mbedtls/library/sha256.c
Tom Cosgrove 7e7aba8c9d Rename mbedtls_a64_crypto_sha256_check_support() to mbedtls_a64_crypto_sha256_determine_support()
The Mbed TLS coding standard specifies that "check" functions must return 0
for success (i.e. feature present), while "has" functions should return 1 for
true. Since we were using "check" to do the actual check, and "has" to get the
cached value, having inverted values here would be confusing.  Therefore,
rename "check" to "determine", as that's what those functions are doing.

Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com>
2022-02-24 08:33:11 +00:00

848 lines
25 KiB
C

/*
* FIPS-180-2 compliant SHA-256 implementation
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The SHA-256 Secure Hash Standard was published by NIST in 2002.
*
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
*/
#include "common.h"
#if defined(MBEDTLS_SHA256_C)
#include "mbedtls/sha256.h"
#include "mbedtls/platform_util.h"
#include "mbedtls/error.h"
#include <string.h>
#if defined(MBEDTLS_SELF_TEST)
#if defined(MBEDTLS_PLATFORM_C)
#include "mbedtls/platform.h"
#else
#include <stdio.h>
#include <stdlib.h>
#define mbedtls_printf printf
#define mbedtls_calloc calloc
#define mbedtls_free free
#endif /* MBEDTLS_PLATFORM_C */
#endif /* MBEDTLS_SELF_TEST */
#if defined(__aarch64__)
# if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
# include <arm_neon.h>
# endif
# if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) && defined(__linux__)
# include <sys/auxv.h>
# endif
#elif defined(_M_ARM64)
# if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
# include <arm64_neon.h>
# endif
#else
# undef MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY
# undef MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT
#endif
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
/*
* Capability detection code comes early, so we can disable
* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT if no detection mechanism found
*/
#if defined(HWCAP_SHA2)
static int mbedtls_a64_crypto_sha256_determine_support( void )
{
return( ( getauxval( AT_HWCAP ) & HWCAP_SHA2 ) ? 1 : 0 );
}
#elif defined(__APPLE__)
static int mbedtls_a64_crypto_sha256_determine_support( void )
{
return( 1 );
}
#elif defined(_M_ARM64)
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#include <processthreadsapi.h>
static int mbedtls_a64_crypto_sha256_determine_support( void )
{
return( IsProcessorFeaturePresent( PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE ) ?
1 : 0 );
}
#elif defined(__unix__) && defined(SIG_SETMASK)
/* Detection with SIGILL, setjmp() and longjmp() */
#include <signal.h>
#include <setjmp.h>
#ifndef asm
#define asm __asm__
#endif
static jmp_buf return_from_sigill;
/*
* A64 SHA256 support detection via SIGILL
*/
static void sigill_handler( int signal )
{
(void) signal;
longjmp( return_from_sigill, 1 );
}
static int mbedtls_a64_crypto_sha256_determine_support( void )
{
struct sigaction old_action, new_action;
sigset_t old_mask;
if( sigprocmask( 0, NULL, &old_mask ) )
return( 0 );
sigemptyset( &new_action.sa_mask );
new_action.sa_flags = 0;
new_action.sa_handler = sigill_handler;
sigaction( SIGILL, &new_action, &old_action );
static int ret = 0;
if( setjmp( return_from_sigill ) == 0 ) /* First return only */
{
/* If this traps, we will return a second time from setjmp() with 1 */
asm( "sha256h q0, q0, v0.4s" : : : "v0" );
ret = 1;
}
sigaction( SIGILL, &old_action, NULL );
sigprocmask( SIG_SETMASK, &old_mask, NULL );
return( ret );
}
#else
#warning "No mechanism to detect A64_CRYPTO found, using C code only"
#undef MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT
#endif /* HWCAP_SHA2, __APPLE__, __unix__ && SIG_SETMASK */
#endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT */
#define SHA256_VALIDATE_RET(cond) \
MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_SHA256_BAD_INPUT_DATA )
#define SHA256_VALIDATE(cond) MBEDTLS_INTERNAL_VALIDATE( cond )
#if !defined(MBEDTLS_SHA256_ALT)
