2019-06-19 23:26:12 +00:00
/* ----------------------------------------------------------------------------
Copyright ( c ) 2018 , Microsoft Research , Daan Leijen
This is free software ; you can redistribute it and / or modify it under the
terms of the MIT license . A copy of the license can be found in the file
2019-06-23 11:53:34 +00:00
" LICENSE " at the root of this distribution .
2019-06-19 23:26:12 +00:00
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
# pragma once
2019-06-26 04:57:13 +00:00
# ifndef MIMALLOC_TYPES_H
# define MIMALLOC_TYPES_H
2019-06-19 23:26:12 +00:00
# include <stddef.h> // ptrdiff_t
# include <stdint.h> // uintptr_t, uint16_t, etc
2019-08-26 05:59:12 +00:00
# include <mimalloc-atomic.h> // _Atomic
2019-06-19 23:26:12 +00:00
// ------------------------------------------------------
// Variants
// ------------------------------------------------------
// Define NDEBUG in the release version to disable assertions.
// #define NDEBUG
2019-06-23 17:40:28 +00:00
// Define MI_STAT as 1 to maintain statistics; set it to 2 to have detailed statistics (but costs some performance).
2019-06-19 23:26:12 +00:00
// #define MI_STAT 1
// Define MI_SECURE as 1 to encode free lists
// #define MI_SECURE 1
2019-06-24 04:37:43 +00:00
# if !defined(MI_SECURE)
2019-06-19 23:26:12 +00:00
# define MI_SECURE 0
# endif
// Define MI_DEBUG as 1 for basic assert checks and statistics
// set it to 2 to do internal asserts,
// and to 3 to do extensive invariant checking.
# if !defined(MI_DEBUG)
# if !defined(NDEBUG) || defined(_DEBUG)
# define MI_DEBUG 1
# else
# define MI_DEBUG 0
# endif
# endif
// ------------------------------------------------------
// Platform specific values
// ------------------------------------------------------
// ------------------------------------------------------
// Size of a pointer.
// We assume that `sizeof(void*)==sizeof(intptr_t)`
// and it holds for all platforms we know of.
//
// However, the C standard only requires that:
// p == (void*)((intptr_t)p))
// but we also need:
// i == (intptr_t)((void*)i)
// or otherwise one might define an intptr_t type that is larger than a pointer...
// ------------------------------------------------------
# if INTPTR_MAX == 9223372036854775807LL
# define MI_INTPTR_SHIFT (3)
# elif INTPTR_MAX == 2147483647LL
# define MI_INTPTR_SHIFT (2)
# else
# error platform must be 32 or 64 bits
# endif
# define MI_INTPTR_SIZE (1<<MI_INTPTR_SHIFT)
// ------------------------------------------------------
// Main internal data-structures
// ------------------------------------------------------
// Main tuning parameters for segment and page sizes
// Sizes for 64-bit, divide by two for 32-bit
# define MI_SMALL_PAGE_SHIFT (13 + MI_INTPTR_SHIFT) // 64kb
2019-07-13 03:11:39 +00:00
# define MI_MEDIUM_PAGE_SHIFT ( 3 + MI_SMALL_PAGE_SHIFT) // 512kb
# define MI_LARGE_PAGE_SHIFT ( 3 + MI_MEDIUM_PAGE_SHIFT) // 4mb
2019-06-19 23:26:12 +00:00
# define MI_SEGMENT_SHIFT ( MI_LARGE_PAGE_SHIFT) // 4mb
// Derived constants
# define MI_SEGMENT_SIZE (1<<MI_SEGMENT_SHIFT)
# define MI_SEGMENT_MASK ((uintptr_t)MI_SEGMENT_SIZE - 1)
# define MI_SMALL_PAGE_SIZE (1<<MI_SMALL_PAGE_SHIFT)
2019-07-13 03:11:39 +00:00
# define MI_MEDIUM_PAGE_SIZE (1<<MI_MEDIUM_PAGE_SHIFT)
2019-06-19 23:26:12 +00:00
# define MI_LARGE_PAGE_SIZE (1<<MI_LARGE_PAGE_SHIFT)
# define MI_SMALL_PAGES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_SMALL_PAGE_SIZE)
2019-07-13 03:11:39 +00:00
# define MI_MEDIUM_PAGES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_MEDIUM_PAGE_SIZE)
2019-06-19 23:26:12 +00:00
# define MI_LARGE_PAGES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_LARGE_PAGE_SIZE)
2019-08-25 17:01:11 +00:00
// The max object size are checked to not waste more than 12.5% internally over the page sizes.
