSA_ALG_HKDF( PSA_ALG_SHA_256 );
uint8_t buffer[42];
size_t capacity = sizeof( buffer );
const uint8_t key_data[22] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b};
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
PSA_ASSERT( psa_crypto_init( ) );
PSA_ASSERT( psa_allocate_key( &handle ) );
psa_key_policy_set_usage( &policy, PSA_KEY_USAGE_DERIVE, alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy ) );
PSA_ASSERT( psa_import_key_to_handle( handle, key_type,
key_data,
sizeof( key_data ) ) );
/* valid key derivation */
PSA_ASSERT( psa_key_derivation( &generator, handle, alg,
NULL, 0,
NULL, 0,
capacity ) );
/* state of generator shouldn't allow additional generation */
TEST_EQUAL( psa_key_derivation( &generator, handle, alg,
NULL, 0,
NULL, 0,
capacity ),
PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_generator_read( &generator, buffer, capacity ) );
TEST_EQUAL( psa_generator_read( &generator, buffer, capacity ),
PSA_ERROR_INSUFFICIENT_DATA );
exit:
psa_generator_abort( &generator );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void test_derive_invalid_generator_tests( )
{
uint8_t output_buffer[16];
size_t buffer_size = 16;
size_t capacity = 0;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
TEST_ASSERT( psa_generator_read( &generator, output_buffer, buffer_size )
== PSA_ERROR_BAD_STATE );
TEST_ASSERT( psa_get_generator_capacity( &generator, &capacity )
== PSA_ERROR_BAD_STATE );
PSA_ASSERT( psa_generator_abort( &generator ) );
TEST_ASSERT( psa_generator_read( &generator, output_buffer, buffer_size )
== PSA_ERROR_BAD_STATE );
TEST_ASSERT( psa_get_generator_capacity( &generator, &capacity )
== PSA_ERROR_BAD_STATE );
exit:
psa_generator_abort( &generator );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_output( int alg_arg,
data_t *key_data,
data_t *salt,
data_t *label,
int requested_capacity_arg,
data_t *expected_output1,
data_t *expected_output2 )
{
psa_key_handle_t handle = 0;
psa_algorithm_t alg = alg_arg;
size_t requested_capacity = requested_capacity_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
uint8_t *expected_outputs[2] =
{expected_output1->x, expected_output2->x};
size_t output_sizes[2] =
{expected_output1->len, expected_output2->len};
size_t output_buffer_size = 0;
uint8_t *output_buffer = NULL;
size_t expected_capacity;
size_t current_capacity;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status;
unsigned i;
for( i = 0; i < ARRAY_LENGTH( expected_outputs ); i++ )
{
if( output_sizes[i] > output_buffer_size )
output_buffer_size = output_sizes[i];
if( output_sizes[i] == 0 )
expected_outputs[i] = NULL;
}
ASSERT_ALLOC( output_buffer, output_buffer_size );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, PSA_KEY_TYPE_DERIVE );
PSA_ASSERT( psa_import_key( &attributes, &handle,
key_data->x,
key_data->len ) );
/* Extraction phase. */
if( PSA_ALG_IS_HKDF( alg ) )
{
PSA_ASSERT( psa_key_derivation_setup( &generator, alg ) );
PSA_ASSERT( psa_set_generator_capacity( &generator,
requested_capacity ) );
PSA_ASSERT( psa_key_derivation_input_bytes( &generator,
PSA_KDF_STEP_SALT,
salt->x, salt->len ) );
PSA_ASSERT( psa_key_derivation_input_key( &generator,
PSA_KDF_STEP_SECRET,
handle ) );
PSA_ASSERT( psa_key_derivation_input_bytes( &generator,
PSA_KDF_STEP_INFO,
label->x, label->len ) );
}
else
{
// legacy
PSA_ASSERT( psa_key_derivation( &generator, handle, alg,
salt->x, salt->len,
label->x, label->len,
requested_capacity ) );
}
PSA_ASSERT( psa_get_generator_capacity( &generator,
&current_capacity ) );
TEST_EQUAL( current_capacity, requested_capacity );
expected_capacity = requested_capacity;
/* Expansion phase. */
for( i = 0; i < ARRAY_LENGTH( expected_outputs ); i++ )
{
/* Read some bytes. */
status = psa_generator_read( &generator,
