mimalloc/src/page.c

716 lines
25 KiB
C
Raw Normal View History

2019-06-19 23:26:12 +00:00
/*----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
2019-06-19 23:26:12 +00:00
-----------------------------------------------------------------------------*/
/* -----------------------------------------------------------
The core of the allocator. Every segment contains
pages of a certain block size. The main function
exported is `mi_malloc_generic`.
----------------------------------------------------------- */
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"
#include <string.h> // memset, memcpy
/* -----------------------------------------------------------
Definition of page queues for each block size
----------------------------------------------------------- */
#define MI_IN_PAGE_C
#include "page-queue.c"
#undef MI_IN_PAGE_C
/* -----------------------------------------------------------
Page helpers
----------------------------------------------------------- */
// Index a block in a page
static inline mi_block_t* mi_page_block_at(const mi_page_t* page, void* page_start, size_t i) {
mi_assert_internal(page != NULL);
mi_assert_internal(i <= page->reserved);
return (mi_block_t*)((uint8_t*)page_start + (i * page->block_size));
}
static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t size, mi_stats_t* stats);
#if (MI_DEBUG>1)
static size_t mi_page_list_count(mi_page_t* page, mi_block_t* head) {
size_t count = 0;
while (head != NULL) {
mi_assert_internal(page == _mi_ptr_page(head));
count++;
head = mi_block_next(page, head);
}
return count;
}
// Start of the page available memory
static inline uint8_t* mi_page_area(const mi_page_t* page) {
return _mi_page_start(_mi_page_segment(page), page, NULL);
}
static bool mi_page_list_is_valid(mi_page_t* page, mi_block_t* p) {
size_t psize;
uint8_t* page_area = _mi_page_start(_mi_page_segment(page), page, &psize);
mi_block_t* start = (mi_block_t*)page_area;
mi_block_t* end = (mi_block_t*)(page_area + psize);
while(p != NULL) {
if (p < start || p >= end) return false;
p = mi_block_next(page, p);
}
return true;
}
static bool mi_page_is_valid_init(mi_page_t* page) {
mi_assert_internal(page->block_size > 0);
mi_assert_internal(page->used <= page->capacity);
mi_assert_internal(page->capacity <= page->reserved);
mi_segment_t* segment = _mi_page_segment(page);
uint8_t* start = _mi_page_start(segment,page,NULL);
mi_assert_internal(start == _mi_segment_page_start(segment,page,NULL));
//mi_assert_internal(start + page->capacity*page->block_size == page->top);
mi_assert_internal(mi_page_list_is_valid(page,page->free));
mi_assert_internal(mi_page_list_is_valid(page,page->local_free));
mi_block_t* tfree = (mi_block_t*)((uintptr_t)page->thread_free.head << MI_TF_PTR_SHIFT);
mi_assert_internal(mi_page_list_is_valid(page, tfree));
size_t tfree_count = mi_page_list_count(page, tfree);
mi_assert_internal(tfree_count <= page->thread_freed + 1);
size_t free_count = mi_page_list_count(page, page->free) + mi_page_list_count(page, page->local_free);
mi_assert_internal(page->used + free_count == page->capacity);
return true;
}
bool _mi_page_is_valid(mi_page_t* page) {
mi_assert_internal(mi_page_is_valid_init(page));
mi_assert_internal(page->cookie != 0);
if (page->heap!=NULL) {
mi_segment_t* segment = _mi_page_segment(page);
mi_assert_internal(segment->thread_id == page->heap->thread_id);
mi_page_queue_t* pq = mi_page_queue_of(page);
mi_assert_internal(mi_page_queue_contains(pq, page));
mi_assert_internal(pq->block_size==page->block_size || page->block_size > MI_LARGE_SIZE_MAX || page->flags.in_full);
mi_assert_internal(mi_heap_contains_queue(page->heap,pq));
}
return true;
}
#endif
void _mi_page_use_delayed_free(mi_page_t* page, bool enable) {
mi_thread_free_t tfree;
mi_thread_free_t tfreex;
do {
tfreex = tfree = page->thread_free;
tfreex.delayed = (enable ? MI_USE_DELAYED_FREE : MI_NO_DELAYED_FREE);
if (mi_unlikely(tfree.delayed == MI_DELAYED_FREEING)) {
mi_atomic_yield(); // delay until outstanding MI_DELAYED_FREEING are done.
