mbedtls/tests/suites/test_suite_pkcs1_v21.function

265 lines
8.2 KiB
Plaintext

BEGIN_HEADER
#include <polarssl/rsa.h>
#include <polarssl/md.h>
#include <polarssl/md2.h>
#include <polarssl/md4.h>
#include <polarssl/md5.h>
#include <polarssl/sha1.h>
#include <polarssl/sha2.h>
#include <polarssl/sha4.h>
END_HEADER
BEGIN_DEPENDENCIES
depends_on:POLARSSL_PKCS1_V21:POLARSSL_RSA_C:POLARSSL_BIGNUM_C:POLARSSL_SHA1_C:POLARSSL_GENRPIME
END_DEPENDENCIES
BEGIN_CASE
pkcs1_rsaes_oaep_encrypt:mod:radix_N:input_N:radix_E:input_E:hash:message_hex_string:seed:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
unsigned char rnd_buf[1000];
rsa_context ctx;
size_t msg_len;
rnd_buf_info info;
info.length = unhexify( rnd_buf, {seed} );
info.buf = rnd_buf;
info.per_call = 1;
rsa_init( &ctx, RSA_PKCS_V21, {hash} );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 );
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 );
msg_len = unhexify( message_str, {message_hex_string} );
TEST_ASSERT( rsa_pkcs1_encrypt( &ctx, &rnd_buffer_rand, &info, RSA_PUBLIC, msg_len, message_str, output ) == {result} );
if( {result} == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
}
}
END_CASE
BEGIN_CASE
pkcs1_rsaes_oaep_decrypt:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:hash:result_hex_str:seed:message_hex_string:result
{
unsigned char message_str[1000];
unsigned char output[1000];
unsigned char output_str[1000];
rsa_context ctx;
mpi P1, Q1, H, G;
size_t output_len;
size_t msg_len;
mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
rsa_init( &ctx, RSA_PKCS_V21, {hash} );
memset( message_str, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 );
TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 );
TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 );
TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 );
TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 );
TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 );
msg_len = unhexify( message_str, {message_hex_string} );
TEST_ASSERT( rsa_pkcs1_decrypt( &ctx, RSA_PRIVATE, &output_len, message_str, output, 1000 ) == {result} );
if( {result} == 0 )
{
hexify( output_str, output, ctx.len );
TEST_ASSERT( strncasecmp( (char *) output_str, {result_hex_str}, strlen( {result_hex_str} ) ) == 0 );
}
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
}
END_CASE
BEGIN_CASE
pkcs1_rsassa_pss_sign:mod:radix_P:input_P:radix_Q:input_Q:radix_N:input_N:radix_E:input_E:digest:hash:message_hex_string:salt:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char output[1000];
unsigned char output_str[1000];
unsigned char rnd_buf[1000];
rsa_context ctx;
mpi P1, Q1, H, G;
size_t msg_len;
rnd_buf_info info;
info.length = unhexify( rnd_buf, {salt} );
info.buf = rnd_buf;
info.per_call = 1;
mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
rsa_init( &ctx, RSA_PKCS_V21, {hash} );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( output, 0x00, 1000 );
memset( output_str, 0x00, 1000 );
ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 );
TEST_ASSERT( mpi_read_string( &ctx.P, {radix_P}, {input_P} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.Q, {radix_Q}, {input_Q} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( mpi_sub_int( &P1, &ctx.P, 1 ) == 0 );
TEST_ASSERT( mpi_sub_int( &Q1, &ctx.Q, 1 ) == 0 );
TEST_ASSERT( mpi_mul_mpi( &H, &P1, &Q1 ) == 0 );
TEST_ASSERT( mpi_gcd( &G, &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.D , &ctx.E, &H ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DP, &ctx.D, &P1 ) == 0 );
TEST_ASSERT( mpi_mod_mpi( &ctx.DQ, &ctx.D, &Q1 ) == 0 );
TEST_ASSERT( mpi_inv_mod( &ctx.QP, &ctx.Q, &ctx.P ) == 0 );
TEST_ASSERT( rsa_check_privkey( &ctx ) == 0 );
msg_len = unhexify( message_str, {message_hex_string} );
switch( {digest} )
{
#ifdef POLARSSL_MD2_C
case SIG_RSA_MD2:
md2( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_MD4_C
case SIG_RSA_MD4:
md4( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_MD5_C
case SIG_RSA_MD5:
md5( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_SHA1_C
case SIG_RSA_SHA1:
sha1( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_SHA2_C
case SIG_RSA_SHA224:
sha2( message_str, msg_len, hash_result, 1 );
break;
case SIG_RSA_SHA256:
sha2( message_str, msg_len, hash_result, 0 );
break;
#endif
#ifdef POLARSSL_SHA4_C
case SIG_RSA_SHA384:
sha4( message_str, msg_len, hash_result, 1 );
break;
case SIG_RSA_SHA512:
sha4( message_str, msg_len, hash_result, 0 );
break;
#endif
}
TEST_ASSERT( rsa_pkcs1_sign( &ctx, &rnd_buffer_rand, &info, RSA_PRIVATE, {digest}, 0, hash_result, output ) == {result} );
if( {result} == 0 )
{
hexify( output_str, output, ctx.len);
TEST_ASSERT( strcasecmp( (char *) output_str, {result_hex_str} ) == 0 );
}
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
}
END_CASE
BEGIN_CASE
pkcs1_rsassa_pss_verify:mod:radix_N:input_N:radix_E:input_E:digest:hash:message_hex_string:salt:result_hex_str:result
{
unsigned char message_str[1000];
unsigned char hash_result[1000];
unsigned char result_str[1000];
rsa_context ctx;
size_t msg_len;
rsa_init( &ctx, RSA_PKCS_V21, {hash} );
memset( message_str, 0x00, 1000 );
memset( hash_result, 0x00, 1000 );
memset( result_str, 0x00, 1000 );
ctx.len = {mod} / 8 + ( ( {mod} % 8 ) ? 1 : 0 );
TEST_ASSERT( mpi_read_string( &ctx.N, {radix_N}, {input_N} ) == 0 );
TEST_ASSERT( mpi_read_string( &ctx.E, {radix_E}, {input_E} ) == 0 );
TEST_ASSERT( rsa_check_pubkey( &ctx ) == 0 );
msg_len = unhexify( message_str, {message_hex_string} );
unhexify( result_str, {result_hex_str} );
switch( {digest} )
{
#ifdef POLARSSL_MD2_C
case SIG_RSA_MD2:
md2( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_MD4_C
case SIG_RSA_MD4:
md4( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_MD5_C
case SIG_RSA_MD5:
md5( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_SHA1_C
case SIG_RSA_SHA1:
sha1( message_str, msg_len, hash_result );
break;
#endif
#ifdef POLARSSL_SHA2_C
case SIG_RSA_SHA224:
sha2( message_str, msg_len, hash_result, 1 );
break;
case SIG_RSA_SHA256:
sha2( message_str, msg_len, hash_result, 0 );
break;
#endif
#ifdef POLARSSL_SHA4_C
case SIG_RSA_SHA384:
sha4( message_str, msg_len, hash_result, 1 );
break;
case SIG_RSA_SHA512:
sha4( message_str, msg_len, hash_result, 0 );
break;
#endif
}
TEST_ASSERT( rsa_pkcs1_verify( &ctx, RSA_PUBLIC, {digest}, 0, hash_result, result_str ) == {result} );
}
END_CASE