mbedtls/include/psa/crypto.h
Gilles Peskine e1fed0de18 Define elliptic curve identifiers from TLS
Instead of rolling our own list of elliptic curve identifiers, use one
from somewhere. Pick TLS because it's the right size (16 bits) and
it's as good as any.
2018-09-12 16:19:04 +03:00

1898 lines
84 KiB
C

/**
* \file psa/crypto.h
* \brief Platform Security Architecture cryptography module
*/
#ifndef PSA_CRYPTO_H
#define PSA_CRYPTO_H
#include "crypto_platform.h"
#include <stddef.h>
#ifdef __DOXYGEN_ONLY__
/* This __DOXYGEN_ONLY__ block contains mock definitions for things that
* must be defined in the crypto_platform.h header. These mock definitions
* are present in this file as a convenience to generate pretty-printed
* documentation that includes those definitions. */
/** \defgroup platform Implementation-specific definitions
* @{
*/
/** \brief Key slot number.
*
* This type represents key slots. It must be an unsigned integral
* type. The choice of type is implementation-dependent.
* 0 is not a valid key slot number. The meaning of other values is
* implementation dependent.
*
* At any given point in time, each key slot either contains a
* cryptographic object, or is empty. Key slots are persistent:
* once set, the cryptographic object remains in the key slot until
* explicitly destroyed.
*/
typedef _unsigned_integral_type_ psa_key_slot_t;
/**@}*/
#endif /* __DOXYGEN_ONLY__ */
#ifdef __cplusplus
extern "C" {
#endif
/** \defgroup basic Basic definitions
* @{
*/
/**
* \brief Function return status.
*
* Zero indicates success, anything else indicates an error.
*/
typedef enum {
/** The action was completed successfully. */
PSA_SUCCESS = 0,
/** The requested operation or a parameter is not supported
* by this implementation.
*
* Implementations should return this error code when an enumeration
* parameter such as a key type, algorithm, etc. is not recognized.
* If a combination of parameters is recognized and identified as
* not valid, return #PSA_ERROR_INVALID_ARGUMENT instead. */
PSA_ERROR_NOT_SUPPORTED,
/** The requested action is denied by a policy.
*
* Implementations should return this error code when the parameters
* are recognized as valid and supported, and a policy explicitly
* denies the requested operation.
*
* If a subset of the parameters of a function call identify a
* forbidden operation, and another subset of the parameters are
* not valid or not supported, it is unspecified whether the function
* returns #PSA_ERROR_NOT_PERMITTED, #PSA_ERROR_NOT_SUPPORTED or
* #PSA_ERROR_INVALID_ARGUMENT. */
PSA_ERROR_NOT_PERMITTED,
/** An output buffer is too small.
*
* Applications can call the `PSA_xxx_SIZE` macro listed in the function
* description to determine a sufficient buffer size.
*
* Implementations should preferably return this error code only
* in cases when performing the operation with a larger output
* buffer would succeed. However implementations may return this
* error if a function has invalid or unsupported parameters in addition
* to the parameters that determine the necessary output buffer size. */
PSA_ERROR_BUFFER_TOO_SMALL,
/** A slot is occupied, but must be empty to carry out the
* requested action.
*
* If the slot number is invalid (i.e. the requested action could
* not be performed even after erasing the slot's content),
* implementations shall return #PSA_ERROR_INVALID_ARGUMENT instead. */
PSA_ERROR_OCCUPIED_SLOT,
/** A slot is empty, but must be occupied to carry out the
* requested action.
*
* If the slot number is invalid (i.e. the requested action could
* not be performed even after creating appropriate content in the slot),
* implementations shall return #PSA_ERROR_INVALID_ARGUMENT instead. */
PSA_ERROR_EMPTY_SLOT,
/** The requested action cannot be performed in the current state.
*
* Multipart operations return this error when one of the
* functions is called out of sequence. Refer to the function
* descriptions for permitted sequencing of functions.
*
* Implementations shall not return this error code to indicate
* that a key slot is occupied when it needs to be free or vice versa,
* but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT
* as applicable. */
PSA_ERROR_BAD_STATE,
/** The parameters passed to the function are invalid.
*
* Implementations may return this error any time a parameter or
* combination of parameters are recognized as invalid.
*
* Implementations shall not return this error code to indicate
* that a key slot is occupied when it needs to be free or vice versa,
* but shall return #PSA_ERROR_OCCUPIED_SLOT or #PSA_ERROR_EMPTY_SLOT
* as applicable. */
PSA_ERROR_INVALID_ARGUMENT,
/** There is not enough runtime memory.
*
* If the action is carried out across multiple security realms, this
* error can refer to available memory in any of the security realms. */
PSA_ERROR_INSUFFICIENT_MEMORY,
/** There is not enough persistent storage.
*
* Functions that modify the key storage return this error code if
* there is insufficient storage space on the host media. In addition,
* many functions that do not otherwise access storage may return this
* error code if the implementation requires a mandatory log entry for
* the requested action and the log storage space is full. */
PSA_ERROR_INSUFFICIENT_STORAGE,
/** There was a communication failure inside the implementation.
*
* This can indicate a communication failure between the application
* and an external cryptoprocessor or between the cryptoprocessor and
* an external volatile or persistent memory. A communication failure
* may be transient or permanent depending on the cause.
*
* \warning If a function returns this error, it is undetermined
* whether the requested action has completed or not. Implementations
* should return #PSA_SUCCESS on successful completion whenver
* possible, however functions may return #PSA_ERROR_COMMUNICATION_FAILURE
* if the requested action was completed successfully in an external
* cryptoprocessor but there was a breakdown of communication before
* the cryptoprocessor could report the status to the application.
*/
PSA_ERROR_COMMUNICATION_FAILURE,
/** There was a storage failure that may have led to data loss.
*
* This error indicates that some persistent storage is corrupted.
* It should not be used for a corruption of volatile memory
* (use #PSA_ERROR_TAMPERING_DETECTED), for a communication error
* between the cryptoprocessor and its external storage (use
* #PSA_ERROR_COMMUNICATION_FAILURE), or when the storage is
* in a valid state but is full (use #PSA_ERROR_INSUFFICIENT_STORAGE).
*
* Note that a storage failure does not indicate that any data that was
* previously read is invalid. However this previously read data may no
* longer be readable from storage.
*
* When a storage failure occurs, it is no longer possible to ensure
* the global integrity of the keystore. Depending on the global
* integrity guarantees offered by the implementation, access to other
* data may or may not fail even if the data is still readable but
* its integrity canont be guaranteed.
*
* Implementations should only use this error code to report a
* permanent storage corruption. However application writers should
* keep in mind that transient errors while reading the storage may be
* reported using this error code. */
PSA_ERROR_STORAGE_FAILURE,
/** A hardware failure was detected.
*
* A hardware failure may be transient or permanent depending on the
* cause. */
PSA_ERROR_HARDWARE_FAILURE,
/** A tampering attempt was detected.
*
* If an application receives this error code, there is no guarantee
* that previously accessed or computed data was correct and remains
* confidential. Applications should not perform any security function
* and should enter a safe failure state.
*
* Implementations may return this error code if they detect an invalid
* state that cannot happen during normal operation and that indicates
* that the implementation's security guarantees no longer hold. Depending
* on the implementation architecture and on its security and safety goals,
* the implementation may forcibly terminate the application.
*
* This error code is intended as a last resort when a security breach
* is detected and it is unsure whether the keystore data is still
* protected. Implementations shall only return this error code
* to report an alarm from a tampering detector, to indicate that
* the confidentiality of stored data can no longer be guaranteed,
* or to indicate that the integrity of previously returned data is now
* considered compromised. Implementations shall not use this error code
* to indicate a hardware failure that merely makes it impossible to
* perform the requested operation (use #PSA_ERROR_COMMUNICATION_FAILURE,
* #PSA_ERROR_STORAGE_FAILURE, #PSA_ERROR_HARDWARE_FAILURE,
* #PSA_ERROR_INSUFFICIENT_ENTROPY or other applicable error code
* instead).
*
* This error indicates an attack against the application. Implementations
* shall not return this error code as a consequence of the behavior of
* the application itself. */
PSA_ERROR_TAMPERING_DETECTED,
/** There is not enough entropy to generate random data needed
* for the requested action.
*
* This error indicates a failure of a hardware random generator.
* Application writers should note that this error can be returned not
* only by functions whose purpose is to generate random data, such
* as key, IV or nonce generation, but also by functions that execute
* an algorithm with a randomized result, as well as functions that
* use randomization of intermediate computations as a countermeasure
* to certain attacks.