continue; // and try again
}
}
while(tfreex.delayed != tfree.delayed && // avoid atomic operation if already equal
!mi_atomic_compare_exchange((volatile uintptr_t*)&page->thread_free, tfreex.value, tfree.value));
}
/* -----------------------------------------------------------
Page collect the `local_free` and `thread_free` lists
----------------------------------------------------------- */
// Collect the local `thread_free` list using an atomic exchange.
// Note: The exchange must be done atomically as this is used right after
// moving to the full list in `mi_page_collect_ex` and we need to
// ensure that there was no race where the page became unfull just before the move.
static void mi_page_thread_free_collect(mi_page_t* page)
{
mi_block_t* head;
mi_thread_free_t tfree;
mi_thread_free_t tfreex;
do {
tfreex = tfree = page->thread_free;
head = (mi_block_t*)((uintptr_t)tfree.head << MI_TF_PTR_SHIFT);
tfreex.head = 0;
} while (!mi_atomic_compare_exchange((volatile uintptr_t*)&page->thread_free, tfreex.value, tfree.value));
// return if the list is empty
if (head == NULL) return;
// find the tail
uint16_t count = 1;
mi_block_t* tail = head;
mi_block_t* next;
while ((next = mi_block_next(page,tail)) != NULL) {
count++;
tail = next;
}
// and prepend to the free list
mi_block_set_next(page,tail, page->free);
page->free = head;
// update counts now
mi_atomic_subtract(&page->thread_freed, count);
page->used -= count;
}
void _mi_page_free_collect(mi_page_t* page) {
mi_assert_internal(page!=NULL);
//if (page->free != NULL) return; // avoid expensive append
// free the local free list
if (page->local_free != NULL) {
if (mi_likely(page->free == NULL)) {
// usual caes
page->free = page->local_free;
}
else {
mi_block_t* tail = page->free;
mi_block_t* next;
while ((next = mi_block_next(page, tail)) != NULL) {
tail = next;
}
mi_block_set_next(page, tail, page->local_free);
}
page->local_free = NULL;
}
// and the thread free list
if (page->thread_free.head != 0) { // quick test to avoid an atomic operation
mi_page_thread_free_collect(page);
}
}
/* -----------------------------------------------------------
Page fresh and retire
----------------------------------------------------------- */
// called from segments when reclaiming abandoned pages
void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) {
mi_assert_expensive(mi_page_is_valid_init(page));
mi_assert_internal(page->heap == NULL);
_mi_page_free_collect(page);
mi_page_queue_t* pq = mi_page_queue(heap, page->block_size);
mi_page_queue_push(heap, pq, page);
mi_assert_expensive(_mi_page_is_valid(page));
}
// allocate a fresh page from a segment
static mi_page_t* mi_page_fresh_alloc(mi_heap_t* heap, mi_page_queue_t* pq, size_t block_size) {
mi_assert_internal(mi_heap_contains_queue(heap, pq));
mi_page_t* page = _mi_segment_page_alloc(block_size, &heap->tld->segments, &heap->tld->os);
if (page == NULL) return NULL;
mi_page_init(heap, page, block_size, &heap->tld->stats);
mi_heap_stat_increase( heap, pages, 1);
mi_page_queue_push(heap, pq, page);
mi_assert_expensive(_mi_page_is_valid(page));
return page;
}
// Get a fresh page to use
static mi_page_t* mi_page_fresh(mi_heap_t* heap, mi_page_queue_t* pq) {
mi_assert_internal(mi_heap_contains_queue(heap, pq));
// try to reclaim an abandoned page first
mi_page_t* page = pq->first;
if (!heap->no_reclaim &&
_mi_segment_try_reclaim_abandoned(heap, false, &heap->tld->segments) &&
page != pq->first)
{
// we reclaimed, and we got lucky with a reclaimed page in our queue
page = pq->first;
if (page->free != NULL) return page;
}
// otherwise allocate the page
page = mi_page_fresh_alloc(heap, pq, pq->block_size);
if (page==NULL) return NULL;
mi_assert_internal(pq->block_size==page->block_size);
mi_assert_internal(pq==mi_page_queue(heap,page->block_size));
return page;
}
/* -----------------------------------------------------------
Do any delayed frees
(put there by other threads if they deallocated in a full page)
