merge dev-exp; add pthread TLS support for macOSX

This commit is contained in:
daan 2020-02-01 13:11:48 -08:00
commit a169cf0e3f
15 changed files with 403 additions and 209 deletions

View File

@ -248,4 +248,4 @@
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" /> <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets"> <ImportGroup Label="ExtensionTargets">
</ImportGroup> </ImportGroup>
</Project> </Project>

View File

@ -10,9 +10,14 @@ terms of the MIT license. A copy of the license can be found in the file
#include "mimalloc-types.h" #include "mimalloc-types.h"
#if defined(MI_MALLOC_OVERRIDE) && (defined(__APPLE__) || defined(__OpenBSD__) || defined(__DragonFly__)) #if defined(MI_MALLOC_OVERRIDE)
#if defined(__APPLE__) || defined(__linux__)
#include <pthread.h>
#define MI_TLS_PTHREADS
#elif (defined(__OpenBSD__) || defined(__DragonFly__))
#define MI_TLS_RECURSE_GUARD #define MI_TLS_RECURSE_GUARD
#endif #endif
#endif
#if (MI_DEBUG>0) #if (MI_DEBUG>0)
#define mi_trace_message(...) _mi_trace_message(__VA_ARGS__) #define mi_trace_message(...) _mi_trace_message(__VA_ARGS__)
@ -84,10 +89,14 @@ mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_wsize, mi_segmen
void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld); void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld);
void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld); void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld);
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size, size_t* pre_size); // page start for any page uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size, size_t* pre_size); // page start for any page
void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block);
void _mi_segment_thread_collect(mi_segments_tld_t* tld); void _mi_segment_thread_collect(mi_segments_tld_t* tld);
void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld); void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld);
void _mi_abandoned_await_readers(void); void _mi_abandoned_await_readers(void);
// "page.c" // "page.c"
void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc; void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc;
@ -275,27 +284,30 @@ extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value o
extern mi_heap_t _mi_heap_main; // statically allocated main backing heap extern mi_heap_t _mi_heap_main; // statically allocated main backing heap
extern bool _mi_process_is_initialized; extern bool _mi_process_is_initialized;
#if defined(MI_TLS_PTHREADS)
extern pthread_key_t _mi_heap_default_key;
#else
extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from
#ifdef MI_TLS_RECURSE_GUARD
extern mi_heap_t* _mi_get_default_heap_tls_safe(void);
extern size_t _mi_tls_recurse;
#endif #endif
static inline mi_heap_t* mi_get_default_heap(void) { static inline mi_heap_t* mi_get_default_heap(void) {
#ifdef MI_TLS_RECURSE_GUARD #if defined(MI_TLS_PTHREADS)
if (_mi_tls_recurse++>100) { // Use pthreads for TLS; this is used on macOSX with interpose as the loader calls `malloc`
// on some BSD platforms, like macOS, the dynamic loader calls `malloc` // to allocate TLS storage leading to recursive calls if __thread declared variables are accessed.
// Using pthreads allows us to initialize without recursive calls. (performance seems still quite good).
mi_heap_t* heap = (mi_unlikely(_mi_heap_default_key == (pthread_key_t)(-1)) ? (mi_heap_t*)&_mi_heap_empty : (mi_heap_t*)pthread_getspecific(_mi_heap_default_key));
return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap);
#else
#if defined(MI_TLS_RECURSE_GUARD)
// On some BSD platforms, like openBSD, the dynamic loader calls `malloc`
// to initialize thread local data. To avoid recursion, we need to avoid // to initialize thread local data. To avoid recursion, we need to avoid
// accessing the thread local `_mi_default_heap` until our module is loaded // accessing the thread local `_mi_default_heap` until our module is loaded
// and use the statically allocated main heap until that time. // and use the statically allocated main heap until that time.
// TODO: patch ourselves dynamically to avoid this check every time? // TODO: patch ourselves dynamically to avoid this check every time?
mi_heap_t* heap = _mi_get_default_heap_tls_safe(); if (mi_unlikely(!_mi_process_is_initialized)) return &_mi_heap_main;
_mi_tls_recurse = 0;
return heap;
}
#endif #endif
return _mi_heap_default; return _mi_heap_default;
#endif
} }