*
* Implementations should avoid returning this error after psa_crypto_init()
* has succeeded. Implementations should generate sufficient
* entropy during initialization and subsequently use a cryptographically
* secure pseudorandom generator (PRNG). However implementations may return
* this error at any time if a policy requires the PRNG to be reseeded
* during normal operation. */
PSA_ERROR_INSUFFICIENT_ENTROPY,
/** The signature, MAC or hash is incorrect.
*
* Verification functions return this error if the verification
* calculations completed successfully, and the value to be verified
* was determined to be incorrect.
*
* If the value to verify has an invalid size, implementations may return
* either #PSA_ERROR_INVALID_ARGUMENT or #PSA_ERROR_INVALID_SIGNATURE. */
PSA_ERROR_INVALID_SIGNATURE,
/** The decrypted padding is incorrect.
*
* \warning In some protocols, when decrypting data, it is essential that
* the behavior of the application does not depend on whether the padding
* is correct, down to precise timing. Applications should prefer
* protocols that use authenticated encryption rather than plain
* encryption. If the application must perform a decryption of
* unauthenticated data, the application writer should take care not
* to reveal whether the padding is invalid.
*
* Implementations should strive to make valid and invalid padding
* as close as possible to indistinguishable to an external observer.
* In particular, the timing of a decryption operation should not
* depend on the validity of the padding. */
PSA_ERROR_INVALID_PADDING,
/** An error occurred that does not correspond to any defined
* failure cause.
*
* Implementations may use this error code if none of the other standard
* error codes are applicable. */
PSA_ERROR_UNKNOWN_ERROR,
} psa_status_t;
/**
* \brief Library initialization.
*
* Applications must call this function before calling any other
* function in this module.
*
* Applications may call this function more than once. Once a call
* succeeds, subsequent calls are guaranteed to succeed.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
* \retval PSA_ERROR_INSUFFICIENT_ENTROPY
*/
psa_status_t psa_crypto_init(void);
#define PSA_BITS_TO_BYTES(bits) (((bits) + 7) / 8)
#define PSA_BYTES_TO_BITS(bytes) ((bytes) * 8)
/**@}*/
/** \defgroup crypto_types Key and algorithm types
* @{
*/
/** \brief Encoding of a key type.
*/
typedef uint32_t psa_key_type_t;
/** An invalid key type value.
*
* Zero is not the encoding of any key type.
*/
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x00000000)
/** Vendor-defined flag
*
* Key types defined by this standard will never have the
* #PSA_KEY_TYPE_VENDOR_FLAG bit set. Vendors who define additional key types
* must use an encoding with the #PSA_KEY_TYPE_VENDOR_FLAG bit set and should
* respect the bitwise structure used by standard encodings whenever practical.
*/
#define PSA_KEY_TYPE_VENDOR_FLAG ((psa_key_type_t)0x80000000)
#define PSA_KEY_TYPE_CATEGORY_MASK ((psa_key_type_t)0x7e000000)
/** Raw data.
*
* A "key" of this type cannot be used for any cryptographic operation.
* Applications may use this type to store arbitrary data in the keystore. */
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x02000000)
#define PSA_KEY_TYPE_CATEGORY_SYMMETRIC ((psa_key_type_t)0x04000000)
#define PSA_KEY_TYPE_CATEGORY_ASYMMETRIC ((psa_key_type_t)0x06000000)
#define PSA_KEY_TYPE_PAIR_FLAG ((psa_key_type_t)0x01000000)
/** HMAC key.
*
* The key policy determines which underlying hash algorithm the key can be
* used for.
*
* HMAC keys should generally have the same size as the underlying hash.
* This size can be calculated with `PSA_HASH_SIZE(alg)` where
* `alg` is the HMAC algorithm or the underlying hash algorithm. */
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x02000001)
/** Key for an cipher, AEAD or MAC algorithm based on the AES block cipher.
*
* The size of the key can be 16 bytes (AES-128), 24 bytes (AES-192) or
* 32 bytes (AES-256).
*/
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x04000001)
/** Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
*
* The size of the key can be 8 bytes (single DES), 16 bytes (2-key 3DES) or
* 24 bytes (3-key 3DES).
*
* Note that single DES and 2-key 3DES are weak and strongly
* deprecated and should only be used to decrypt legacy data. 3-key 3DES
* is weak and deprecated and should only be used in legacy protocols.
*/
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x04000002)
/** Key for an cipher, AEAD or MAC algorithm based on the
* Camellia block cipher. */
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x04000003)
/** Key for the RC4 stream cipher.
*
* Note that RC4 is weak and deprecated and should only be used in
* legacy protocols. */
#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x04000004)
/** RSA public key. */
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x06010000)
/** RSA key pair (private and public key). */
#define PSA_KEY_TYPE_RSA_KEYPAIR ((psa_key_type_t)0x07010000)
/** DSA public key. */
#define PSA_KEY_TYPE_DSA_PUBLIC_KEY ((psa_key_type_t)0x06020000)
/** DSA key pair (private and public key). */
#define PSA_KEY_TYPE_DSA_KEYPAIR ((psa_key_type_t)0x07020000)
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE ((psa_key_type_t)0x06030000)
#define PSA_KEY_TYPE_ECC_KEYPAIR_BASE ((psa_key_type_t)0x07030000)
#define PSA_KEY_TYPE_ECC_CURVE_MASK ((psa_key_type_t)0x0000ffff)
#define PSA_KEY_TYPE_ECC_KEYPAIR(curve) \
(PSA_KEY_TYPE_ECC_KEYPAIR_BASE | (curve))
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
(PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE | (curve))
/** Whether a key type is vendor-defined. */
#define PSA_KEY_TYPE_IS_VENDOR_DEFINED(type) \
(((type) & PSA_KEY_TYPE_VENDOR_FLAG) != 0)
#define PSA_KEY_TYPE_IS_RAW_BYTES(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_RAW_DATA || \
((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_SYMMETRIC)
/** Whether a key type is asymmetric: either a key pair or a public key. */
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
(((type) & PSA_KEY_TYPE_CATEGORY_MASK) == PSA_KEY_TYPE_CATEGORY_ASYMMETRIC)
/** Whether a key type is the public part of a key pair. */
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
(((type) & (PSA_KEY_TYPE_CATEGORY_MASK | PSA_KEY_TYPE_PAIR_FLAG)) == \
PSA_KEY_TYPE_CATEGORY_ASYMMETRIC)
/** Whether a key type is a key pair containing a private part and a public
* part. */
#define PSA_KEY_TYPE_IS_KEYPAIR(type) \
(((type) & (PSA_KEY_TYPE_CATEGORY_MASK | PSA_KEY_TYPE_PAIR_FLAG)) == \
(PSA_KEY_TYPE_CATEGORY_ASYMMETRIC | PSA_KEY_TYPE_PAIR_FLAG))
/** Whether a key type is an RSA key pair or public key. */
/** The key pair type corresponding to a public key type. */
#define PSA_KEY_TYPE_KEYPAIR_OF_PUBLIC_KEY(type) \
((type) | PSA_KEY_TYPE_PAIR_FLAG)
/** The public key type corresponding to a key pair type. */
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) \
((type) & ~PSA_KEY_TYPE_PAIR_FLAG)
#define PSA_KEY_TYPE_IS_RSA(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) == PSA_KEY_TYPE_RSA_PUBLIC_KEY)
/** Whether a key type is an elliptic curve key pair or public key. */