----------------------------------------------------------- */
void _mi_heap_delayed_free(mi_heap_t* heap) {
// take over the list
mi_block_t* block;
do {
block = (mi_block_t*)heap->thread_delayed_free;
} while (block != NULL && !mi_atomic_compare_exchange_ptr((volatile void**)&heap->thread_delayed_free, NULL, block));
// and free them all
while(block != NULL) {
mi_block_t* next = mi_block_nextx(heap->cookie,block);
// use internal free instead of regular one to keep stats etc correct
_mi_free_delayed_block(block);
block = next;
}
}
/* -----------------------------------------------------------
Unfull, abandon, free and retire
----------------------------------------------------------- */
// Move a page from the full list back to a regular list
void _mi_page_unfull(mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(page->flags.in_full);
_mi_page_use_delayed_free(page, false);
if (!page->flags.in_full) return;
mi_heap_t* heap = page->heap;
mi_page_queue_t* pqfull = &heap->pages[MI_BIN_FULL];
page->flags.in_full = false; // to get the right queue
mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page);
page->flags.in_full = true;
mi_page_queue_enqueue_from(pq, pqfull, page);
}
static void mi_page_to_full(mi_page_t* page, mi_page_queue_t* pq) {
mi_assert_internal(pq == mi_page_queue_of(page));
mi_assert_internal(!mi_page_immediate_available(page));
mi_assert_internal(!page->flags.in_full);
_mi_page_use_delayed_free(page, true);
if (page->flags.in_full) return;
mi_page_queue_enqueue_from(&page->heap->pages[MI_BIN_FULL], pq, page);
mi_page_thread_free_collect(page); // try to collect right away in case another thread freed just before MI_USE_DELAYED_FREE was set
}
// Abandon a page with used blocks at the end of a thread.
// Note: only call if it is ensured that no references exist from
// the `page->heap->thread_delayed_free` into this page.
// Currently only called through `mi_heap_collect_ex` which ensures this.
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq) {
mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(pq == mi_page_queue_of(page));
mi_assert_internal(page->heap != NULL);
mi_assert_internal(page->thread_free.delayed == MI_NO_DELAYED_FREE);
#if MI_DEBUG>1
// check there are no references left..
for (mi_block_t* block = (mi_block_t*)page->heap->thread_delayed_free; block != NULL; block = mi_block_nextx(page->heap->cookie,block)) {
mi_assert_internal(_mi_ptr_page(block) != page);
}
#endif
// and then remove from our page list
mi_segments_tld_t* segments_tld = &page->heap->tld->segments;
mi_page_queue_remove(pq, page);
// and abandon it
mi_assert_internal(page->heap == NULL);
_mi_segment_page_abandon(page,segments_tld);
}
// Free a page with no more free blocks
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) {
mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(pq == mi_page_queue_of(page));
mi_assert_internal(mi_page_all_free(page));
mi_assert_internal(page->thread_free.delayed != MI_DELAYED_FREEING);
page->flags.has_aligned = false;
// account for huge pages here
if (page->block_size > MI_LARGE_SIZE_MAX) {
mi_heap_stat_decrease(page->heap, huge, page->block_size);
}
// remove from the page list
// (no need to do _mi_heap_delayed_free first as all blocks are already free)
mi_segments_tld_t* segments_tld = &page->heap->tld->segments;
mi_page_queue_remove(pq, page);
// and free it
mi_assert_internal(page->heap == NULL);
_mi_segment_page_free(page, force, segments_tld);
}
// Retire a page with no more used blocks
// Important to not retire too quickly though as new
// allocations might coming.
// Note: called from `mi_free` and benchmarks often
// trigger this due to freeing everything and then
// allocating again so careful when changing this.
void _mi_page_retire(mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(mi_page_all_free(page));
page->flags.has_aligned = false;
// don't retire too often..