output_buffer, output_sizes[i] );
if( expected_capacity == 0 && output_sizes[i] == 0 )
{
/* Reading 0 bytes when 0 bytes are available can go either way. */
TEST_ASSERT( status == PSA_SUCCESS ||
status == PSA_ERROR_INSUFFICIENT_DATA );
continue;
}
else if( expected_capacity == 0 ||
output_sizes[i] > expected_capacity )
{
/* Capacity exceeded. */
TEST_EQUAL( status, PSA_ERROR_INSUFFICIENT_DATA );
expected_capacity = 0;
continue;
}
/* Success. Check the read data. */
PSA_ASSERT( status );
if( output_sizes[i] != 0 )
ASSERT_COMPARE( output_buffer, output_sizes[i],
expected_outputs[i], output_sizes[i] );
/* Check the generator status. */
expected_capacity -= output_sizes[i];
PSA_ASSERT( psa_get_generator_capacity( &generator,
&current_capacity ) );
TEST_EQUAL( expected_capacity, current_capacity );
}
PSA_ASSERT( psa_generator_abort( &generator ) );
exit:
mbedtls_free( output_buffer );
psa_generator_abort( &generator );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_full( int alg_arg,
data_t *key_data,
data_t *salt,
data_t *label,
int requested_capacity_arg )
{
psa_key_handle_t handle = 0;
psa_algorithm_t alg = alg_arg;
size_t requested_capacity = requested_capacity_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
unsigned char output_buffer[16];
size_t expected_capacity = requested_capacity;
size_t current_capacity;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, PSA_KEY_TYPE_DERIVE );
PSA_ASSERT( psa_import_key( &attributes, &handle,
key_data->x,
key_data->len ) );
/* Extraction phase. */
if( PSA_ALG_IS_HKDF( alg ) )
{
PSA_ASSERT( psa_key_derivation_setup( &generator, alg ) );
PSA_ASSERT( psa_set_generator_capacity( &generator,
requested_capacity ) );
PSA_ASSERT( psa_key_derivation_input_bytes( &generator,
PSA_KDF_STEP_SALT,
salt->x, salt->len ) );
PSA_ASSERT( psa_key_derivation_input_key( &generator,
PSA_KDF_STEP_SECRET,
handle ) );
PSA_ASSERT( psa_key_derivation_input_bytes( &generator,
PSA_KDF_STEP_INFO,
label->x, label->len ) );
}
else
{
// legacy
PSA_ASSERT( psa_key_derivation( &generator, handle, alg,
salt->x, salt->len,
label->x, label->len,
requested_capacity ) );
}
PSA_ASSERT( psa_get_generator_capacity( &generator,
&current_capacity ) );
TEST_EQUAL( current_capacity, expected_capacity );
/* Expansion phase. */
while( current_capacity > 0 )
{
size_t read_size = sizeof( output_buffer );
if( read_size > current_capacity )
read_size = current_capacity;
PSA_ASSERT( psa_generator_read( &generator,
output_buffer,
read_size ) );
expected_capacity -= read_size;
PSA_ASSERT( psa_get_generator_capacity( &generator,
&current_capacity ) );
TEST_EQUAL( current_capacity, expected_capacity );
}
/* Check that the generator refuses to go over capacity. */
TEST_EQUAL( psa_generator_read( &generator, output_buffer, 1 ),
PSA_ERROR_INSUFFICIENT_DATA );
PSA_ASSERT( psa_generator_abort( &generator ) );
exit:
psa_generator_abort( &generator );
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_exercise( int alg_arg,
data_t *key_data,
data_t *salt,
data_t *label,
int derived_type_arg,
int derived_bits_arg,
int derived_usage_arg,
int derived_alg_arg )
{
psa_key_handle_t base_handle = 0;
psa_key_handle_t derived_handle = 0;
psa_algorithm_t alg = alg_arg;
psa_key_type_t derived_type = derived_type_arg;
size_t derived_bits = derived_bits_arg;
psa_key_usage_t derived_usage = derived_usage_arg;
psa_algorithm_t derived_alg = derived_alg_arg;
size_t capacity = PSA_BITS_TO_BYTES( derived_bits );
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, PSA_KEY_TYPE_DERIVE );
PSA_ASSERT( psa_import_key( &attributes, &base_handle,
key_data->x,
key_data->len ) );
/* Derive a key. */
PSA_ASSERT( psa_key_derivation( &generator, base_handle, alg,
salt->x, salt->len,