#define PSA_KEY_TYPE_IS_ECC(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEYPAIR(type) & \
~PSA_KEY_TYPE_ECC_CURVE_MASK) == PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE)
/** The type of PSA elliptic curve identifiers. */
typedef uint16_t psa_ecc_curve_t;
/** Extract the curve from an elliptic curve key type. */
#define PSA_KEY_TYPE_GET_CURVE(type) \
((psa_ecc_curve_t) (PSA_KEY_TYPE_IS_ECC(type) ? \
((type) & PSA_KEY_TYPE_ECC_CURVE_MASK) : \
0))
/* The encoding of curve identifiers is currently aligned with the
* TLS Supported Groups Registry (formerly known as the
* TLS EC Named Curve Registry)
* https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
* The values are defined by RFC 4492, RFC 7027 and RFC 7919. */
#define PSA_ECC_CURVE_SECT163K1 ((psa_ecc_curve_t) 0x0001)
#define PSA_ECC_CURVE_SECT163R1 ((psa_ecc_curve_t) 0x0002)
#define PSA_ECC_CURVE_SECT163R2 ((psa_ecc_curve_t) 0x0003)
#define PSA_ECC_CURVE_SECT193R1 ((psa_ecc_curve_t) 0x0004)
#define PSA_ECC_CURVE_SECT193R2 ((psa_ecc_curve_t) 0x0005)
#define PSA_ECC_CURVE_SECT233K1 ((psa_ecc_curve_t) 0x0006)
#define PSA_ECC_CURVE_SECT233R1 ((psa_ecc_curve_t) 0x0007)
#define PSA_ECC_CURVE_SECT239K1 ((psa_ecc_curve_t) 0x0008)
#define PSA_ECC_CURVE_SECT283K1 ((psa_ecc_curve_t) 0x0009)
#define PSA_ECC_CURVE_SECT283R1 ((psa_ecc_curve_t) 0x000a)
#define PSA_ECC_CURVE_SECT409K1 ((psa_ecc_curve_t) 0x000b)
#define PSA_ECC_CURVE_SECT409R1 ((psa_ecc_curve_t) 0x000c)
#define PSA_ECC_CURVE_SECT571K1 ((psa_ecc_curve_t) 0x000d)
#define PSA_ECC_CURVE_SECT571R1 ((psa_ecc_curve_t) 0x000e)
#define PSA_ECC_CURVE_SECP160K1 ((psa_ecc_curve_t) 0x000f)
#define PSA_ECC_CURVE_SECP160R1 ((psa_ecc_curve_t) 0x0010)
#define PSA_ECC_CURVE_SECP160R2 ((psa_ecc_curve_t) 0x0011)
#define PSA_ECC_CURVE_SECP192K1 ((psa_ecc_curve_t) 0x0012)
#define PSA_ECC_CURVE_SECP192R1 ((psa_ecc_curve_t) 0x0013)
#define PSA_ECC_CURVE_SECP224K1 ((psa_ecc_curve_t) 0x0014)
#define PSA_ECC_CURVE_SECP224R1 ((psa_ecc_curve_t) 0x0015)
#define PSA_ECC_CURVE_SECP256K1 ((psa_ecc_curve_t) 0x0016)
#define PSA_ECC_CURVE_SECP256R1 ((psa_ecc_curve_t) 0x0017)
#define PSA_ECC_CURVE_SECP384R1 ((psa_ecc_curve_t) 0x0018)
#define PSA_ECC_CURVE_SECP521R1 ((psa_ecc_curve_t) 0x0019)
#define PSA_ECC_CURVE_BRAINPOOL_P256R1 ((psa_ecc_curve_t) 0x001a)
#define PSA_ECC_CURVE_BRAINPOOL_P384R1 ((psa_ecc_curve_t) 0x001b)
#define PSA_ECC_CURVE_BRAINPOOL_P512R1 ((psa_ecc_curve_t) 0x001c)
#define PSA_ECC_CURVE_CURVE25519 ((psa_ecc_curve_t) 0x001d)
#define PSA_ECC_CURVE_CURVE448 ((psa_ecc_curve_t) 0x001e)
#define PSA_ECC_CURVE_FFDHE_2048 ((psa_ecc_curve_t) 0x0100)
#define PSA_ECC_CURVE_FFDHE_3072 ((psa_ecc_curve_t) 0x0101)
#define PSA_ECC_CURVE_FFDHE_4096 ((psa_ecc_curve_t) 0x0102)
#define PSA_ECC_CURVE_FFDHE_6144 ((psa_ecc_curve_t) 0x0103)
#define PSA_ECC_CURVE_FFDHE_8192 ((psa_ecc_curve_t) 0x0104)
/** The block size of a block cipher.
*
* \param type A cipher key type (value of type #psa_key_type_t).
*
* \return The block size for a block cipher, or 1 for a stream cipher.
* The return value is undefined if \c type is not a supported
* cipher key type.
*
* \note It is possible to build stream cipher algorithms on top of a block
* cipher, for example CTR mode (#PSA_ALG_CTR).
* This macro only takes the key type into account, so it cannot be
* used to determine the size of the data that #psa_cipher_update()
* might buffer for future processing in general.
*
* \note This macro returns a compile-time constant if its argument is one.
*
* \warning This macro may evaluate its argument multiple times.
*/
#define PSA_BLOCK_CIPHER_BLOCK_SIZE(type) \
( \
(type) == PSA_KEY_TYPE_AES ? 16 : \
(type) == PSA_KEY_TYPE_DES ? 8 : \
(type) == PSA_KEY_TYPE_CAMELLIA ? 16 : \
(type) == PSA_KEY_TYPE_ARC4 ? 1 : \
0)
/** \brief Encoding of a cryptographic algorithm.
*
* For algorithms that can be applied to multiple key types, this type
* does not encode the key type. For example, for symmetric ciphers
* based on a block cipher, #psa_algorithm_t encodes the block cipher
* mode and the padding mode while the block cipher itself is encoded
* via #psa_key_type_t.
*/
typedef uint32_t psa_algorithm_t;
#define PSA_ALG_VENDOR_FLAG ((psa_algorithm_t)0x80000000)
#define PSA_ALG_CATEGORY_MASK ((psa_algorithm_t)0x7f000000)
#define PSA_ALG_CATEGORY_HASH ((psa_algorithm_t)0x01000000)
#define PSA_ALG_CATEGORY_MAC ((psa_algorithm_t)0x02000000)
#define PSA_ALG_CATEGORY_CIPHER ((psa_algorithm_t)0x04000000)
#define PSA_ALG_CATEGORY_AEAD ((psa_algorithm_t)0x06000000)
#define PSA_ALG_CATEGORY_SIGN ((psa_algorithm_t)0x10000000)
#define PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION ((psa_algorithm_t)0x12000000)
#define PSA_ALG_CATEGORY_KEY_AGREEMENT ((psa_algorithm_t)0x22000000)
#define PSA_ALG_CATEGORY_KEY_DERIVATION ((psa_algorithm_t)0x30000000)
#define PSA_ALG_IS_VENDOR_DEFINED(alg) \
(((alg) & PSA_ALG_VENDOR_FLAG) != 0)
/** Whether the specified algorithm is a hash algorithm.
*
* \param alg An algorithm identifier (value of type #psa_algorithm_t).
*
* \return 1 if \c alg is a hash algorithm, 0 otherwise.
* This macro may return either 0 or 1 if \c alg is not a valid
* algorithm identifier.
*/
#define PSA_ALG_IS_HASH(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_HASH)
#define PSA_ALG_IS_MAC(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_MAC)
#define PSA_ALG_IS_CIPHER(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_CIPHER)
#define PSA_ALG_IS_AEAD(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_AEAD)
#define PSA_ALG_IS_SIGN(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_SIGN)
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION)
#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_AGREEMENT)
#define PSA_ALG_IS_KEY_DERIVATION(alg) \
(((alg) & PSA_ALG_CATEGORY_MASK) == PSA_ALG_CATEGORY_KEY_DERIVATION)
#define PSA_ALG_HASH_MASK ((psa_algorithm_t)0x000000ff)
#define PSA_ALG_MD2 ((psa_algorithm_t)0x01000001)
#define PSA_ALG_MD4 ((psa_algorithm_t)0x01000002)
#define PSA_ALG_MD5 ((psa_algorithm_t)0x01000003)
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x01000004)
#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x01000005)
#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x01000008)
#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x01000009)
#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0100000a)
#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0100000b)
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0100000c)
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0100000d)
#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x01000010)
#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x01000011)
#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x01000012)
#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x01000013)
#define PSA_ALG_MAC_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
#define PSA_ALG_HMAC_BASE ((psa_algorithm_t)0x02800000)
/** Macro to build an HMAC algorithm.
*
* For example, `PSA_ALG_HMAC(PSA_ALG_SHA256)` is HMAC-SHA-256.
*
* \param alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(alg) is true).
*
* \return The corresponding HMAC algorithm.
* \return Unspecified if \p alg is not a hash algorithm.