// (or we end up retiring and re-allocating most of the time)
// NOTE: refine this more: we should not retire if this
// is the only page left with free blocks. It is not clear
// how to check this efficiently though... for now we just check
// if its neighbours are almost fully used.
if (mi_likely(page->block_size <= MI_LARGE_SIZE_MAX)) {
if (mi_page_mostly_used(page->prev) && mi_page_mostly_used(page->next)) {
return; // dont't retire after all
}
}
_mi_page_free(page, mi_page_queue_of(page), false);
}
/* -----------------------------------------------------------
Initialize the initial free list in a page.
In secure mode we initialize a randomized list by
alternating between slices.
----------------------------------------------------------- */
#define MI_MAX_SLICE_SHIFT (6) // at most 64 slices
#define MI_MAX_SLICES (1UL << MI_MAX_SLICE_SHIFT)
#define MI_MIN_SLICES (2)
static void mi_page_free_list_extend( mi_heap_t* heap, mi_page_t* page, size_t extend, mi_stats_t* stats)
{
UNUSED(stats);
void* page_area = _mi_page_start(_mi_page_segment(page), page, NULL );
size_t bsize = page->block_size;
mi_block_t* start = mi_page_block_at(page, page_area, page->capacity);
if (extend < MI_MIN_SLICES || !mi_option_is_enabled(mi_option_secure)) {
// initialize a sequential free list
mi_block_t* end = mi_page_block_at(page, page_area, page->capacity + extend - 1);
mi_block_t* block = start;
for (size_t i = 0; i < extend; i++) {
mi_block_t* next = (mi_block_t*)((uint8_t*)block + bsize);
mi_block_set_next(page,block,next);
block = next;
}
mi_block_set_next(page, end, NULL);
page->free = start;
}
else {
// initialize a randomized free list
// set up `slice_count` slices to alternate between
size_t shift = MI_MAX_SLICE_SHIFT;
while ((extend >> shift) == 0) {
shift--;
}
size_t slice_count = (size_t)1U << shift;
size_t slice_extend = extend / slice_count;
mi_assert_internal(slice_extend >= 1);
mi_block_t* blocks[MI_MAX_SLICES]; // current start of the slice
size_t counts[MI_MAX_SLICES]; // available objects in the slice
for (size_t i = 0; i < slice_count; i++) {
blocks[i] = mi_page_block_at(page, page_area, page->capacity + i*slice_extend);
counts[i] = slice_extend;
}
counts[slice_count-1] += (extend % slice_count); // final slice holds the modulus too (todo: distribute evenly?)
// and initialize the free list by randomly threading through them
// set up first element
size_t current = _mi_heap_random(heap) % slice_count;
counts[current]--;
page->free = blocks[current];
// and iterate through the rest
uintptr_t rnd = heap->random;
for (size_t i = 1; i < extend; i++) {
// call random_shuffle only every INTPTR_SIZE rounds
size_t round = i%MI_INTPTR_SIZE;
if (round == 0) rnd = _mi_random_shuffle(rnd);
// select a random next slice index
size_t next = ((rnd >> 8*round) & (slice_count-1));
while (counts[next]==0) { // ensure it still has space
next++;
if (next==slice_count) next = 0;
}
// and link the current block to it
counts[next]--;
mi_block_t* block = blocks[current];
blocks[current] = (mi_block_t*)((uint8_t*)block + bsize); // bump to the following block
mi_block_set_next(page, block, blocks[next]); // and set next; note: we may have `current == next`
current = next;
}
mi_block_set_next( page, blocks[current], NULL); // end of the list
heap->random = _mi_random_shuffle(rnd);
}
// enable the new free list
page->capacity += (uint16_t)extend;
mi_stat_increase(stats->committed, extend * page->block_size);
}
/* -----------------------------------------------------------
Page initialize and extend the capacity
----------------------------------------------------------- */
#define MI_MAX_EXTEND_SIZE (4*1024) // heuristic, one OS page seems to work well.