// (Except for large pages since huge objects are allocated in 4MiB chunks)
# define MI_SMALL_OBJ_SIZE_MAX (MI_SMALL_PAGE_SIZE / 4) // 16kb
# define MI_MEDIUM_OBJ_SIZE_MAX (MI_MEDIUM_PAGE_SIZE / 4) // 128kb
# define MI_LARGE_OBJ_SIZE_MAX (MI_LARGE_PAGE_SIZE / 2) // 2mb
# define MI_LARGE_OBJ_WSIZE_MAX (MI_LARGE_OBJ_SIZE_MAX / MI_INTPTR_SIZE)
# define MI_HUGE_OBJ_SIZE_MAX (2*MI_INTPTR_SIZE*MI_SEGMENT_SIZE) // (must match MI_REGION_MAX_ALLOC_SIZE in memory.c)
2019-06-19 23:26:12 +00:00
2019-06-22 15:09:11 +00:00
// Minimal alignment necessary. On most platforms 16 bytes are needed
2019-06-19 23:26:12 +00:00
// due to SSE registers for example. This must be at least `MI_INTPTR_SIZE`
# define MI_MAX_ALIGN_SIZE 16 // sizeof(max_align_t)
2019-08-09 18:18:38 +00:00
// Maximum number of size classes. (spaced exponentially in 12.5% increments)
2019-08-11 03:51:37 +00:00
# define MI_BIN_HUGE (73U)
2019-08-09 18:18:38 +00:00
2019-08-17 01:40:30 +00:00
# if (MI_LARGE_OBJ_WSIZE_MAX >= 655360)
2019-08-09 18:18:38 +00:00
# error "define more bins"
# endif
2019-06-19 23:26:12 +00:00
2019-06-24 04:37:43 +00:00
typedef uintptr_t mi_encoded_t ;
2019-06-19 23:26:12 +00:00
// free lists contain blocks
typedef struct mi_block_s {
2019-06-24 04:37:43 +00:00
mi_encoded_t next ;
2019-06-19 23:26:12 +00:00
} mi_block_t ;
typedef enum mi_delayed_e {
MI_NO_DELAYED_FREE = 0 ,
2019-07-11 22:21:57 +00:00
MI_USE_DELAYED_FREE = 1 ,
MI_DELAYED_FREEING = 2 ,
MI_NEVER_DELAYED_FREE = 3
2019-06-19 23:26:12 +00:00
} mi_delayed_t ;
2019-08-23 21:08:00 +00:00
// The `in_full` and `has_aligned` page flags are put in a union to efficiently
// test if both are false (`value == 0`) in the `mi_free` routine.
typedef union mi_page_flags_u {
uint16_t value ;
2019-09-02 20:16:52 +00:00
uint8_t full_aligned ;
2019-08-23 21:08:00 +00:00
struct {
2019-09-02 20:16:52 +00:00
bool in_full : 1 ;
bool has_aligned : 1 ;
bool is_zero ; // `true` if the blocks in the free list are zero initialized
2019-08-23 21:08:00 +00:00
} ;
} mi_page_flags_t ;
2019-08-08 22:23:18 +00:00
2019-06-19 23:26:12 +00:00
// Thread free list.
2019-07-23 03:51:12 +00:00
// We use the bottom 2 bits of the pointer for mi_delayed_t flags
2019-07-14 23:20:27 +00:00
typedef uintptr_t mi_thread_free_t ;
2019-06-19 23:26:12 +00:00
// A page contains blocks of one specific size (`block_size`).
// Each page has three list of free blocks:
// `free` for blocks that can be allocated,
// `local_free` for freed blocks that are not yet available to `mi_malloc`
// `thread_free` for freed blocks by other threads
// The `local_free` and `thread_free` lists are migrated to the `free` list
// when it is exhausted. The separate `local_free` list is necessary to
2019-06-22 15:09:11 +00:00
// implement a monotonic heartbeat. The `thread_free` list is needed for
2019-06-19 23:26:12 +00:00
// avoiding atomic operations in the common case.