#define SHA256_BLOCK_SIZE 64
void mbedtls_sha256_init( mbedtls_sha256_context *ctx )
{
SHA256_VALIDATE( ctx != NULL );
memset( ctx, 0, sizeof( mbedtls_sha256_context ) );
}
void mbedtls_sha256_free( mbedtls_sha256_context *ctx )
{
if( ctx == NULL )
return;
mbedtls_platform_zeroize( ctx, sizeof( mbedtls_sha256_context ) );
}
void mbedtls_sha256_clone( mbedtls_sha256_context *dst,
const mbedtls_sha256_context *src )
{
SHA256_VALIDATE( dst != NULL );
SHA256_VALIDATE( src != NULL );
*dst = *src;
}
/*
* SHA-256 context setup
*/
int mbedtls_sha256_starts( mbedtls_sha256_context *ctx, int is224 )
{
SHA256_VALIDATE_RET( ctx != NULL );
#if defined(MBEDTLS_SHA224_C)
SHA256_VALIDATE_RET( is224 == 0 || is224 == 1 );
#else
SHA256_VALIDATE_RET( is224 == 0 );
#endif
ctx->total[0] = 0;
ctx->total[1] = 0;
if( is224 == 0 )
{
/* SHA-256 */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
else
{
#if defined(MBEDTLS_SHA224_C)
/* SHA-224 */
ctx->state[0] = 0xC1059ED8;
ctx->state[1] = 0x367CD507;
ctx->state[2] = 0x3070DD17;
ctx->state[3] = 0xF70E5939;
ctx->state[4] = 0xFFC00B31;
ctx->state[5] = 0x68581511;
ctx->state[6] = 0x64F98FA7;
ctx->state[7] = 0xBEFA4FA4;
#endif
}
ctx->is224 = is224;
return( 0 );
}
#if !defined(MBEDTLS_SHA256_PROCESS_ALT)
static const uint32_t K[] =
{
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
#endif
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT) || \
defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
# define mbedtls_internal_sha256_process_many_a64_crypto mbedtls_internal_sha256_process_many
# define mbedtls_internal_sha256_process_a64_crypto mbedtls_internal_sha256_process
#endif
static size_t mbedtls_internal_sha256_process_many_a64_crypto(
mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len )
{
uint32x4_t abcd = vld1q_u32( &ctx->state[0] );
uint32x4_t efgh = vld1q_u32( &ctx->state[4] );
size_t processed = 0;
for( ;
len >= SHA256_BLOCK_SIZE;
processed += SHA256_BLOCK_SIZE,
msg += SHA256_BLOCK_SIZE,
len -= SHA256_BLOCK_SIZE )
{
uint32x4_t tmp, abcd_prev;
uint32x4_t abcd_orig = abcd;
uint32x4_t efgh_orig = efgh;
uint32x4_t sched0 = vld1q_u32( (const uint32_t *)( msg + 16 * 0 ) );
uint32x4_t sched1 = vld1q_u32( (const uint32_t *)( msg + 16 * 1 ) );
uint32x4_t sched2 = vld1q_u32( (const uint32_t *)( msg + 16 * 2 ) );
uint32x4_t sched3 = vld1q_u32( (const uint32_t *)( msg + 16 * 3 ) );
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ /* Will be true if not defined */
/* Untested on BE */
sched0 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched0 ) ) );
sched1 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched1 ) ) );
sched2 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched2 ) ) );
sched3 = vreinterpretq_u32_u8( vrev32q_u8( vreinterpretq_u8_u32( sched3 ) ) );
#endif
/* Rounds 0 to 3 */
tmp = vaddq_u32( sched0, vld1q_u32( &K[0] ) );
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
/* Rounds 4 to 7 */
tmp = vaddq_u32( sched1, vld1q_u32( &K[4] ) );
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
/* Rounds 8 to 11 */
tmp = vaddq_u32( sched2, vld1q_u32( &K[8] ) );
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
/* Rounds 12 to 15 */
tmp = vaddq_u32( sched3, vld1q_u32( &K[12] ) );
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
for( int t = 16; t < 64; t += 16 )
{
/* Rounds t to t + 3 */
sched0 = vsha256su1q_u32( vsha256su0q_u32( sched0, sched1 ), sched2, sched3 );
tmp = vaddq_u32( sched0, vld1q_u32( &K[t] ) );
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
/* Rounds t + 4 to t + 7 */
sched1 = vsha256su1q_u32( vsha256su0q_u32( sched1, sched2 ), sched3, sched0 );
tmp = vaddq_u32( sched1, vld1q_u32( &K[t + 4] ) );
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
/* Rounds t + 8 to t + 11 */
sched2 = vsha256su1q_u32( vsha256su0q_u32( sched2, sched3 ), sched0, sched1 );
tmp = vaddq_u32( sched2, vld1q_u32( &K[t + 8] ) );
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
/* Rounds t + 12 to t + 15 */
sched3 = vsha256su1q_u32( vsha256su0q_u32( sched3, sched0 ), sched1, sched2 );