*/
#define PSA_ALG_HMAC(hash_alg) \
(PSA_ALG_HMAC_BASE | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_HMAC_HASH(hmac_alg) \
(PSA_ALG_CATEGORY_HASH | ((hmac_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_HMAC(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
PSA_ALG_HMAC_BASE)
#define PSA_ALG_CIPHER_MAC_BASE ((psa_algorithm_t)0x02c00000)
#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x02c00001)
#define PSA_ALG_CMAC ((psa_algorithm_t)0x02c00002)
#define PSA_ALG_GMAC ((psa_algorithm_t)0x02c00003)
#define PSA_ALG_IS_CIPHER_MAC(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_MAC_SUBCATEGORY_MASK)) == \
PSA_ALG_CIPHER_MAC_BASE)
#define PSA_ALG_CIPHER_SUBCATEGORY_MASK ((psa_algorithm_t)0x00c00000)
#define PSA_ALG_BLOCK_CIPHER_BASE ((psa_algorithm_t)0x04000000)
#define PSA_ALG_BLOCK_CIPHER_MODE_MASK ((psa_algorithm_t)0x000000ff)
#define PSA_ALG_BLOCK_CIPHER_PADDING_MASK ((psa_algorithm_t)0x003f0000)
#define PSA_ALG_BLOCK_CIPHER_PAD_NONE ((psa_algorithm_t)0x00000000)
#define PSA_ALG_BLOCK_CIPHER_PAD_PKCS7 ((psa_algorithm_t)0x00010000)
#define PSA_ALG_IS_BLOCK_CIPHER(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_SUBCATEGORY_MASK)) == \
PSA_ALG_BLOCK_CIPHER_BASE)
#define PSA_ALG_CBC_BASE ((psa_algorithm_t)0x04000001)
#define PSA_ALG_CFB_BASE ((psa_algorithm_t)0x04000002)
#define PSA_ALG_OFB_BASE ((psa_algorithm_t)0x04000003)
#define PSA_ALG_XTS_BASE ((psa_algorithm_t)0x04000004)
#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800000)
#define PSA_ALG_CTR ((psa_algorithm_t)0x04800001)
#define PSA_ALG_ARC4 ((psa_algorithm_t)0x04800002)
#define PSA_ALG_IS_STREAM_CIPHER(alg) \
(((alg) & (PSA_ALG_CATEGORY_MASK | PSA_ALG_CIPHER_SUBCATEGORY_MASK)) == \
PSA_ALG_STREAM_CIPHER)
#define PSA_ALG_CCM ((psa_algorithm_t)0x06000001)
#define PSA_ALG_GCM ((psa_algorithm_t)0x06000002)
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW ((psa_algorithm_t)0x10010000)
#define PSA_ALG_RSA_PSS_MGF1 ((psa_algorithm_t)0x10020000)
#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x12010000)
#define PSA_ALG_RSA_OAEP_MGF1_BASE ((psa_algorithm_t)0x12020000)
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
(PSA_ALG_RSA_PKCS1V15_SIGN_RAW | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_PKCS1V15_SIGN_RAW)
#define PSA_ALG_RSA_OAEP_MGF1(hash_alg) \
(PSA_ALG_RSA_OAEP_MGF1_RAW | ((hash_alg) & PSA_ALG_HASH_MASK))
#define PSA_ALG_IS_RSA_OAEP_MGF1(alg) \
(((alg) & ~PSA_ALG_HASH_MASK) == PSA_ALG_RSA_OAEP_MGF1_BASE)
#define PSA_ALG_RSA_GET_HASH(alg) \
(((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH)
#define PSA_ALG_ECDSA_RAW ((psa_algorithm_t)0x10030000)
/**@}*/
/** \defgroup key_management Key management
* @{
*/
/**
* \brief Import a key in binary format.
*
* This function supports any output from psa_export_key(). Refer to the
* documentation of psa_export_key() for the format for each key type.
*
* \param key Slot where the key will be stored. This must be a
* valid slot for a key of the chosen type. It must
* be unoccupied.
* \param type Key type (a \c PSA_KEY_TYPE_XXX value).
* \param data Buffer containing the key data.
* \param data_length Size of the \c data buffer in bytes.
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_NOT_SUPPORTED
* The key type or key size is not supported, either by the
* implementation in general or in this particular slot.
* \retval PSA_ERROR_INVALID_ARGUMENT
* The key slot is invalid,
* or the key data is not correctly formatted.
* \retval PSA_ERROR_OCCUPIED_SLOT
* There is already a key in the specified slot.
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_INSUFFICIENT_STORAGE
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_import_key(psa_key_slot_t key,
psa_key_type_t type,
const uint8_t *data,
size_t data_length);
/**
* \brief Destroy a key and restore the slot to its default state.
*
* This function destroys the content of the key slot from both volatile
* memory and, if applicable, non-volatile storage. Implementations shall
* make a best effort to ensure that any previous content of the slot is
* unrecoverable.
*
* This function also erases any metadata such as policies. It returns the
* specified slot to its default state.
*
* \param key The key slot to erase.
*
* \retval PSA_SUCCESS
* The slot's content, if any, has been erased.
* \retval PSA_ERROR_NOT_PERMITTED
* The slot holds content and cannot be erased because it is
* read-only, either due to a policy or due to physical restrictions.
* \retval PSA_ERROR_INVALID_ARGUMENT
* The specified slot number does not designate a valid slot.
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* There was an failure in communication with the cryptoprocessor.
* The key material may still be present in the cryptoprocessor.
* \retval PSA_ERROR_STORAGE_FAILURE
* The storage is corrupted. Implementations shall make a best effort
* to erase key material even in this stage, however applications
* should be aware that it may be impossible to guarantee that the
* key material is not recoverable in such cases.
* \retval PSA_ERROR_TAMPERING_DETECTED
* An unexpected condition which is not a storage corruption or
* a communication failure occurred. The cryptoprocessor may have
* been compromised.
*/
psa_status_t psa_destroy_key(psa_key_slot_t key);
/**
* \brief Get basic metadata about a key.
*
* \param key Slot whose content is queried. This must
* be an occupied key slot.
* \param type On success, the key type (a \c PSA_KEY_TYPE_XXX value).
* This may be a null pointer, in which case the key type
* is not written.
* \param bits On success, the key size in bits.
* This may be a null pointer, in which case the key size
* is not written.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_EMPTY_SLOT
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_get_key_information(psa_key_slot_t key,
psa_key_type_t *type,
size_t *bits);
/**
* \brief Export a key in binary format.
*
* The output of this function can be passed to psa_import_key() to
* create an equivalent object.
*
* If a key is created with psa_import_key() and then exported with
* this function, it is not guaranteed that the resulting data is
* identical: the implementation may choose a different representation
* of the same key if the format permits it.
*
* For standard key types, the output format is as follows:
*
* - For symmetric keys (including MAC keys), the format is the
* raw bytes of the key.
* - For DES, the key data consists of 8 bytes. The parity bits must be
* correct.
* - For Triple-DES, the format is the concatenation of the
* two or three DES keys.
* - For RSA key pairs (#PSA_KEY_TYPE_RSA_KEYPAIR), the format
* is the non-encrypted DER representation defined by PKCS\#8 (RFC 5208)
* as PrivateKeyInfo.
* - For RSA public keys (#PSA_KEY_TYPE_RSA_PUBLIC_KEY), the format
* is the DER representation defined by RFC 5280 as SubjectPublicKeyInfo.
*
* \param key Slot whose content is to be exported. This must
* be an occupied key slot.
* \param data Buffer where the key data is to be written.
* \param data_size Size of the \c data buffer in bytes.
* \param data_length On success, the number of bytes
* that make up the key data.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_EMPTY_SLOT
* \retval PSA_ERROR_NOT_PERMITTED
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_export_key(psa_key_slot_t key,
uint8_t *data,
size_t data_size,
size_t *data_length);
/**
* \brief Export a public key or the public part of a key pair in binary format.
*
* The output of this function can be passed to psa_import_key() to
* create an object that is equivalent to the public key.
*
* For standard key types, the output format is as follows:
*
* - For RSA keys (#PSA_KEY_TYPE_RSA_KEYPAIR or #PSA_KEY_TYPE_RSA_PUBLIC_KEY),
* the format is the DER representation of the public key defined by RFC 5280
* as SubjectPublicKeyInfo.
*
* \param key Slot whose content is to be exported. This must
* be an occupied key slot.
* \param data Buffer where the key data is to be written.
* \param data_size Size of the \c data buffer in bytes.
* \param data_length On success, the number of bytes
* that make up the key data.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_EMPTY_SLOT
* \retval PSA_ERROR_INVALID_ARGUMENT
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_export_public_key(psa_key_slot_t key,
uint8_t *data,
size_t data_size,
size_t *data_length);
/**@}*/
/** \defgroup policy Key policies
* @{
*/
/** \brief Encoding of permitted usage on a key. */
typedef uint32_t psa_key_usage_t;
/** Whether the key may be exported.