//
// `used - thread_freed` == actual blocks that are in use (alive)
// `used - thread_freed + |free| + |local_free| == capacity`
//
// note: we don't count `freed` (as |free|) instead of `used` to reduce
// the number of memory accesses in the `mi_page_all_free` function(s).
// note: the funny layout here is due to:
// - access is optimized for `mi_free` and `mi_page_alloc`
// - using `uint16_t` does not seem to slow things down
typedef struct mi_page_s {
// "owned" by the segment
uint8_t segment_idx ; // index in the segment `pages` array, `page == &segment->pages[page->segment_idx]`
bool segment_in_use : 1 ; // `true` if the segment allocated this page
bool is_reset : 1 ; // `true` if the page memory was reset
2019-07-10 14:17:21 +00:00
bool is_committed : 1 ; // `true` if the page virtual memory is committed
2019-09-02 20:16:52 +00:00
bool is_zero_init : 1 ; // `true` if the page was zero initialized
2019-08-09 18:18:38 +00:00
// layout like this to optimize access in `mi_malloc` and `mi_free`
2019-08-27 05:45:26 +00:00
uint16_t capacity ; // number of blocks committed, must be the first field, see `segment.c:page_clear`
2019-07-10 00:38:58 +00:00
uint16_t reserved ; // number of blocks reserved in memory
2019-08-23 21:08:00 +00:00
mi_page_flags_t flags ; // `in_full` and `has_aligned` flags (16 bits)
2019-06-19 23:26:12 +00:00
mi_block_t * free ; // list of available free blocks (`malloc` allocates from this list)
2019-07-23 03:51:12 +00:00
# if MI_SECURE
2019-06-19 23:26:12 +00:00
uintptr_t cookie ; // random cookie to encode the free lists
2019-07-23 03:51:12 +00:00
# endif
2019-08-11 18:30:24 +00:00
size_t used ; // number of blocks in use (including blocks in `local_free` and `thread_free`)
2019-06-19 23:26:12 +00:00
mi_block_t * local_free ; // list of deferred free blocks by this thread (migrates to `free`)
2019-08-26 05:59:12 +00:00
volatile _Atomic ( uintptr_t ) thread_freed ; // at least this number of blocks are in `thread_free`
volatile _Atomic ( mi_thread_free_t ) thread_free ; // list of deferred free blocks freed by other threads
2019-06-19 23:26:12 +00:00
// less accessed info
size_t block_size ; // size available in each block (always `>0`)
mi_heap_t * heap ; // the owning heap
struct mi_page_s * next ; // next page owned by this thread with the same `block_size`
struct mi_page_s * prev ; // previous page owned by this thread with the same `block_size`
2019-08-23 21:08:00 +00:00
// improve page index calculation
// without padding: 10 words on 64-bit, 11 on 32-bit. Secure adds one word
# if (MI_INTPTR_SIZE==8 && MI_SECURE>0) || (MI_INTPTR_SIZE==4 && MI_SECURE==0)
void * padding [ 1 ] ; // 12 words on 64-bit in secure mode, 12 words on 32-bit plain
# endif
2019-06-19 23:26:12 +00:00
} mi_page_t ;
typedef enum mi_page_kind_e {
MI_PAGE_SMALL , // small blocks go into 64kb pages inside a segment
2019-07-13 03:11:39 +00:00
MI_PAGE_MEDIUM , // medium blocks go into 512kb pages inside a segment
2019-06-19 23:26:12 +00:00
MI_PAGE_LARGE , // larger blocks go into a single page spanning a whole segment
MI_PAGE_HUGE // huge blocks (>512kb) are put into a single page in a segment of the exact size (but still 2mb aligned)
} mi_page_kind_t ;
// Segments are large allocated memory blocks (2mb on 64 bit) from
// the OS. Inside segments we allocated fixed size _pages_ that
// contain blocks.
