mbedtls/doxygen/input/doc_encdec.h
TRodziewicz 10e8cf5fef Remove MD2, MD4, RC4, Blowfish and XTEA
Signed-off-by: TRodziewicz <tomasz.rodziewicz@mobica.com>
2021-06-16 10:34:25 +02:00

67 lines
2.9 KiB
C

/**
* \file doc_encdec.h
*
* \brief Encryption/decryption module documentation file.
*/
/*
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @addtogroup encdec_module Encryption/decryption module
*
* The Encryption/decryption module provides encryption/decryption functions.
* One can differentiate between symmetric and asymmetric algorithms; the
* symmetric ones are mostly used for message confidentiality and the asymmetric
* ones for key exchange and message integrity.
* Some symmetric algorithms provide different block cipher modes, mainly
* Electronic Code Book (ECB) which is used for short (64-bit) messages and
* Cipher Block Chaining (CBC) which provides the structure needed for longer
* messages. In addition the Cipher Feedback Mode (CFB-128) stream cipher mode,
* Counter mode (CTR) and Galois Counter Mode (GCM) are implemented for
* specific algorithms.
*
* All symmetric encryption algorithms are accessible via the generic cipher layer
* (see \c mbedtls_cipher_setup()).
*
* The asymmetric encryptrion algorithms are accessible via the generic public
* key layer (see \c mbedtls_pk_init()).
*
* The following algorithms are provided:
* - Symmetric:
* - AES (see \c mbedtls_aes_crypt_ecb(), \c mbedtls_aes_crypt_cbc(), \c mbedtls_aes_crypt_cfb128() and
* \c mbedtls_aes_crypt_ctr()).
* - Camellia (see \c mbedtls_camellia_crypt_ecb(), \c mbedtls_camellia_crypt_cbc(),
* \c mbedtls_camellia_crypt_cfb128() and \c mbedtls_camellia_crypt_ctr()).
* - DES/3DES (see \c mbedtls_des_crypt_ecb(), \c mbedtls_des_crypt_cbc(), \c mbedtls_des3_crypt_ecb()
* and \c mbedtls_des3_crypt_cbc()).
* - GCM (AES-GCM and CAMELLIA-GCM) (see \c mbedtls_gcm_init())
* - Asymmetric:
* - Diffie-Hellman-Merkle (see \c mbedtls_dhm_read_public(), \c mbedtls_dhm_make_public()
* and \c mbedtls_dhm_calc_secret()).
* - RSA (see \c mbedtls_rsa_public() and \c mbedtls_rsa_private()).
* - Elliptic Curves over GF(p) (see \c mbedtls_ecp_point_init()).
* - Elliptic Curve Digital Signature Algorithm (ECDSA) (see \c mbedtls_ecdsa_init()).
* - Elliptic Curve Diffie Hellman (ECDH) (see \c mbedtls_ecdh_init()).
*
* This module provides encryption/decryption which can be used to provide
* secrecy.
*
* It also provides asymmetric key functions which can be used for
* confidentiality, integrity, authentication and non-repudiation.
*/