#if MI_SECURE
#define MI_MIN_EXTEND (8*MI_SECURE) // extend at least by this many
#else
#define MI_MIN_EXTEND (1)
#endif
// Extend the capacity (up to reserved) by initializing a free list
// We do at most `MI_MAX_EXTEND` to avoid touching too much memory
// Note: we also experimented with "bump" allocation on the first
// allocations but this did not speed up any benchmark (due to an
// extra test in malloc? or cache effects?)
static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_stats_t* stats) {
UNUSED(stats);
mi_assert(page->free == NULL);
mi_assert(page->local_free == NULL);
mi_assert_expensive(mi_page_is_valid_init(page));
if (page->free != NULL) return;
if (page->capacity >= page->reserved) return;
size_t page_size;
_mi_page_start(_mi_page_segment(page), page, &page_size);
if (page->is_reset) {
page->is_reset = false;
mi_stat_decrease( stats->reset, page_size);
}
mi_stat_increase( stats->pages_extended, 1);
// calculate the extend count
size_t extend = page->reserved - page->capacity;
size_t max_extend = MI_MAX_EXTEND_SIZE/page->block_size;
if (max_extend < MI_MIN_EXTEND) max_extend = MI_MIN_EXTEND;
if (extend > max_extend) {
// ensure we don't touch memory beyond the page to reduce page commit.
// the `lean` benchmark tests this. Going from 1 to 8 increases rss by 50%.
extend = (max_extend==0 ? 1 : max_extend);
}
mi_assert_internal(extend > 0 && extend + page->capacity <= page->reserved);
mi_assert_internal(extend < (1UL<<16));
// and append the extend the free list
mi_page_free_list_extend(heap, page, extend, stats );
mi_assert_expensive(mi_page_is_valid_init(page));
}
// Initialize a fresh page
static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi_stats_t* stats) {
mi_assert(page != NULL);
mi_segment_t* segment = _mi_page_segment(page);
mi_assert(segment != NULL);
// set fields
size_t page_size;
_mi_segment_page_start(segment, page, &page_size);
page->block_size = block_size;
mi_assert_internal(block_size>0);
mi_assert_internal(page_size / block_size < (1L<<16));
page->reserved = (uint16_t)(page_size / block_size);
page->cookie = _mi_heap_random(heap) | 1;
mi_assert_internal(page->capacity == 0);
mi_assert_internal(page->free == NULL);
mi_assert_internal(page->used == 0);
mi_assert_internal(page->thread_free.value == 0);
mi_assert_internal(page->thread_freed == 0);
mi_assert_internal(page->next == NULL);
mi_assert_internal(page->prev == NULL);
mi_assert_internal(page->flags.has_aligned == false);
mi_assert_internal(page->cookie != 0);
mi_assert_expensive(mi_page_is_valid_init(page));
// initialize an initial free list
mi_page_extend_free(heap,page,stats);
mi_assert(mi_page_immediate_available(page));
}
/* -----------------------------------------------------------
Find pages with free blocks
-------------------------------------------------------------*/
// Find a page with free blocks of `page->block_size`.
static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* pq)
{
// search through the pages in "next fit" order
mi_page_t* rpage = NULL;
size_t count = 0;
size_t page_free_count = 0;
mi_page_t* page = pq->first;
while( page != NULL)
{
mi_page_t* next = page->next; // remember next
count++;
// 0. collect freed blocks by us and other threads
_mi_page_free_collect(page);
// 1. if the page contains free blocks, we are done
if (mi_page_immediate_available(page)) {
// If all blocks are free, we might retire this page instead.
// do this at most 8 times to bound allocation time.
// (note: this can happen if a page was earlier not retired due
// to having neighbours that were mostly full or due to concurrent frees)
if (page_free_count < 8 && mi_page_all_free(page)) {
page_free_count++;
if (rpage != NULL) _mi_page_free(rpage,pq,false);
rpage = page;
page = next;
continue; // and keep looking
}
else {
break; // pick this one
}
}
// 2. Try to extend
if (page->capacity < page->reserved) {
mi_page_extend_free(heap, page, &heap->tld->stats);
mi_assert_internal(mi_page_immediate_available(page));
break;
}
// 3. If the page is completely full, move it to the `mi_pages_full`
// queue so we don't visit long-lived pages too often.