tmp = vaddq_u32( sched3, vld1q_u32( &K[t + 12] ) );
abcd_prev = abcd;
abcd = vsha256hq_u32( abcd_prev, efgh, tmp );
efgh = vsha256h2q_u32( efgh, abcd_prev, tmp );
}
abcd = vaddq_u32( abcd, abcd_orig );
efgh = vaddq_u32( efgh, efgh_orig );
}
vst1q_u32( &ctx->state[0], abcd );
vst1q_u32( &ctx->state[4], efgh );
return( processed );
}
int mbedtls_internal_sha256_process_a64_crypto( mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE] )
{
return( ( mbedtls_internal_sha256_process_many_a64_crypto( ctx, data,
SHA256_BLOCK_SIZE ) == SHA256_BLOCK_SIZE ) ? 0 : -1 );
}
#endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT || MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */
#if !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
#define mbedtls_internal_sha256_process_many_c mbedtls_internal_sha256_process_many
#define mbedtls_internal_sha256_process_c mbedtls_internal_sha256_process
#endif
#if !defined(MBEDTLS_SHA256_PROCESS_ALT) && \
!defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
#define SHR(x,n) (((x) & 0xFFFFFFFF) >> (n))
#define ROTR(x,n) (SHR(x,n) | ((x) << (32 - (n))))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define F0(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define F1(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define R(t) \
( \
local.W[t] = S1(local.W[(t) - 2]) + local.W[(t) - 7] + \
S0(local.W[(t) - 15]) + local.W[(t) - 16] \
)
#define P(a,b,c,d,e,f,g,h,x,K) \
do \
{ \
local.temp1 = (h) + S3(e) + F1((e),(f),(g)) + (K) + (x); \
local.temp2 = S2(a) + F0((a),(b),(c)); \
(d) += local.temp1; (h) = local.temp1 + local.temp2; \
} while( 0 )
int mbedtls_internal_sha256_process_c( mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE] )
{
struct
{
uint32_t temp1, temp2, W[64];
uint32_t A[8];
} local;
unsigned int i;
SHA256_VALIDATE_RET( ctx != NULL );
SHA256_VALIDATE_RET( (const unsigned char *)data != NULL );
for( i = 0; i < 8; i++ )
local.A[i] = ctx->state[i];
#if defined(MBEDTLS_SHA256_SMALLER)
for( i = 0; i < 64; i++ )
{
if( i < 16 )
local.W[i] = MBEDTLS_GET_UINT32_BE( data, 4 * i );
else
R( i );
P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i], K[i] );
local.temp1 = local.A[7]; local.A[7] = local.A[6];
local.A[6] = local.A[5]; local.A[5] = local.A[4];
local.A[4] = local.A[3]; local.A[3] = local.A[2];
local.A[2] = local.A[1]; local.A[1] = local.A[0];
local.A[0] = local.temp1;
}
#else /* MBEDTLS_SHA256_SMALLER */
for( i = 0; i < 16; i++ )
local.W[i] = MBEDTLS_GET_UINT32_BE( data, 4 * i );
for( i = 0; i < 16; i += 8 )
{
P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0] );
P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1] );
P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2] );
P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3] );
P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4] );
P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5] );
P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6] );
P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7] );
}
for( i = 16; i < 64; i += 8 )
{
P( local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
local.A[5], local.A[6], local.A[7], R(i+0), K[i+0] );
P( local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
local.A[4], local.A[5], local.A[6], R(i+1), K[i+1] );
P( local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
local.A[3], local.A[4], local.A[5], R(i+2), K[i+2] );
P( local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
local.A[2], local.A[3], local.A[4], R(i+3), K[i+3] );
P( local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
local.A[1], local.A[2], local.A[3], R(i+4), K[i+4] );
P( local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
local.A[0], local.A[1], local.A[2], R(i+5), K[i+5] );
P( local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
local.A[7], local.A[0], local.A[1], R(i+6), K[i+6] );
P( local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
local.A[6], local.A[7], local.A[0], R(i+7), K[i+7] );
}