*
* A public key or the public part of a key pair may always be exported
* regardless of the value of this permission flag.
*
* If a key does not have export permission, implementations shall not
* allow the key to be exported in plain form from the cryptoprocessor,
* whether through psa_export_key() or through a proprietary interface.
* The key may however be exportable in a wrapped form, i.e. in a form
* where it is encrypted by another key.
*/
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
/** Whether the key may be used to encrypt a message.
*
* For a key pair, this concerns the public key.
*/
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
/** Whether the key may be used to decrypt a message.
*
* For a key pair, this concerns the private key.
*/
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
/** Whether the key may be used to sign a message.
*
* For a key pair, this concerns the private key.
*/
#define PSA_KEY_USAGE_SIGN ((psa_key_usage_t)0x00000400)
/** Whether the key may be used to verify a message signature.
*
* For a key pair, this concerns the public key.
*/
#define PSA_KEY_USAGE_VERIFY ((psa_key_usage_t)0x00000800)
/** The type of the key policy data structure.
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure except
* as directed by the documentation of a specific implementation. */
typedef struct psa_key_policy_s psa_key_policy_t;
/** \brief Initialize a key policy structure to a default that forbids all
* usage of the key. */
void psa_key_policy_init(psa_key_policy_t *policy);
/** \brief Set the standard fields of a policy structure.
*
* Note that this function does not make any consistency check of the
* parameters. The values are only checked when applying the policy to
* a key slot with psa_set_key_policy().
*/
void psa_key_policy_set_usage(psa_key_policy_t *policy,
psa_key_usage_t usage,
psa_algorithm_t alg);
psa_key_usage_t psa_key_policy_get_usage(psa_key_policy_t *policy);
psa_algorithm_t psa_key_policy_get_algorithm(psa_key_policy_t *policy);
/** \brief Set the usage policy on a key slot.
*
* This function must be called on an empty key slot, before importing,
* generating or creating a key in the slot. Changing the policy of an
* existing key is not permitted.
*
* Implementations may set restrictions on supported key policies
* depending on the key type and the key slot.
*/
psa_status_t psa_set_key_policy(psa_key_slot_t key,
const psa_key_policy_t *policy);
/** \brief Get the usage policy for a key slot.
*/
psa_status_t psa_get_key_policy(psa_key_slot_t key,
psa_key_policy_t *policy);
/**@}*/
/** \defgroup persistence Key lifetime
* @{
*/
/** Encoding of key lifetimes.
*/
typedef uint32_t psa_key_lifetime_t;
/** A volatile key slot retains its content as long as the application is
* running. It is guaranteed to be erased on a power reset.
*/
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t)0x00000000)
/** A persistent key slot retains its content as long as it is not explicitly
* destroyed.
*/
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t)0x00000001)
/** A write-once key slot may not be modified once a key has been set.
* It will retain its content as long as the device remains operational.
*/
#define PSA_KEY_LIFETIME_WRITE_ONCE ((psa_key_lifetime_t)0x7fffffff)
/** \brief Retrieve the lifetime of a key slot.
*
* The assignment of lifetimes to slots is implementation-dependent.
*
* \param key Slot to query.
* \param lifetime On success, the lifetime value.
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_INVALID_ARGUMENT
* The key slot is invalid.
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_get_key_lifetime(psa_key_slot_t key,
psa_key_lifetime_t *lifetime);
/** \brief Change the lifetime of a key slot.
*
* Whether the lifetime of a key slot can be changed at all, and if so
* whether the lifetime of an occupied key slot can be changed, is
* implementation-dependent.
*
* \param key Slot whose lifetime is to be changed.
* \param lifetime The lifetime value to set for the given key slot.
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_INVALID_ARGUMENT
* The key slot is invalid,
* or the lifetime value is invalid.
* \retval PSA_ERROR_NOT_SUPPORTED
* The implementation does not support the specified lifetime value,
* at least for the specified key slot.
* \retval PSA_ERROR_OCCUPIED_SLOT
* The slot contains a key, and the implementation does not support
* changing the lifetime of an occupied slot.
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_set_key_lifetime(psa_key_slot_t key,
psa_key_lifetime_t lifetime);
/**@}*/
/** \defgroup hash Message digests
* @{
*/
/** The type of the state data structure for multipart hash operations.
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure except
* as directed by the documentation of a specific implementation. */
typedef struct psa_hash_operation_s psa_hash_operation_t;
/** The size of the output of psa_hash_finish(), in bytes.
*
* This is also the hash size that psa_hash_verify() expects.
*
* \param alg A hash algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_HASH(alg) is true), or an HMAC algorithm
* (`PSA_ALG_HMAC(hash_alg)` where `hash_alg` is a
* hash algorithm).
*
* \return The hash size for the specified hash algorithm.
* If the hash algorithm is not recognized, return 0.
* An implementation may return either 0 or the correct size
* for a hash algorithm that it recognizes, but does not support.
*/
#define PSA_HASH_SIZE(alg) \
( \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_MD2 ? 16 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_MD4 ? 16 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_MD5 ? 16 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_RIPEMD160 ? 20 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA_1 ? 20 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA_224 ? 28 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA_256 ? 32 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA_384 ? 48 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA_512 ? 64 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA_512_224 ? 28 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA_512_256 ? 32 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA3_224 ? 28 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA3_256 ? 32 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA3_384 ? 48 : \
PSA_ALG_RSA_GET_HASH(alg) == PSA_ALG_SHA3_512 ? 64 : \
0)
/** Start a multipart hash operation.
*
* The sequence of operations to calculate a hash (message digest)
* is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Call psa_hash_start() to specify the algorithm.
* -# Call psa_hash_update() zero, one or more times, passing a fragment
* of the message each time. The hash that is calculated is the hash
* of the concatenation of these messages in order.
* -# To calculate the hash, call psa_hash_finish().
* To compare the hash with an expected value, call psa_hash_verify().
*
* The application may call psa_hash_abort() at any time after the operation
* has been initialized with psa_hash_start().
*
* After a successful call to psa_hash_start(), the application must
* eventually terminate the operation. The following events terminate an
* operation:
* - A failed call to psa_hash_update().
* - A call to psa_hash_finish(), psa_hash_verify() or psa_hash_abort().
*
* \param operation The operation object to use.
* \param alg The hash algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_HASH(alg) is true).
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_NOT_SUPPORTED
* \c alg is not supported or is not a hash algorithm.
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_start(psa_hash_operation_t *operation,
psa_algorithm_t alg);
/** Add a message fragment to a multipart hash operation.
*
* The application must call psa_hash_start() before calling this function.
*
* If this function returns an error status, the operation becomes inactive.
*
* \param operation Active hash operation.
* \param input Buffer containing the message fragment to hash.
* \param input_length Size of the \c input buffer in bytes.
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or already completed).
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_update(psa_hash_operation_t *operation,
const uint8_t *input,
size_t input_length);
/** Finish the calculation of the hash of a message.
*
* The application must call psa_hash_start() before calling this function.
* This function calculates the hash of the message formed by concatenating
* the inputs passed to preceding calls to psa_hash_update().
*
* When this function returns, the operation becomes inactive.
*
* \warning Applications should not call this function if they expect
* a specific value for the hash. Call psa_hash_verify() instead.
* Beware that comparing integrity or authenticity data such as
* hash values with a function such as \c memcmp is risky
* because the time taken by the comparison may leak information
* about the hashed data which could allow an attacker to guess
* a valid hash and thereby bypass security controls.
*
* \param operation Active hash operation.
* \param hash Buffer where the hash is to be written.
* \param hash_size Size of the \c hash buffer in bytes.
* \param hash_length On success, the number of bytes
* that make up the hash value. This is always
* #PSA_HASH_SIZE(alg) where \c alg is the
* hash algorithm that is calculated.
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or already completed).
* \retval PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \c hash buffer is too small. You can determine a
* sufficient buffer size by calling #PSA_HASH_SIZE(alg)
* where \c alg is the hash algorithm that is calculated.
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_finish(psa_hash_operation_t *operation,
uint8_t *hash,
size_t hash_size,
size_t *hash_length);
/** Finish the calculation of the hash of a message and compare it with
* an expected value.
*
* The application must call psa_hash_start() before calling this function.
* This function calculates the hash of the message formed by concatenating
* the inputs passed to preceding calls to psa_hash_update(). It then
* compares the calculated hash with the expected hash passed as a
* parameter to this function.