static inline bool mi_heap_is_default(const mi_heap_t* heap) { static inline bool mi_heap_is_default(const mi_heap_t* heap) {
@ -321,8 +333,10 @@ static inline uintptr_t _mi_ptr_cookie(const void* p) {
----------------------------------------------------------- */ ----------------------------------------------------------- */
static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) { static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
mi_assert_internal(size <= MI_SMALL_SIZE_MAX); mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE));
return heap->pages_free_direct[_mi_wsize_from_size(size)]; const size_t idx = _mi_wsize_from_size(size);
mi_assert_internal(idx < MI_PAGES_DIRECT);
return heap->pages_free_direct[idx];
} }
// Get the page belonging to a certain size class // Get the page belonging to a certain size class
@ -386,6 +400,13 @@ static inline size_t mi_page_block_size(const mi_page_t* page) {
} }
} }
// Get the usable block size of a page without fixed padding.
// This may still include internal padding due to alignment and rounding up size classes.
static inline size_t mi_page_usable_block_size(const mi_page_t* page) {
return mi_page_block_size(page) - MI_PADDING_SIZE;
}
// Thread free access // Thread free access
static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) { static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) {
return (mi_block_t*)(mi_atomic_read_relaxed(&page->xthread_free) & ~3); return (mi_block_t*)(mi_atomic_read_relaxed(&page->xthread_free) & ~3);
@ -521,30 +542,37 @@ static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) {
return ((x >> shift) | (x << (MI_INTPTR_BITS - shift))); return ((x >> shift) | (x << (MI_INTPTR_BITS - shift)));
} }
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, uintptr_t key1, uintptr_t key2 ) { static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) {
void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]);
return (mi_unlikely(p==null) ? NULL : p);
}
static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) {
uintptr_t x = (uintptr_t)(mi_unlikely(p==NULL) ? null : p);
return mi_rotl(x ^ keys[1], keys[0]) + keys[0];
}
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) {
#ifdef MI_ENCODE_FREELIST #ifdef MI_ENCODE_FREELIST
mi_block_t* b = (mi_block_t*)(mi_rotr(block->next - key1, key1) ^ key2); return (mi_block_t*)mi_ptr_decode(null, block->next, keys);
if (mi_unlikely((void*)b==null)) { b = NULL; }
return b;
#else #else
UNUSED(key1); UNUSED(key2); UNUSED(null); UNUSED(keys); UNUSED(null);
return (mi_block_t*)block->next; return (mi_block_t*)block->next;
#endif #endif
} }
static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, uintptr_t key1, uintptr_t key2) { static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) {
#ifdef MI_ENCODE_FREELIST #ifdef MI_ENCODE_FREELIST
if (mi_unlikely(next==NULL)) { next = (mi_block_t*)null; } block->next = mi_ptr_encode(null, next, keys);
block->next = mi_rotl((uintptr_t)next ^ key2, key1) + key1;
#else #else
UNUSED(key1); UNUSED(key2); UNUSED(null); UNUSED(keys); UNUSED(null);
block->next = (mi_encoded_t)next; block->next = (mi_encoded_t)next;
#endif #endif
} }
static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) { static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
#ifdef MI_ENCODE_FREELIST #ifdef MI_ENCODE_FREELIST
mi_block_t* next = mi_block_nextx(page,block,page->key[0],page->key[1]); mi_block_t* next = mi_block_nextx(page,block,page->keys);
// check for free list corruption: is `next` at least in the same page? // check for free list corruption: is `next` at least in the same page?
// TODO: check if `next` is `page->block_size` aligned? // TODO: check if `next` is `page->block_size` aligned?
if (mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next))) { if (mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next))) {
@ -554,16 +582,16 @@ static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t*
return next; return next;
#else #else
UNUSED(page); UNUSED(page);
return mi_block_nextx(page,block,0,0); return mi_block_nextx(page,block,NULL);
#endif #endif
} }
static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) { static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
#ifdef MI_ENCODE_FREELIST #ifdef MI_ENCODE_FREELIST
mi_block_set_nextx(page,block,next, page->key[0], page->key[1]); mi_block_set_nextx(page,block,next, page->keys);
#else #else
UNUSED(page); UNUSED(page);
mi_block_set_nextx(page,block, next,0,0); mi_block_set_nextx(page,block,next,NULL);
#endif #endif
} }