typedef struct mi_segment_s {
2019-08-27 05:45:26 +00:00
// memory fields
size_t memid ; // id for the os-level memory manager
bool mem_is_fixed ; // `true` if we cannot decommit/reset/protect in this memory (i.e. when allocated using large OS pages)
bool mem_is_committed ; // `true` if the whole segment is eagerly committed
// segment fields
struct mi_segment_s * next ; // must be the first segment field -- see `segment.c:segment_alloc`
2019-06-19 23:26:12 +00:00
struct mi_segment_s * prev ;
2019-08-26 05:59:12 +00:00
volatile _Atomic ( struct mi_segment_s * ) abandoned_next ;
2019-06-19 23:26:12 +00:00
size_t abandoned ; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`)
size_t used ; // count of pages in use (`used <= capacity`)
size_t capacity ; // count of available pages (`#free + used`)
size_t segment_size ; // for huge pages this may be different from `MI_SEGMENT_SIZE`
size_t segment_info_size ; // space we are using from the first page for segment meta-data and possible guard pages.
uintptr_t cookie ; // verify addresses in debug mode: `mi_ptr_cookie(segment) == segment->cookie`
// layout like this to optimize access in `mi_free`
size_t page_shift ; // `1 << page_shift` == the page sizes == `page->block_size * page->reserved` (unless the first page, then `-segment_info_size`).
2019-08-26 05:59:12 +00:00
volatile _Atomic ( uintptr_t ) thread_id ; // unique id of the thread owning this segment
2019-06-19 23:26:12 +00:00
mi_page_kind_t page_kind ; // kind of pages: small, large, or huge
mi_page_t pages [ 1 ] ; // up to `MI_SMALL_PAGES_PER_SEGMENT` pages
} mi_segment_t ;
// ------------------------------------------------------
// Heaps
// Provide first-class heaps to allocate from.
// A heap just owns a set of pages for allocation and
// can only be allocate/reallocate from the thread that created it.
// Freeing blocks can be done from any thread though.
// Per thread, the segments are shared among its heaps.
// Per thread, there is always a default heap that is
// used for allocation; it is initialized to statically
// point to an empty heap to avoid initialization checks
// in the fast path.
// ------------------------------------------------------
// Thread local data
typedef struct mi_tld_s mi_tld_t ;
// Pages of a certain block size are held in a queue.
typedef struct mi_page_queue_s {
mi_page_t * first ;
mi_page_t * last ;
size_t block_size ;
} mi_page_queue_t ;
# define MI_BIN_FULL (MI_BIN_HUGE+1)
// A heap owns a set of pages.
struct mi_heap_s {
mi_tld_t * tld ;
mi_page_t * pages_free_direct [ MI_SMALL_WSIZE_MAX + 2 ] ; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
mi_page_queue_t pages [ MI_BIN_FULL + 1 ] ; // queue of pages for each size class (or "bin")
2019-08-26 05:59:12 +00:00
volatile _Atomic ( mi_block_t * ) thread_delayed_free ;
2019-06-19 23:26:12 +00:00
uintptr_t thread_id ; // thread this heap belongs too
uintptr_t cookie ;
uintptr_t random ; // random number used for secure allocation
size_t page_count ; // total number of pages in the `pages` queues.
bool no_reclaim ; // `true` if this heap should not reclaim abandoned pages
} ;
// ------------------------------------------------------
// Debug
// ------------------------------------------------------
# define MI_DEBUG_UNINIT (0xD0)
# define MI_DEBUG_FREED (0xDF)
# if (MI_DEBUG)
// use our own assertion to print without memory allocation
void _mi_assert_fail ( const char * assertion , const char * fname , unsigned int line , const char * func ) ;
# define mi_assert(expr) ((expr) ? (void)0 : _mi_assert_fail(#expr,__FILE__,__LINE__,__func__))
# else
# define mi_assert(x)
# endif
# if (MI_DEBUG>1)
# define mi_assert_internal mi_assert
# else
# define mi_assert_internal(x)
# endif
# if (MI_DEBUG>2)
# define mi_assert_expensive mi_assert
# else
# define mi_assert_expensive(x)
# endif
// ------------------------------------------------------