*
* When this function returns, the operation becomes inactive.
*
* \note Implementations shall make the best effort to ensure that the
* comparison between the actual hash and the expected hash is performed
* in constant time.
*
* \param operation Active hash operation.
* \param hash Buffer containing the expected hash value.
* \param hash_length Size of the \c hash buffer in bytes.
*
* \retval PSA_SUCCESS
* The expected hash is identical to the actual hash of the message.
* \retval PSA_ERROR_INVALID_SIGNATURE
* The hash of the message was calculated successfully, but it
* differs from the expected hash.
* \retval PSA_ERROR_BAD_STATE
* The operation state is not valid (not started, or already completed).
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_verify(psa_hash_operation_t *operation,
const uint8_t *hash,
size_t hash_length);
/** Abort a hash operation.
*
* This function may be called at any time after psa_hash_start().
* Aborting an operation frees all associated resources except for the
* \c operation structure itself.
*
* Implementation should strive to be robust and handle inactive hash
* operations safely (do nothing and return #PSA_ERROR_BAD_STATE). However,
* application writers should beware that uninitialized memory may happen
* to be indistinguishable from an active hash operation, and the behavior
* of psa_hash_abort() is undefined in this case.
*
* \param operation Active hash operation.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_BAD_STATE
* \c operation is not an active hash operation.
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_hash_abort(psa_hash_operation_t *operation);
/**@}*/
/** \defgroup MAC Message authentication codes
* @{
*/
/** The type of the state data structure for multipart MAC operations.
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure except
* as directed by the documentation of a specific implementation. */
typedef struct psa_mac_operation_s psa_mac_operation_t;
/** The size of the output of psa_mac_finish(), in bytes.
*
* This is also the MAC size that psa_mac_verify() expects.
*
* \param alg A MAC algorithm (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_MAC(alg) is true).
*
* \return The MAC size for the specified algorithm.
* If the MAC algorithm is not recognized, return 0.
* An implementation may return either 0 or the correct size
* for a MAC algorithm that it recognizes, but does not support.
*/
#define PSA_MAC_FINAL_SIZE(key_type, key_bits, alg) \
(PSA_ALG_IS_HMAC(alg) ? PSA_HASH_SIZE(PSA_ALG_HMAC_HASH(alg)) : \
PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) ? PSA_BLOCK_CIPHER_BLOCK_SIZE(key_type) : \
0)
/** Start a multipart MAC operation.
*
* The sequence of operations to calculate a MAC (message authentication code)
* is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Call psa_mac_start() to specify the algorithm and key.
* The key remains associated with the operation even if the content
* of the key slot changes.
* -# Call psa_mac_update() zero, one or more times, passing a fragment
* of the message each time. The MAC that is calculated is the MAC
* of the concatenation of these messages in order.
* -# To calculate the MAC, call psa_mac_finish().
* To compare the MAC with an expected value, call psa_mac_verify().
*
* The application may call psa_mac_abort() at any time after the operation
* has been initialized with psa_mac_start().
*
* After a successful call to psa_mac_start(), the application must
* eventually terminate the operation. The following events terminate an
* operation:
* - A failed call to psa_mac_update().
* - A call to psa_mac_finish(), psa_mac_verify() or psa_mac_abort().
*
* \param operation The operation object to use.
* \param alg The MAC algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_MAC(alg) is true).
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_EMPTY_SLOT
* \retval PSA_ERROR_NOT_PERMITTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \c key is not compatible with \c alg.
* \retval PSA_ERROR_NOT_SUPPORTED
* \c alg is not supported or is not a MAC algorithm.
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_mac_start(psa_mac_operation_t *operation,
psa_key_slot_t key,
psa_algorithm_t alg);
psa_status_t psa_mac_update(psa_mac_operation_t *operation,
const uint8_t *input,
size_t input_length);
psa_status_t psa_mac_finish(psa_mac_operation_t *operation,
uint8_t *mac,
size_t mac_size,
size_t *mac_length);
psa_status_t psa_mac_verify(psa_mac_operation_t *operation,
const uint8_t *mac,
size_t mac_length);
psa_status_t psa_mac_abort(psa_mac_operation_t *operation);
/**@}*/
/** \defgroup cipher Symmetric ciphers
* @{
*/
/** The type of the state data structure for multipart cipher operations.
*
* This is an implementation-defined \c struct. Applications should not
* make any assumptions about the content of this structure except
* as directed by the documentation of a specific implementation. */
typedef struct psa_cipher_operation_s psa_cipher_operation_t;
/** Set the key for a multipart symmetric encryption operation.
*
* The sequence of operations to encrypt a message with a symmetric cipher
* is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Call psa_encrypt_setup() to specify the algorithm and key.
* The key remains associated with the operation even if the content
* of the key slot changes.
* -# Call either psa_encrypt_generate_iv() or psa_encrypt_set_iv() to
* generate or set the IV (initialization vector). You should use
* psa_encrypt_generate_iv() unless the protocol you are implementing
* requires a specific IV value.
* -# Call psa_cipher_update() zero, one or more times, passing a fragment
* of the message each time.
* -# Call psa_cipher_finish().
*
* The application may call psa_cipher_abort() at any time after the operation
* has been initialized with psa_encrypt_setup().
*
* After a successful call to psa_encrypt_setup(), the application must
* eventually terminate the operation. The following events terminate an
* operation:
* - A failed call to psa_encrypt_generate_iv(), psa_encrypt_set_iv()
* or psa_cipher_update().
* - A call to psa_cipher_finish() or psa_cipher_abort().
*
* \param operation The operation object to use.
* \param alg The cipher algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_CIPHER(alg) is true).
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_EMPTY_SLOT
* \retval PSA_ERROR_NOT_PERMITTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \c key is not compatible with \c alg.
* \retval PSA_ERROR_NOT_SUPPORTED
* \c alg is not supported or is not a cipher algorithm.
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_encrypt_setup(psa_cipher_operation_t *operation,
psa_key_slot_t key,
psa_algorithm_t alg);
/** Set the key for a multipart symmetric decryption operation.
*
* The sequence of operations to decrypt a message with a symmetric cipher
* is as follows:
* -# Allocate an operation object which will be passed to all the functions
* listed here.
* -# Call psa_decrypt_setup() to specify the algorithm and key.
* The key remains associated with the operation even if the content
* of the key slot changes.
* -# Call psa_cipher_update() with the IV (initialization vector) for the
* decryption. If the IV is prepended to the ciphertext, you can call
* psa_cipher_update() on a buffer containing the IV followed by the
* beginning of the message.
* -# Call psa_cipher_update() zero, one or more times, passing a fragment
* of the message each time.
* -# Call psa_cipher_finish().
*
* The application may call psa_cipher_abort() at any time after the operation
* has been initialized with psa_encrypt_setup().
*
* After a successful call to psa_decrypt_setup(), the application must
* eventually terminate the operation. The following events terminate an
* operation:
* - A failed call to psa_cipher_update().
* - A call to psa_cipher_finish() or psa_cipher_abort().
*
* \param operation The operation object to use.
* \param alg The cipher algorithm to compute (\c PSA_ALG_XXX value
* such that #PSA_ALG_IS_CIPHER(alg) is true).
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_EMPTY_SLOT
* \retval PSA_ERROR_NOT_PERMITTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \c key is not compatible with \c alg.
* \retval PSA_ERROR_NOT_SUPPORTED
* \c alg is not supported or is not a cipher algorithm.
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_decrypt_setup(psa_cipher_operation_t *operation,
psa_key_slot_t key,
psa_algorithm_t alg);
psa_status_t psa_encrypt_generate_iv(psa_cipher_operation_t *operation,
unsigned char *iv,
size_t iv_size,
size_t *iv_length);
psa_status_t psa_encrypt_set_iv(psa_cipher_operation_t *operation,
const unsigned char *iv,
size_t iv_length);
psa_status_t psa_cipher_update(psa_cipher_operation_t *operation,
const uint8_t *input,
size_t input_length,
unsigned char *output,
size_t output_size,
size_t *output_length);
psa_status_t psa_cipher_finish(psa_cipher_operation_t *operation,
uint8_t *output,
size_t output_size,
size_t *output_length);
psa_status_t psa_cipher_abort(psa_cipher_operation_t *operation);
/**@}*/
/** \defgroup aead Authenticated encryption with associated data (AEAD)
* @{
*/
/** The tag size for an AEAD algorithm, in bytes.