View File

@ -12,6 +12,10 @@ terms of the MIT license. A copy of the license can be found in the file
#include <stdint.h> // uintptr_t, uint16_t, etc #include <stdint.h> // uintptr_t, uint16_t, etc
#include <mimalloc-atomic.h> // _Atomic #include <mimalloc-atomic.h> // _Atomic
// Minimal alignment necessary. On most platforms 16 bytes are needed
// due to SSE registers for example. This must be at least `MI_INTPTR_SIZE`
#define MI_MAX_ALIGN_SIZE 16 // sizeof(max_align_t)
// ------------------------------------------------------ // ------------------------------------------------------
// Variants // Variants
// ------------------------------------------------------ // ------------------------------------------------------
@ -44,17 +48,24 @@ terms of the MIT license. A copy of the license can be found in the file
#endif #endif
#endif #endif
// Reserve extra padding at the end of each block to be more resilient against heap block overflows.
// The padding can detect byte-precise buffer overflow on free.
#if !defined(MI_PADDING) && (MI_DEBUG>=1)
#define MI_PADDING 1
#endif
// Encoded free lists allow detection of corrupted free lists // Encoded free lists allow detection of corrupted free lists
// and can detect buffer overflows and double `free`s. // and can detect buffer overflows, modify after free, and double `free`s.
#if (MI_SECURE>=3 || MI_DEBUG>=1) #if (MI_SECURE>=3 || MI_DEBUG>=1 || defined(MI_PADDING))
#define MI_ENCODE_FREELIST 1 #define MI_ENCODE_FREELIST 1
#endif #endif
// ------------------------------------------------------ // ------------------------------------------------------
// Platform specific values // Platform specific values
// ------------------------------------------------------ // ------------------------------------------------------
// ------------------------------------------------------ // ------------------------------------------------------
// Size of a pointer. // Size of a pointer.
// We assume that `sizeof(void*)==sizeof(intptr_t)` // We assume that `sizeof(void*)==sizeof(intptr_t)`
@ -82,6 +93,7 @@ terms of the MIT license. A copy of the license can be found in the file
#define MiB (KiB*KiB) #define MiB (KiB*KiB)
#define GiB (MiB*KiB) #define GiB (MiB*KiB)
// ------------------------------------------------------ // ------------------------------------------------------
// Main internal data-structures // Main internal data-structures
// ------------------------------------------------------ // ------------------------------------------------------
@ -113,10 +125,6 @@ terms of the MIT license. A copy of the license can be found in the file
#define MI_LARGE_OBJ_WSIZE_MAX (MI_LARGE_OBJ_SIZE_MAX/MI_INTPTR_SIZE) #define MI_LARGE_OBJ_WSIZE_MAX (MI_LARGE_OBJ_SIZE_MAX/MI_INTPTR_SIZE)
#define MI_HUGE_OBJ_SIZE_MAX (2*MI_INTPTR_SIZE*MI_SEGMENT_SIZE) // (must match MI_REGION_MAX_ALLOC_SIZE in memory.c) #define MI_HUGE_OBJ_SIZE_MAX (2*MI_INTPTR_SIZE*MI_SEGMENT_SIZE) // (must match MI_REGION_MAX_ALLOC_SIZE in memory.c)
// Minimal alignment necessary. On most platforms 16 bytes are needed
// due to SSE registers for example. This must be at least `MI_INTPTR_SIZE`
#define MI_MAX_ALIGN_SIZE 16 // sizeof(max_align_t)
// Maximum number of size classes. (spaced exponentially in 12.5% increments) // Maximum number of size classes. (spaced exponentially in 12.5% increments)
#define MI_BIN_HUGE (73U) #define MI_BIN_HUGE (73U)
@ -209,7 +217,7 @@ typedef struct mi_page_s {
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list) mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
#ifdef MI_ENCODE_FREELIST #ifdef MI_ENCODE_FREELIST
uintptr_t key[2]; // two random keys to encode the free lists (see `_mi_block_next`) uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`)
#endif #endif
uint32_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`) uint32_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`)
uint32_t xblock_size; // size available in each block (always `>0`) uint32_t xblock_size; // size available in each block (always `>0`)
@ -294,18 +302,34 @@ typedef struct mi_random_cxt_s {
} mi_random_ctx_t; } mi_random_ctx_t;
// In debug mode there is a padding stucture at the end of the blocks to check for buffer overflows
#if defined(MI_PADDING)
typedef struct mi_padding_s {
uint32_t canary; // encoded block value to check validity of the padding (in case of overflow)
uint32_t delta; // padding bytes before the block. (mi_usable_size(p) - delta == exact allocated bytes)
} mi_padding_t;
#define MI_PADDING_SIZE (sizeof(mi_padding_t))
#define MI_PADDING_WSIZE ((MI_PADDING_SIZE + MI_INTPTR_SIZE - 1) / MI_INTPTR_SIZE)
#else
#define MI_PADDING_SIZE 0
#define MI_PADDING_WSIZE 0
#endif
#define MI_PAGES_DIRECT (MI_SMALL_WSIZE_MAX + MI_PADDING_WSIZE + 1)
// A heap owns a set of pages. // A heap owns a set of pages.
struct mi_heap_s { struct mi_heap_s {
mi_tld_t* tld; mi_tld_t* tld;
mi_page_t* pages_free_direct[MI_SMALL_WSIZE_MAX + 2]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size. mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin") mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
volatile _Atomic(mi_block_t*) thread_delayed_free; volatile _Atomic(mi_block_t*) thread_delayed_free;
uintptr_t thread_id; // thread this heap belongs too uintptr_t thread_id; // thread this heap belongs too
uintptr_t cookie; // random cookie to verify pointers (see `_mi_ptr_cookie`) uintptr_t cookie; // random cookie to verify pointers (see `_mi_ptr_cookie`)
uintptr_t key[2]; // twb random keys used to encode the `thread_delayed_free` list uintptr_t keys[2]; // two random keys used to encode the `thread_delayed_free` list
mi_random_ctx_t random; // random number context used for secure allocation mi_random_ctx_t random; // random number context used for secure allocation
size_t page_count; // total number of pages in the `pages` queues. size_t page_count; // total number of pages in the `pages` queues.
bool no_reclaim; // `true` if this heap should not reclaim abandoned pages bool no_reclaim; // `true` if this heap should not reclaim abandoned pages
}; };
@ -316,7 +340,7 @@ struct mi_heap_s {
#define MI_DEBUG_UNINIT (0xD0) #define MI_DEBUG_UNINIT (0xD0)
#define MI_DEBUG_FREED (0xDF) #define MI_DEBUG_FREED (0xDF)
#define MI_DEBUG_PADDING (0xDE)
#if (MI_DEBUG) #if (MI_DEBUG)
// use our own assertion to print without memory allocation // use our own assertion to print without memory allocation