#endif /* MBEDTLS_SHA256_SMALLER */
for( i = 0; i < 8; i++ )
ctx->state[i] += local.A[i];
/* Zeroise buffers and variables to clear sensitive data from memory. */
mbedtls_platform_zeroize( &local, sizeof( local ) );
return( 0 );
}
#endif /* !MBEDTLS_SHA256_PROCESS_ALT && !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */
#if !defined(MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY)
static size_t mbedtls_internal_sha256_process_many_c(
mbedtls_sha256_context *ctx, const uint8_t *data, size_t len )
{
size_t processed = 0;
while( len >= SHA256_BLOCK_SIZE )
{
if( mbedtls_internal_sha256_process_c( ctx, data ) != 0 )
return( 0 );
data += SHA256_BLOCK_SIZE;
len -= SHA256_BLOCK_SIZE;
processed += SHA256_BLOCK_SIZE;
}
return( processed );
}
#endif /* !MBEDTLS_SHA256_USE_A64_CRYPTO_ONLY */
#if defined(MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT)
static int mbedtls_a64_crypto_sha256_has_support( void )
{
static int done = 0;
static int supported = 0;
if( !done )
{
supported = mbedtls_a64_crypto_sha256_determine_support();
done = 1;
}
return( supported );
}
static size_t mbedtls_internal_sha256_process_many( mbedtls_sha256_context *ctx,
const uint8_t *msg, size_t len )
{
if( mbedtls_a64_crypto_sha256_has_support() )
return( mbedtls_internal_sha256_process_many_a64_crypto( ctx, msg, len ) );
else
return( mbedtls_internal_sha256_process_many_c( ctx, msg, len ) );
}
int mbedtls_internal_sha256_process( mbedtls_sha256_context *ctx,
const unsigned char data[SHA256_BLOCK_SIZE] )
{
if( mbedtls_a64_crypto_sha256_has_support() )
return( mbedtls_internal_sha256_process_a64_crypto( ctx, data ) );
else
return( mbedtls_internal_sha256_process_c( ctx, data ) );
}
#endif /* MBEDTLS_SHA256_USE_A64_CRYPTO_IF_PRESENT */
/*
* SHA-256 process buffer
*/
int mbedtls_sha256_update( mbedtls_sha256_context *ctx,
const unsigned char *input,
size_t ilen )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
size_t fill;
uint32_t left;
SHA256_VALIDATE_RET( ctx != NULL );
SHA256_VALIDATE_RET( ilen == 0 || input != NULL );
if( ilen == 0 )
return( 0 );
left = ctx->total[0] & 0x3F;
fill = SHA256_BLOCK_SIZE - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if( ctx->total[0] < (uint32_t) ilen )
ctx->total[1]++;
if( left && ilen >= fill )
{
memcpy( (void *) (ctx->buffer + left), input, fill );
if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 )
return( ret );
input += fill;
ilen -= fill;
left = 0;
}
while( ilen >= SHA256_BLOCK_SIZE )
{
size_t processed =
mbedtls_internal_sha256_process_many( ctx, input, ilen );
if( processed < SHA256_BLOCK_SIZE )
return( MBEDTLS_ERR_ERROR_GENERIC_ERROR );
input += processed;
ilen -= processed;
}
if( ilen > 0 )
memcpy( (void *) (ctx->buffer + left), input, ilen );
return( 0 );
}
/*
* SHA-256 final digest
*/
int mbedtls_sha256_finish( mbedtls_sha256_context *ctx,
unsigned char *output )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
uint32_t used;
uint32_t high, low;
SHA256_VALIDATE_RET( ctx != NULL );
SHA256_VALIDATE_RET( (unsigned char *)output != NULL );
/*
* Add padding: 0x80 then 0x00 until 8 bytes remain for the length
*/
used = ctx->total[0] & 0x3F;
ctx->buffer[used++] = 0x80;
if( used <= 56 )
{
/* Enough room for padding + length in current block */
memset( ctx->buffer + used, 0, 56 - used );
}
else
{
/* We'll need an extra block */
memset( ctx->buffer + used, 0, SHA256_BLOCK_SIZE - used );
if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 )
return( ret );
memset( ctx->buffer, 0, 56 );
}
/*
* Add message length
*/
high = ( ctx->total[0] >> 29 )
| ( ctx->total[1] << 3 );
low = ( ctx->total[0] << 3 );
MBEDTLS_PUT_UINT32_BE( high, ctx->buffer, 56 );
MBEDTLS_PUT_UINT32_BE( low, ctx->buffer, 60 );
if( ( ret = mbedtls_internal_sha256_process( ctx, ctx->buffer ) ) != 0 )
return( ret );
/*
* Output final state
*/
MBEDTLS_PUT_UINT32_BE( ctx->state[0], output, 0 );
MBEDTLS_PUT_UINT32_BE( ctx->state[1], output, 4 );
MBEDTLS_PUT_UINT32_BE( ctx->state[2], output, 8 );
MBEDTLS_PUT_UINT32_BE( ctx->state[3], output, 12 );