*
* \param alg An AEAD algorithm
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(alg) is true).
*
* \return The tag size for the specified algorithm.
* If the AEAD algorithm does not have an identified
* tag that can be distinguished from the rest of
* the ciphertext, return 0.
* If the AEAD algorithm is not recognized, return 0.
* An implementation may return either 0 or a
* correct size for an AEAD algorithm that it
* recognizes, but does not support.
*/
#define PSA_AEAD_TAG_SIZE(alg) \
((alg) == PSA_ALG_GCM ? 16 : \
(alg) == PSA_ALG_CCM ? 16 : \
0)
/** The maximum size of the output of psa_aead_encrypt(), in bytes.
*
* If the size of the ciphertext buffer is at least this large, it is
* guaranteed that psa_aead_encrypt() will not fail due to an
* insufficient buffer size. Depending on the algorithm, the actual size of
* the ciphertext may be smaller.
*
* \param alg An AEAD algorithm
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(alg) is true).
* \param plaintext_length Size of the plaintext in bytes.
*
* \return The AEAD ciphertext size for the specified
* algorithm.
* If the AEAD algorithm is not recognized, return 0.
* An implementation may return either 0 or a
* correct size for an AEAD algorithm that it
* recognizes, but does not support.
*/
#define PSA_AEAD_ENCRYPT_OUTPUT_SIZE(alg, plaintext_length) \
(PSA_AEAD_TAG_SIZE(alg) != 0 ? \
(plaintext_length) + PSA_AEAD_TAG_SIZE(alg) : \
0)
/** Process an authenticated encryption operation.
*
* \param key Slot containing the key to use.
* \param alg The AEAD algorithm to compute
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(alg) is true).
* \param nonce Nonce or IV to use.
* \param nonce_length Size of the \p nonce buffer in bytes.
* \param additional_data Additional data that will be authenticated
* but not encrypted.
* \param additional_data_length Size of \p additional_data in bytes.
* \param plaintext Data that will be authenticated and
* encrypted.
* \param plaintext_length Size of \p plaintext in bytes.
* \param ciphertext Output buffer for the authenticated and
* encrypted data. The additional data is not
* part of this output. For algorithms where the
* encrypted data and the authentication tag
* are defined as separate outputs, the
* authentication tag is appended to the
* encrypted data.
* \param ciphertext_size Size of the \p ciphertext buffer in bytes.
* This must be at least
* #PSA_AEAD_ENCRYPT_OUTPUT_SIZE(\p alg,
* \p plaintext_length).
* \param ciphertext_length On success, the size of the output
* in the \b ciphertext buffer.
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_EMPTY_SLOT
* \retval PSA_ERROR_NOT_PERMITTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \c key is not compatible with \c alg.
* \retval PSA_ERROR_NOT_SUPPORTED
* \c alg is not supported or is not an AEAD algorithm.
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_aead_encrypt( psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *nonce,
size_t nonce_length,
const uint8_t *additional_data,
size_t additional_data_length,
const uint8_t *plaintext,
size_t plaintext_length,
uint8_t *ciphertext,
size_t ciphertext_size,
size_t *ciphertext_length );
/** The maximum size of the output of psa_aead_decrypt(), in bytes.
*
* If the size of the plaintext buffer is at least this large, it is
* guaranteed that psa_aead_decrypt() will not fail due to an
* insufficient buffer size. Depending on the algorithm, the actual size of
* the plaintext may be smaller.
*
* \param alg An AEAD algorithm
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(alg) is true).
* \param ciphertext_length Size of the plaintext in bytes.
*
* \return The AEAD ciphertext size for the specified
* algorithm.
* If the AEAD algorithm is not recognized, return 0.
* An implementation may return either 0 or a
* correct size for an AEAD algorithm that it
* recognizes, but does not support.
*/
#define PSA_AEAD_DECRYPT_OUTPUT_SIZE(alg, ciphertext_length) \
(PSA_AEAD_TAG_SIZE(alg) != 0 ? \
(plaintext_length) - PSA_AEAD_TAG_SIZE(alg) : \
0)
/** Process an authenticated decryption operation.
*
* \param key Slot containing the key to use.
* \param alg The AEAD algorithm to compute
* (\c PSA_ALG_XXX value such that
* #PSA_ALG_IS_AEAD(alg) is true).
* \param nonce Nonce or IV to use.
* \param nonce_length Size of the \p nonce buffer in bytes.
* \param additional_data Additional data that has been authenticated
* but not encrypted.
* \param additional_data_length Size of \p additional_data in bytes.
* \param ciphertext Data that has been authenticated and
* encrypted. For algorithms where the
* encrypted data and the authentication tag
* are defined as separate inputs, the buffer
* must contain the encrypted data followed
* by the authentication tag.
* \param ciphertext_length Size of \p ciphertext in bytes.
* \param plaintext Output buffer for the decrypted data.
* \param plaintext_size Size of the \p plaintext buffer in bytes.
* This must be at least
* #PSA_AEAD_DECRYPT_OUTPUT_SIZE(\p alg,
* \p ciphertext_length).
* \param plaintext_length On success, the size of the output
* in the \b plaintext buffer.
*
* \retval PSA_SUCCESS
* Success.
* \retval PSA_ERROR_EMPTY_SLOT
* \retval PSA_ERROR_INVALID_SIGNATURE
* The ciphertext is not authentic.
* \retval PSA_ERROR_NOT_PERMITTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \c key is not compatible with \c alg.
* \retval PSA_ERROR_NOT_SUPPORTED
* \c alg is not supported or is not an AEAD algorithm.
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_aead_decrypt( psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *nonce,
size_t nonce_length,
const uint8_t *additional_data,
size_t additional_data_length,
const uint8_t *ciphertext,
size_t ciphertext_length,
uint8_t *plaintext,
size_t plaintext_size,
size_t *plaintext_length );
/**@}*/
/** \defgroup asymmetric Asymmetric cryptography
* @{
*/
/**
* \brief Maximum ECDSA signature size for a given curve bit size
*
* \param curve_bits Curve size in bits
* \return Maximum signature size in bytes
*
* \note This macro returns a compile-time constant if its argument is one.
*
* \warning This macro may evaluate its argument multiple times.
*/
/*
* RFC 4492 page 20:
*
* Ecdsa-Sig-Value ::= SEQUENCE {
* r INTEGER,
* s INTEGER
* }
*
* Size is at most
* 1 (tag) + 1 (len) + 1 (initial 0) + curve_bytes for each of r and s,
* twice that + 1 (tag) + 2 (len) for the sequence
* (assuming curve_bytes is less than 126 for r and s,
* and less than 124 (total len <= 255) for the sequence)
*/
#define PSA_ECDSA_SIGNATURE_SIZE(curve_bits) \
( /*T,L of SEQUENCE*/ ((curve_bits) >= 61 * 8 ? 3 : 2) + \
/*T,L of r,s*/ 2 * (((curve_bits) >= 127 * 8 ? 3 : 2) + \
/*V of r,s*/ ((curve_bits) + 8) / 8))
/** Safe signature buffer size for psa_asymmetric_sign().
*
* This macro returns a safe buffer size for a signature using a key
* of the specified type and size, with the specified algorithm.
* Note that the actual size of the signature may be smaller
* (some algorithms produce a variable-size signature).
*
* \warning This function may call its arguments multiple times or
* zero times, so you should not pass arguments that contain
* side effects.
*
* \param key_type An asymmetric key type (this may indifferently be a
* key pair type or a public key type).
* \param key_bits The size of the key in bits.
* \param alg The signature algorithm.
*
* \return If the parameters are valid and supported, return
* a buffer size in bytes that guarantees that
* psa_asymmetric_sign() will not fail with
* #PSA_ERROR_BUFFER_TOO_SMALL.
* If the parameters are a valid combination that is not supported
* by the implementation, this macro either shall return either a
* sensible size or 0.
* If the parameters are not valid, the
* return value is unspecified.
*
*/
#define PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \
(PSA_KEY_TYPE_IS_RSA(key_type) ? ((void)alg, PSA_BITS_TO_BYTES(key_bits)) : \
PSA_KEY_TYPE_IS_ECC(key_type) ? PSA_ECDSA_SIGNATURE_SIZE(key_bits) : \
((void)alg, 0))
/**
* \brief Sign a hash or short message with a private key.
*
* \param key Key slot containing an asymmetric key pair.
* \param alg A signature algorithm that is compatible with
* the type of \c key.
* \param hash The message to sign.