View File

@ -18,20 +18,22 @@ static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t
// note: we don't require `size > offset`, we just guarantee that // note: we don't require `size > offset`, we just guarantee that
// the address at offset is aligned regardless of the allocated size. // the address at offset is aligned regardless of the allocated size.
mi_assert(alignment > 0 && alignment % sizeof(void*) == 0); mi_assert(alignment > 0 && alignment % sizeof(void*) == 0);
if (alignment <= MI_MAX_ALIGN_SIZE && offset==0) return _mi_heap_malloc_zero(heap, size, zero);
if (mi_unlikely(size > PTRDIFF_MAX)) return NULL; // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>) if (mi_unlikely(size > PTRDIFF_MAX)) return NULL; // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
if (mi_unlikely(alignment==0 || !_mi_is_power_of_two(alignment))) return NULL; // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>) if (mi_unlikely(alignment==0 || !_mi_is_power_of_two(alignment))) return NULL; // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>)
const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)` const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)`
// try if there is a small block available with just the right alignment // try if there is a small block available with just the right alignment
if (mi_likely(size <= MI_SMALL_SIZE_MAX)) { if (mi_likely(size <= MI_SMALL_SIZE_MAX)) {
mi_page_t* page = _mi_heap_get_free_small_page(heap,size); mi_page_t* page = _mi_heap_get_free_small_page(heap,size + MI_PADDING_SIZE);
const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0; const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0;
if (mi_likely(page->free != NULL && is_aligned)) if (mi_likely(page->free != NULL && is_aligned))
{ {
#if MI_STAT>1 #if MI_STAT>1
mi_heap_stat_increase( heap, malloc, size); mi_heap_stat_increase( heap, malloc, size);
#endif #endif
void* p = _mi_page_malloc(heap,page,size); // TODO: inline _mi_page_malloc void* p = _mi_page_malloc(heap,page,size + MI_PADDING_SIZE); // TODO: inline _mi_page_malloc
mi_assert_internal(p != NULL); mi_assert_internal(p != NULL);
mi_assert_internal(((uintptr_t)p + offset) % alignment == 0); mi_assert_internal(((uintptr_t)p + offset) % alignment == 0);
if (zero) _mi_block_zero_init(page,p,size); if (zero) _mi_block_zero_init(page,p,size);