label->x, label->len,
capacity ) );
psa_set_key_usage_flags( &attributes, derived_usage );
psa_set_key_algorithm( &attributes, derived_alg );
psa_set_key_type( &attributes, derived_type );
PSA_ASSERT( psa_generator_import_key( &attributes, &derived_handle,
derived_bits,
&generator ) );
/* Test the key information */
PSA_ASSERT( psa_get_key_attributes( derived_handle, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), derived_type );
TEST_EQUAL( psa_get_key_bits( &got_attributes ), derived_bits );
/* Exercise the derived key. */
if( ! exercise_key( derived_handle, derived_usage, derived_alg ) )
goto exit;
exit:
psa_generator_abort( &generator );
psa_destroy_key( base_handle );
psa_destroy_key( derived_handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void derive_key_export( int alg_arg,
data_t *key_data,
data_t *salt,
data_t *label,
int bytes1_arg,
int bytes2_arg )
{
psa_key_handle_t base_handle = 0;
psa_key_handle_t derived_handle = 0;
psa_algorithm_t alg = alg_arg;
size_t bytes1 = bytes1_arg;
size_t derived_bits = PSA_BYTES_TO_BITS( bytes1 );
size_t bytes2 = bytes2_arg;
size_t capacity = bytes1 + bytes2;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
uint8_t *output_buffer = NULL;
uint8_t *export_buffer = NULL;
psa_key_attributes_t base_attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t derived_attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t length;
ASSERT_ALLOC( output_buffer, capacity );
ASSERT_ALLOC( export_buffer, capacity );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &base_attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &base_attributes, alg );
psa_set_key_type( &base_attributes, PSA_KEY_TYPE_DERIVE );
PSA_ASSERT( psa_import_key( &base_attributes, &base_handle,
key_data->x,
key_data->len ) );
/* Derive some material and output it. */
PSA_ASSERT( psa_key_derivation( &generator, base_handle, alg,
salt->x, salt->len,
label->x, label->len,
capacity ) );
PSA_ASSERT( psa_generator_read( &generator,
output_buffer,
capacity ) );
PSA_ASSERT( psa_generator_abort( &generator ) );
/* Derive the same output again, but this time store it in key objects. */
PSA_ASSERT( psa_key_derivation( &generator, base_handle, alg,
salt->x, salt->len,
label->x, label->len,
capacity ) );
psa_set_key_usage_flags( &derived_attributes, PSA_KEY_USAGE_EXPORT );
psa_set_key_algorithm( &derived_attributes, 0 );
psa_set_key_type( &derived_attributes, PSA_KEY_TYPE_RAW_DATA );
PSA_ASSERT( psa_generator_import_key( &derived_attributes, &derived_handle,
derived_bits,
&generator ) );
PSA_ASSERT( psa_export_key( derived_handle,
export_buffer, bytes1,
&length ) );
TEST_EQUAL( length, bytes1 );
PSA_ASSERT( psa_destroy_key( derived_handle ) );
PSA_ASSERT( psa_generator_import_key( &derived_attributes, &derived_handle,
PSA_BYTES_TO_BITS( bytes2 ),
&generator ) );
PSA_ASSERT( psa_export_key( derived_handle,
export_buffer + bytes1, bytes2,
&length ) );
TEST_EQUAL( length, bytes2 );
/* Compare the outputs from the two runs. */
ASSERT_COMPARE( output_buffer, bytes1 + bytes2,
export_buffer, capacity );
exit:
mbedtls_free( output_buffer );
mbedtls_free( export_buffer );
psa_generator_abort( &generator );
psa_destroy_key( base_handle );
psa_destroy_key( derived_handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_setup( int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
int expected_status_arg )
{
psa_key_handle_t our_key = 0;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t expected_status = expected_status_arg;
psa_status_t status;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, our_key_type );
PSA_ASSERT( psa_import_key( &attributes, &our_key,
our_key_data->x,
our_key_data->len ) );
/* The tests currently include inputs that should fail at either step.