MBEDTLS_PUT_UINT32_BE( ctx->state[4], output, 16 );
MBEDTLS_PUT_UINT32_BE( ctx->state[5], output, 20 );
MBEDTLS_PUT_UINT32_BE( ctx->state[6], output, 24 );
#if defined(MBEDTLS_SHA224_C)
if( ctx->is224 == 0 )
#endif
MBEDTLS_PUT_UINT32_BE( ctx->state[7], output, 28 );
return( 0 );
}
#endif /* !MBEDTLS_SHA256_ALT */
/*
* output = SHA-256( input buffer )
*/
int mbedtls_sha256( const unsigned char *input,
size_t ilen,
unsigned char *output,
int is224 )
{
int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
mbedtls_sha256_context ctx;
#if defined(MBEDTLS_SHA224_C)
SHA256_VALIDATE_RET( is224 == 0 || is224 == 1 );
#else
SHA256_VALIDATE_RET( is224 == 0 );
#endif
SHA256_VALIDATE_RET( ilen == 0 || input != NULL );
SHA256_VALIDATE_RET( (unsigned char *)output != NULL );
mbedtls_sha256_init( &ctx );
if( ( ret = mbedtls_sha256_starts( &ctx, is224 ) ) != 0 )
goto exit;
if( ( ret = mbedtls_sha256_update( &ctx, input, ilen ) ) != 0 )
goto exit;
if( ( ret = mbedtls_sha256_finish( &ctx, output ) ) != 0 )
goto exit;
exit:
mbedtls_sha256_free( &ctx );
return( ret );
}
#if defined(MBEDTLS_SELF_TEST)
/*
* FIPS-180-2 test vectors
*/
static const unsigned char sha256_test_buf[3][57] =
{
{ "abc" },
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
{ "" }
};
static const size_t sha256_test_buflen[3] =
{
3, 56, 1000
};
static const unsigned char sha256_test_sum[6][32] =
{
/*
* SHA-224 test vectors
*/
{ 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22,
0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3,
0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7,
0xE3, 0x6C, 0x9D, 0xA7 },
{ 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC,
0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50,
0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19,
0x52, 0x52, 0x25, 0x25 },
{ 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8,
0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B,
0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE,
0x4E, 0xE7, 0xAD, 0x67 },
/*
* SHA-256 test vectors
*/
{ 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA,
0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23,
0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C,
0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD },
{ 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8,
0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39,
0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67,
0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 },
{ 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92,
0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67,
0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E,
0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 }
};
/*
* Checkup routine
*/
int mbedtls_sha256_self_test( int verbose )
{
int i, j, k, buflen, ret = 0;
unsigned char *buf;
unsigned char sha256sum[32];
mbedtls_sha256_context ctx;
buf = mbedtls_calloc( 1024, sizeof(unsigned char) );
if( NULL == buf )
{
if( verbose != 0 )
mbedtls_printf( "Buffer allocation failed\n" );
return( 1 );
}
mbedtls_sha256_init( &ctx );
for( i = 0; i < 6; i++ )
{
j = i % 3;
k = i < 3;
if( verbose != 0 )
mbedtls_printf( " SHA-%d test #%d: ", 256 - k * 32, j + 1 );
if( ( ret = mbedtls_sha256_starts( &ctx, k ) ) != 0 )
goto fail;
if( j == 2 )
{
memset( buf, 'a', buflen = 1000 );
for( j = 0; j < 1000; j++ )
{
ret = mbedtls_sha256_update( &ctx, buf, buflen );
if( ret != 0 )
goto fail;
}
}
else
{
ret = mbedtls_sha256_update( &ctx, sha256_test_buf[j],
sha256_test_buflen[j] );
if( ret != 0 )
goto fail;
}
if( ( ret = mbedtls_sha256_finish( &ctx, sha256sum ) ) != 0 )
goto fail;
if( memcmp( sha256sum, sha256_test_sum[i], 32 - k * 4 ) != 0 )
{
ret = 1;
goto fail;
}
if( verbose != 0 )
mbedtls_printf( "passed\n" );
}
if( verbose != 0 )
mbedtls_printf( "\n" );
goto exit;
fail:
if( verbose != 0 )
mbedtls_printf( "failed\n" );
exit:
mbedtls_sha256_free( &ctx );
mbedtls_free( buf );
return( ret );
}
#endif /* MBEDTLS_SELF_TEST */
#endif /* MBEDTLS_SHA256_C */