mi_assert_internal(!page->flags.in_full && !mi_page_immediate_available(page));
mi_page_to_full(page,pq);
page = next;
} // for each page
mi_stat_counter_increase(heap->tld->stats.searches,count);
if (page == NULL) {
page = rpage;
rpage = NULL;
}
if (rpage != NULL) {
_mi_page_free(rpage,pq,false);
}
if (page == NULL) {
page = mi_page_fresh(heap, pq);
}
else {
mi_assert(pq->first == page);
}
mi_assert_internal(page == NULL || mi_page_immediate_available(page));
2019-06-19 23:26:12 +00:00
return page;
}
// Find a page with free blocks of `size`.
static inline mi_page_t* mi_find_free_page(mi_heap_t* heap, size_t size) {
_mi_heap_delayed_free(heap);
mi_page_queue_t* pq = mi_page_queue(heap,size);
mi_page_t* page = pq->first;
if (page != NULL) {
if (mi_option_get(mi_option_secure) >= 3 && page->capacity < page->reserved && ((_mi_heap_random(heap) & 1) == 1)) {
// in secure mode, we extend half the time to increase randomness
mi_page_extend_free(heap, page, &heap->tld->stats);
mi_assert_internal(mi_page_immediate_available(page));
}
else {
_mi_page_free_collect(page);
}
if (mi_page_immediate_available(page)) {
return page; // fast path
}
}
return mi_page_queue_find_free_ex(heap, pq);
}
/* -----------------------------------------------------------
Users can register a deferred free function called
when the `free` list is empty. Since the `local_free`
is separate this is deterministically called after
a certain number of allocations.
----------------------------------------------------------- */
static mi_deferred_free_fun* deferred_free = NULL;
void _mi_deferred_free(mi_heap_t* heap, bool force) {
heap->tld->heartbeat++;
if (deferred_free != NULL) {
deferred_free(force, heap->tld->heartbeat);
}
}
void mi_register_deferred_free(mi_deferred_free_fun* fn) mi_attr_noexcept {
deferred_free = fn;
}
/* -----------------------------------------------------------
General allocation
----------------------------------------------------------- */
// A huge page is allocated directly without being in a queue
static mi_page_t* mi_huge_page_alloc(mi_heap_t* heap, size_t size) {
size_t block_size = _mi_wsize_from_size(size) * sizeof(uintptr_t);
mi_assert_internal(_mi_bin(block_size) == MI_BIN_HUGE);
mi_page_queue_t* pq = mi_page_queue(heap,block_size);
mi_assert_internal(mi_page_queue_is_huge(pq));
mi_page_t* page = mi_page_fresh_alloc(heap,pq,block_size);
if (page != NULL) {
mi_assert_internal(mi_page_immediate_available(page));
mi_assert_internal(page->block_size == block_size);
mi_heap_stat_increase( heap, huge, block_size);
}
return page;
}
// Generic allocation routine if the fast path (`alloc.c:mi_page_malloc`) does not succeed.
void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept
{
mi_assert_internal(heap != NULL);
// initialize if necessary
if (mi_unlikely(!mi_heap_is_initialized(heap))) {
mi_thread_init(); // calls `_mi_heap_init` in turn
heap = mi_get_default_heap();
}
mi_assert_internal(mi_heap_is_initialized(heap));
// call potential deferred free routines
_mi_deferred_free(heap, false);
// huge allocation?
mi_page_t* page;
if (mi_unlikely(size > MI_LARGE_SIZE_MAX)) {
if (mi_unlikely(size >= (SIZE_MAX - MI_MAX_ALIGN_SIZE))) {
page = NULL;
}
else {
page = mi_huge_page_alloc(heap,size);
}
2019-06-19 23:26:12 +00:00
}
else {
// otherwise find a page with free blocks in our size segregated queues
page = mi_find_free_page(heap,size);
}
if (page == NULL) return NULL; // out of memory
mi_assert_internal(mi_page_immediate_available(page));
mi_assert_internal(page->block_size >= size);
// and try again, this time succeeding! (i.e. this should never recurse)
return _mi_page_malloc(heap, page, size);
}