* Test cases that fail at the setup step should be changed to call
* key_derivation_setup instead, and this function should be renamed
* to key_agreement_fail. */
status = psa_key_derivation_setup( &generator, alg );
if( status == PSA_SUCCESS )
{
TEST_EQUAL( psa_key_agreement( &generator, PSA_KDF_STEP_SECRET,
our_key,
peer_key_data->x, peer_key_data->len ),
expected_status );
}
else
{
TEST_ASSERT( status == expected_status );
}
exit:
psa_generator_abort( &generator );
psa_destroy_key( our_key );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void raw_key_agreement( int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
data_t *expected_output )
{
psa_key_handle_t our_key = 0;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
unsigned char *output = NULL;
size_t output_length = ~0;
ASSERT_ALLOC( output, expected_output->len );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, our_key_type );
PSA_ASSERT( psa_import_key( &attributes, &our_key,
our_key_data->x,
our_key_data->len ) );
PSA_ASSERT( psa_key_agreement_raw_shared_secret(
alg, our_key,
peer_key_data->x, peer_key_data->len,
output, expected_output->len, &output_length ) );
ASSERT_COMPARE( output, output_length,
expected_output->x, expected_output->len );
exit:
mbedtls_free( output );
psa_destroy_key( our_key );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_capacity( int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
int expected_capacity_arg )
{
psa_key_handle_t our_key = 0;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
size_t actual_capacity;
unsigned char output[16];
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, our_key_type );
PSA_ASSERT( psa_import_key( &attributes, &our_key,
our_key_data->x,
our_key_data->len ) );
PSA_ASSERT( psa_key_derivation_setup( &generator, alg ) );
PSA_ASSERT( psa_key_agreement( &generator, PSA_KDF_STEP_SECRET,
our_key,
peer_key_data->x, peer_key_data->len ) );
if( PSA_ALG_IS_HKDF( PSA_ALG_KEY_AGREEMENT_GET_KDF( alg ) ) )
{
/* The test data is for info="" */
PSA_ASSERT( psa_key_derivation_input_bytes( &generator,
PSA_KDF_STEP_INFO,
NULL, 0 ) );
}
/* Test the advertized capacity. */
PSA_ASSERT( psa_get_generator_capacity(
&generator, &actual_capacity ) );
TEST_EQUAL( actual_capacity, (size_t) expected_capacity_arg );
/* Test the actual capacity by reading the output. */
while( actual_capacity > sizeof( output ) )
{
PSA_ASSERT( psa_generator_read( &generator,
output, sizeof( output ) ) );
actual_capacity -= sizeof( output );
}
PSA_ASSERT( psa_generator_read( &generator,
output, actual_capacity ) );
TEST_EQUAL( psa_generator_read( &generator, output, 1 ),
PSA_ERROR_INSUFFICIENT_DATA );
exit:
psa_generator_abort( &generator );
psa_destroy_key( our_key );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE */
void key_agreement_output( int alg_arg,
int our_key_type_arg, data_t *our_key_data,
data_t *peer_key_data,
data_t *expected_output1, data_t *expected_output2 )
{
psa_key_handle_t our_key = 0;
psa_algorithm_t alg = alg_arg;
psa_key_type_t our_key_type = our_key_type_arg;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
uint8_t *actual_output = NULL;
ASSERT_ALLOC( actual_output, MAX( expected_output1->len,
expected_output2->len ) );
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, PSA_KEY_USAGE_DERIVE );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, our_key_type );
PSA_ASSERT( psa_import_key( &attributes, &our_key,
our_key_data->x,