* \param hash_length Size of the \c hash buffer in bytes.
* \param salt A salt or label, if supported by the signature
* algorithm.
* If the signature algorithm does not support a
* salt, pass \c NULL.
* If the signature algorithm supports an optional
* salt and you do not want to pass a salt,
* pass \c NULL.
* \param salt_length Size of the \c salt buffer in bytes.
* If \c salt is \c NULL, pass 0.
* \param signature Buffer where the signature is to be written.
* \param signature_size Size of the \c signature buffer in bytes.
* \param signature_length On success, the number of bytes
* that make up the returned signature value.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \c signature buffer is too small. You can
* determine a sufficient buffer size by calling
* #PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE(key_type, key_bits, alg)
* where \c key_type and \c key_bits are the type and bit-size
* respectively of \c key.
* \retval PSA_ERROR_NOT_SUPPORTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
* \retval PSA_ERROR_INSUFFICIENT_ENTROPY
*/
psa_status_t psa_asymmetric_sign(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
const uint8_t *salt,
size_t salt_length,
uint8_t *signature,
size_t signature_size,
size_t *signature_length);
/**
* \brief Verify the signature a hash or short message using a public key.
*
* \param key Key slot containing a public key or an
* asymmetric key pair.
* \param alg A signature algorithm that is compatible with
* the type of \c key.
* \param hash The message whose signature is to be verified.
* \param hash_length Size of the \c hash buffer in bytes.
* \param salt A salt or label, if supported by the signature
* algorithm.
* If the signature algorithm does not support a
* salt, pass \c NULL.
* If the signature algorithm supports an optional
* salt and you do not want to pass a salt,
* pass \c NULL.
* \param salt_length Size of the \c salt buffer in bytes.
* If \c salt is \c NULL, pass 0.
* \param signature Buffer containing the signature to verify.
* \param signature_size Size of the \c signature buffer in bytes.
*
* \retval PSA_SUCCESS
* The signature is valid.
* \retval PSA_ERROR_INVALID_SIGNATURE
* The calculation was perfomed successfully, but the passed
* signature is not a valid signature.
* \retval PSA_ERROR_NOT_SUPPORTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_asymmetric_verify(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *hash,
size_t hash_length,
const uint8_t *salt,
size_t salt_length,
uint8_t *signature,
size_t signature_size);
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \
(PSA_KEY_TYPE_IS_RSA(key_type) ? \
((void)alg, PSA_BITS_TO_BYTES(key_bits)) : \
0)
#define PSA_RSA_MINIMUM_PADDING_SIZE(alg) \
(PSA_ALG_IS_RSA_OAEP_MGF1(alg) ? \
2 * PSA_HASH_FINAL_SIZE(PSA_ALG_RSA_GET_HASH(alg)) + 1 : \
11 /*PKCS#1v1.5*/)
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \
(PSA_KEY_TYPE_IS_RSA(key_type) ? \
PSA_BITS_TO_BYTES(key_bits) - PSA_RSA_MINIMUM_PADDING_SIZE(alg) : \
0)
/**
* \brief Encrypt a short message with a public key.
*
* \param key Key slot containing a public key or an asymmetric
* key pair.
* \param alg An asymmetric encryption algorithm that is
* compatible with the type of \c key.
* \param input The message to encrypt.
* \param input_length Size of the \c input buffer in bytes.
* \param salt A salt or label, if supported by the encryption
* algorithm.
* If the algorithm does not support a
* salt, pass \c NULL.
* If the algorithm supports an optional
* salt and you do not want to pass a salt,
* pass \c NULL.
*
* - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
* supported.
* \param salt_length Size of the \c salt buffer in bytes.
* If \c salt is \c NULL, pass 0.
* \param output Buffer where the encrypted message is to be written.
* \param output_size Size of the \c output buffer in bytes.
* \param output_length On success, the number of bytes
* that make up the returned output.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \c output buffer is too small. You can
* determine a sufficient buffer size by calling
* #PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg)
* where \c key_type and \c key_bits are the type and bit-size
* respectively of \c key.
* \retval PSA_ERROR_NOT_SUPPORTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
* \retval PSA_ERROR_INSUFFICIENT_ENTROPY
*/
psa_status_t psa_asymmetric_encrypt(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *input,
size_t input_length,
const uint8_t *salt,
size_t salt_length,
uint8_t *output,
size_t output_size,
size_t *output_length);
/**
* \brief Decrypt a short message with a private key.
*
* \param key Key slot containing an asymmetric key pair.
* \param alg An asymmetric encryption algorithm that is
* compatible with the type of \c key.
* \param input The message to decrypt.
* \param input_length Size of the \c input buffer in bytes.
* \param salt A salt or label, if supported by the encryption
* algorithm.
* If the algorithm does not support a
* salt, pass \c NULL.
* If the algorithm supports an optional
* salt and you do not want to pass a salt,
* pass \c NULL.
*
* - For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
* supported.
* \param salt_length Size of the \c salt buffer in bytes.
* If \c salt is \c NULL, pass 0.
* \param output Buffer where the decrypted message is to be written.
* \param output_size Size of the \c output buffer in bytes.
* \param output_length On success, the number of bytes
* that make up the returned output.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_BUFFER_TOO_SMALL
* The size of the \c output buffer is too small. You can
* determine a sufficient buffer size by calling
* #PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg)
* where \c key_type and \c key_bits are the type and bit-size
* respectively of \c key.
* \retval PSA_ERROR_NOT_SUPPORTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
* \retval PSA_ERROR_INSUFFICIENT_ENTROPY
* \retval PSA_ERROR_INVALID_PADDING
*/
psa_status_t psa_asymmetric_decrypt(psa_key_slot_t key,
psa_algorithm_t alg,
const uint8_t *input,
size_t input_length,
const uint8_t *salt,
size_t salt_length,
uint8_t *output,
size_t output_size,
size_t *output_length);
/**@}*/
/** \defgroup generation Key generation
* @{
*/
/**
* \brief Generate random bytes.
*
* \warning This function **can** fail! Callers MUST check the return status
* and MUST NOT use the content of the output buffer if the return
* status is not #PSA_SUCCESS.
*
* \note To generate a key, use psa_generate_key() instead.
*
* \param output Output buffer for the generated data.
* \param output_size Number of bytes to generate and output.
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_NOT_SUPPORTED
* \retval PSA_ERROR_INSUFFICIENT_ENTROPY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_generate_random(uint8_t *output,
size_t output_size);
/**
* \brief Generate a key or key pair.
*
* \param key Slot where the key will be stored. This must be a
* valid slot for a key of the chosen type. It must
* be unoccupied.
* \param type Key type (a \c PSA_KEY_TYPE_XXX value).
* \param bits Key size in bits.
* \param parameters Extra parameters for key generation. The interpretation
* of this parameter depends on \c type. All types support
* \c NULL to use default parameters specified below.
*
* For any symmetric key type (type such that
* `PSA_KEY_TYPE_IS_ASYMMETRIC(type)` is false), \c parameters must be
* \c NULL. For asymmetric key types defined by this specification,
* the parameter type and the default parameters are defined by the
* table below. For vendor-defined key types, the vendor documentation
* shall define the parameter type and the default parameters.
*
* Type | Parameter type | Meaning | Parameters used if `parameters == NULL`
* ---- | -------------- | ------- | ---------------------------------------
* `PSA_KEY_TYPE_RSA_KEYPAIR` | `unsigned int` | Public exponent | 65537
*
* \retval PSA_SUCCESS
* \retval PSA_ERROR_NOT_SUPPORTED
* \retval PSA_ERROR_INVALID_ARGUMENT
* \retval PSA_ERROR_INSUFFICIENT_MEMORY
* \retval PSA_ERROR_INSUFFICIENT_ENTROPY
* \retval PSA_ERROR_COMMUNICATION_FAILURE
* \retval PSA_ERROR_HARDWARE_FAILURE
* \retval PSA_ERROR_TAMPERING_DETECTED
*/
psa_status_t psa_generate_key(psa_key_slot_t key,
psa_key_type_t type,
size_t bits,
const void *parameters);
/**@}*/
#ifdef __cplusplus
}
#endif
/* The file "crypto_struct.h" contains definitions for
* implementation-specific structs that are declared above. */
#include "crypto_struct.h"
/* The file "crypto_extra.h" contains vendor-specific definitions. This
* can include vendor-defined algorithms, extra functions, etc. */
#include "crypto_extra.h"
#endif /* PSA_CRYPTO_H */