// Statistics
// ------------------------------------------------------
# ifndef MI_STAT
# if (MI_DEBUG>0)
# define MI_STAT 2
# else
# define MI_STAT 0
# endif
# endif
typedef struct mi_stat_count_s {
int64_t allocated ;
int64_t freed ;
int64_t peak ;
int64_t current ;
} mi_stat_count_t ;
typedef struct mi_stat_counter_s {
int64_t total ;
int64_t count ;
} mi_stat_counter_t ;
typedef struct mi_stats_s {
mi_stat_count_t segments ;
mi_stat_count_t pages ;
mi_stat_count_t reserved ;
mi_stat_count_t committed ;
mi_stat_count_t reset ;
2019-07-02 14:23:24 +00:00
mi_stat_count_t page_committed ;
2019-06-19 23:26:12 +00:00
mi_stat_count_t segments_abandoned ;
mi_stat_count_t pages_abandoned ;
mi_stat_count_t pages_extended ;
mi_stat_count_t mmap_calls ;
2019-07-02 14:23:24 +00:00
mi_stat_count_t commit_calls ;
2019-06-19 23:26:12 +00:00
mi_stat_count_t threads ;
mi_stat_count_t huge ;
2019-08-11 03:51:37 +00:00
mi_stat_count_t giant ;
2019-06-19 23:26:12 +00:00
mi_stat_count_t malloc ;
2019-08-08 18:36:13 +00:00
mi_stat_count_t segments_cache ;
mi_stat_counter_t page_no_retire ;
2019-06-19 23:26:12 +00:00
mi_stat_counter_t searches ;
2019-08-11 03:51:37 +00:00
mi_stat_counter_t huge_count ;
mi_stat_counter_t giant_count ;
2019-06-19 23:26:12 +00:00
# if MI_STAT>1
mi_stat_count_t normal [ MI_BIN_HUGE + 1 ] ;
# endif
} mi_stats_t ;
void _mi_stat_increase ( mi_stat_count_t * stat , size_t amount ) ;
void _mi_stat_decrease ( mi_stat_count_t * stat , size_t amount ) ;
void _mi_stat_counter_increase ( mi_stat_counter_t * stat , size_t amount ) ;
# if (MI_STAT)
# define mi_stat_increase(stat,amount) _mi_stat_increase( &(stat), amount)
# define mi_stat_decrease(stat,amount) _mi_stat_decrease( &(stat), amount)
# define mi_stat_counter_increase(stat,amount) _mi_stat_counter_increase( &(stat), amount)
# else
# define mi_stat_increase(stat,amount) (void)0
# define mi_stat_decrease(stat,amount) (void)0
# define mi_stat_counter_increase(stat,amount) (void)0
# endif
# define mi_heap_stat_increase(heap,stat,amount) mi_stat_increase( (heap)->tld->stats.stat, amount)
# define mi_heap_stat_decrease(heap,stat,amount) mi_stat_decrease( (heap)->tld->stats.stat, amount)
// ------------------------------------------------------
// Thread Local data
// ------------------------------------------------------
// Queue of segments
typedef struct mi_segment_queue_s {
mi_segment_t * first ;
mi_segment_t * last ;
} mi_segment_queue_t ;
// Segments thread local data
typedef struct mi_segments_tld_s {
mi_segment_queue_t small_free ; // queue of segments with free small pages
2019-07-13 03:11:39 +00:00
mi_segment_queue_t medium_free ; // queue of segments with free medium pages
2019-07-02 14:23:24 +00:00
size_t count ; // current number of segments;
size_t peak_count ; // peak number of segments
2019-06-24 06:15:42 +00:00
size_t current_size ; // current size of all segments
size_t peak_size ; // peak size of all segments
2019-06-19 23:26:12 +00:00
size_t cache_count ; // number of segments in the cache
2019-06-24 06:15:42 +00:00
size_t cache_size ; // total size of all segments in the cache
2019-07-02 14:23:24 +00:00
mi_segment_t * cache ; // (small) cache of segments
2019-06-19 23:26:12 +00:00
mi_stats_t * stats ; // points to tld stats
} mi_segments_tld_t ;
// OS thread local data
2019-08-11 17:31:00 +00:00
typedef struct mi_os_tld_s {
2019-08-11 19:15:13 +00:00
size_t region_idx ; // start point for next allocation
2019-08-11 00:50:27 +00:00
mi_stats_t * stats ; // points to tld stats
2019-06-19 23:26:12 +00:00
} mi_os_tld_t ;
// Thread local data
struct mi_tld_s {
unsigned long long heartbeat ; // monotonic heartbeat count
mi_heap_t * heap_backing ; // backing heap of this thread (cannot be deleted)
2019-06-24 04:37:43 +00:00
mi_segments_tld_t segments ; // segment tld
2019-06-19 23:26:12 +00:00
mi_os_tld_t os ; // os tld
mi_stats_t stats ; // statistics
} ;
# endif