our_key_data->len ) );
PSA_ASSERT( psa_key_derivation_setup( &generator, alg ) );
PSA_ASSERT( psa_key_agreement( &generator, PSA_KDF_STEP_SECRET,
our_key,
peer_key_data->x, peer_key_data->len ) );
if( PSA_ALG_IS_HKDF( PSA_ALG_KEY_AGREEMENT_GET_KDF( alg ) ) )
{
/* The test data is for info="" */
PSA_ASSERT( psa_key_derivation_input_bytes( &generator,
PSA_KDF_STEP_INFO,
NULL, 0 ) );
}
PSA_ASSERT( psa_generator_read( &generator,
actual_output,
expected_output1->len ) );
ASSERT_COMPARE( actual_output, expected_output1->len,
expected_output1->x, expected_output1->len );
if( expected_output2->len != 0 )
{
PSA_ASSERT( psa_generator_read( &generator,
actual_output,
expected_output2->len ) );
ASSERT_COMPARE( actual_output, expected_output2->len,
expected_output2->x, expected_output2->len );
}
exit:
psa_generator_abort( &generator );
psa_destroy_key( our_key );
mbedtls_psa_crypto_free( );
mbedtls_free( actual_output );
}
/* END_CASE */
/* BEGIN_CASE */
void generate_random( int bytes_arg )
{
size_t bytes = bytes_arg;
const unsigned char trail[] = "don't overwrite me";
unsigned char *output = NULL;
unsigned char *changed = NULL;
size_t i;
unsigned run;
ASSERT_ALLOC( output, bytes + sizeof( trail ) );
ASSERT_ALLOC( changed, bytes );
memcpy( output + bytes, trail, sizeof( trail ) );
PSA_ASSERT( psa_crypto_init( ) );
/* Run several times, to ensure that every output byte will be
* nonzero at least once with overwhelming probability
* (2^(-8*number_of_runs)). */
for( run = 0; run < 10; run++ )
{
if( bytes != 0 )
memset( output, 0, bytes );
PSA_ASSERT( psa_generate_random( output, bytes ) );
/* Check that no more than bytes have been overwritten */
ASSERT_COMPARE( output + bytes, sizeof( trail ),
trail, sizeof( trail ) );
for( i = 0; i < bytes; i++ )
{
if( output[i] != 0 )
++changed[i];
}
}
/* Check that every byte was changed to nonzero at least once. This
* validates that psa_generate_random is overwriting every byte of
* the output buffer. */
for( i = 0; i < bytes; i++ )
{
TEST_ASSERT( changed[i] != 0 );
}
exit:
mbedtls_psa_crypto_free( );
mbedtls_free( output );
mbedtls_free( changed );
}
/* END_CASE */
/* BEGIN_CASE */
void generate_key( int type_arg,
int bits_arg,
int usage_arg,
int alg_arg,
int expected_status_arg )
{
psa_key_handle_t handle = 0;
psa_key_type_t type = type_arg;
psa_key_usage_t usage = usage_arg;
size_t bits = bits_arg;
psa_algorithm_t alg = alg_arg;
psa_status_t expected_status = expected_status_arg;
psa_status_t expected_info_status =
expected_status == PSA_SUCCESS ? PSA_SUCCESS : PSA_ERROR_DOES_NOT_EXIST;
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_key_attributes_t got_attributes = PSA_KEY_ATTRIBUTES_INIT;
PSA_ASSERT( psa_crypto_init( ) );
psa_set_key_usage_flags( &attributes, usage );
psa_set_key_algorithm( &attributes, alg );
psa_set_key_type( &attributes, type );
/* Generate a key */
TEST_EQUAL( psa_generate_key( &attributes, &handle, bits, NULL, 0 ),
expected_status );
if( expected_info_status != PSA_SUCCESS )
goto exit;
/* Test the key information */
PSA_ASSERT( psa_get_key_attributes( handle, &got_attributes ) );
TEST_EQUAL( psa_get_key_type( &got_attributes ), type );
TEST_EQUAL( psa_get_key_bits( &got_attributes ), bits );
/* Do something with the key according to its type and permitted usage. */
if( ! exercise_key( handle, usage, alg ) )
goto exit;
exit:
psa_destroy_key( handle );
mbedtls_psa_crypto_free( );
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_PSA_CRYPTO_STORAGE_C */
void persistent_key_load_key_from_storage( data_t *data, int type_arg,
int bits, int usage_arg,
int alg_arg, int generation_method,
int export_status )
{
psa_key_handle_t handle = 0;
psa_key_handle_t base_key;
psa_key_type_t type = (psa_key_type_t) type_arg;
psa_key_type_t type_get;
size_t bits_get;
psa_key_policy_t policy_set = PSA_KEY_POLICY_INIT;
psa_key_policy_t policy_get = PSA_KEY_POLICY_INIT;
psa_key_usage_t policy_usage = (psa_key_usage_t) usage_arg;
psa_algorithm_t policy_alg = (psa_algorithm_t) alg_arg;
psa_key_policy_t base_policy_set = PSA_KEY_POLICY_INIT;
psa_algorithm_t base_policy_alg = PSA_ALG_HKDF(PSA_ALG_SHA_256);
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
unsigned char *first_export = NULL;
unsigned char *second_export = NULL;
size_t export_size = PSA_KEY_EXPORT_MAX_SIZE( type, bits );
size_t first_exported_length;
size_t second_exported_length;
ASSERT_ALLOC( first_export, export_size );
ASSERT_ALLOC( second_export, export_size );
PSA_ASSERT( psa_crypto_init() );
PSA_ASSERT( psa_create_key( PSA_KEY_LIFETIME_PERSISTENT, 1,
&handle ) );
psa_key_policy_set_usage( &policy_set, policy_usage,
policy_alg );
PSA_ASSERT( psa_set_key_policy( handle, &policy_set ) );
switch( generation_method )
{
case IMPORT_KEY:
/* Import the key */
PSA_ASSERT( psa_import_key_to_handle( handle, type,
data->x, data->len ) );
break;
case GENERATE_KEY:
/* Generate a key */
PSA_ASSERT( psa_generate_key_to_handle( handle, type, bits,
NULL, 0 ) );
break;
case DERIVE_KEY:
/* Create base key */
PSA_ASSERT( psa_allocate_key( &base_key ) );
psa_key_policy_set_usage( &base_policy_set, PSA_KEY_USAGE_DERIVE,
base_policy_alg );
PSA_ASSERT( psa_set_key_policy(
base_key, &base_policy_set ) );
PSA_ASSERT( psa_import_key_to_handle( base_key, PSA_KEY_TYPE_DERIVE,
data->x, data->len ) );
/* Derive a key. */
PSA_ASSERT( psa_key_derivation( &generator, base_key,
base_policy_alg,
NULL, 0, NULL, 0,
export_size ) );
PSA_ASSERT( psa_generator_import_key_to_handle(
handle, PSA_KEY_TYPE_RAW_DATA,
bits, &generator ) );
break;
}
/* Export the key */
TEST_EQUAL( psa_export_key( handle,
first_export, export_size,
&first_exported_length ),
export_status );
/* Shutdown and restart */
mbedtls_psa_crypto_free();
PSA_ASSERT( psa_crypto_init() );
/* Check key slot still contains key data */
PSA_ASSERT( psa_open_key( PSA_KEY_LIFETIME_PERSISTENT, 1,
&handle ) );
PSA_ASSERT( psa_get_key_information(
handle, &type_get, &bits_get ) );
TEST_EQUAL( type_get, type );
TEST_EQUAL( bits_get, (size_t) bits );
PSA_ASSERT( psa_get_key_policy( handle, &policy_get ) );
TEST_EQUAL( psa_key_policy_get_usage( &policy_get ), policy_usage );
TEST_EQUAL( psa_key_policy_get_algorithm( &policy_get ), policy_alg );
/* Export the key again */
TEST_EQUAL( psa_export_key( handle,
second_export, export_size,
&second_exported_length ),
export_status );
if( export_status == PSA_SUCCESS )
{
ASSERT_COMPARE( first_export, first_exported_length,
second_export, second_exported_length );
switch( generation_method )
{
case IMPORT_KEY:
ASSERT_COMPARE( data->x, data->len,
first_export, first_exported_length );
break;
default:
break;
}
}
/* Do something with the key according to its type and permitted usage. */
if( ! exercise_key( handle, policy_usage, policy_alg ) )
goto exit;
exit:
mbedtls_free( first_export );
mbedtls_free( second_export );
psa_destroy_key( handle );
mbedtls_psa_crypto_free();
}
/* END_CASE */