View File

@ -47,16 +47,19 @@ int mi_posix_memalign(void** p, size_t alignment, size_t size) mi_attr_noexcept
// Note: The spec dictates we should not modify `*p` on an error. (issue#27) // Note: The spec dictates we should not modify `*p` on an error. (issue#27)
// <http://man7.org/linux/man-pages/man3/posix_memalign.3.html> // <http://man7.org/linux/man-pages/man3/posix_memalign.3.html>
if (p == NULL) return EINVAL; if (p == NULL) return EINVAL;
if (alignment % sizeof(void*) != 0) return EINVAL; // natural alignment if (alignment % sizeof(void*) != 0) return EINVAL; // natural alignment
if (!_mi_is_power_of_two(alignment)) return EINVAL; // not a power of 2 if (!_mi_is_power_of_two(alignment)) return EINVAL; // not a power of 2
void* q = mi_malloc_aligned(size, alignment); void* q = (alignment <= MI_MAX_ALIGN_SIZE ? mi_malloc(size) : mi_malloc_aligned(size, alignment));
if (q==NULL && size != 0) return ENOMEM; if (q==NULL && size != 0) return ENOMEM;
mi_assert_internal(((uintptr_t)q % alignment) == 0);
*p = q; *p = q;
return 0; return 0;
} }
void* mi_memalign(size_t alignment, size_t size) mi_attr_noexcept { void* mi_memalign(size_t alignment, size_t size) mi_attr_noexcept {
return mi_malloc_aligned(size, alignment); void* p = (alignment <= MI_MAX_ALIGN_SIZE ? mi_malloc(size) : mi_malloc_aligned(size, alignment));
mi_assert_internal(((uintptr_t)p % alignment) == 0);
return p;
} }
void* mi_valloc(size_t size) mi_attr_noexcept { void* mi_valloc(size_t size) mi_attr_noexcept {
@ -73,7 +76,9 @@ void* mi_pvalloc(size_t size) mi_attr_noexcept {
void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept { void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept {
if (alignment==0 || !_mi_is_power_of_two(alignment)) return NULL; if (alignment==0 || !_mi_is_power_of_two(alignment)) return NULL;
if ((size&(alignment-1)) != 0) return NULL; // C11 requires integral multiple, see <https://en.cppreference.com/w/c/memory/aligned_alloc> if ((size&(alignment-1)) != 0) return NULL; // C11 requires integral multiple, see <https://en.cppreference.com/w/c/memory/aligned_alloc>
return mi_malloc_aligned(size, alignment); void* p = (alignment <= MI_MAX_ALIGN_SIZE ? mi_malloc(size) : mi_malloc_aligned(size, alignment));
mi_assert_internal(((uintptr_t)p % alignment) == 0);
return p;
} }
void* mi_reallocarray( void* p, size_t count, size_t size ) mi_attr_noexcept { // BSD void* mi_reallocarray( void* p, size_t count, size_t size ) mi_attr_noexcept { // BSD

View File

@ -29,84 +29,107 @@ extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t siz
} }
mi_assert_internal(block != NULL && _mi_ptr_page(block) == page); mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
// pop from the free list // pop from the free list
page->free = mi_block_next(page,block); page->free = mi_block_next(page, block);
page->used++; page->used++;
mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page); mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
#if (MI_DEBUG!=0) #if (MI_DEBUG>0)
if (!page->is_zero) { memset(block, MI_DEBUG_UNINIT, size); } if (!page->is_zero) { memset(block, MI_DEBUG_UNINIT, size); }
#elif (MI_SECURE!=0) #elif (MI_SECURE!=0)
block->next = 0; // don't leak internal data block->next = 0; // don't leak internal data
#endif #endif
#if (MI_STAT>1) #if (MI_STAT>1)
if(size <= MI_LARGE_OBJ_SIZE_MAX) { const size_t bsize = mi_page_usable_block_size(page);
size_t bin = _mi_bin(size); if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_increase(heap,normal[bin], 1); const size_t bin = _mi_bin(bsize);
mi_heap_stat_increase(heap, normal[bin], 1);
} }
#endif
#if defined(MI_PADDING) && defined(MI_ENCODE_FREELIST)
mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page));
ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE));
mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys));
padding->delta = (uint32_t)(delta);
uint8_t* fill = (uint8_t*)padding - delta;
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
#endif #endif
return block; return block;
} }
// allocate a small block // allocate a small block
extern inline mi_decl_allocator void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept { extern inline mi_decl_allocator void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept {
mi_assert(heap!=NULL);
mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
mi_assert(size <= MI_SMALL_SIZE_MAX); mi_assert(size <= MI_SMALL_SIZE_MAX);
mi_page_t* page = _mi_heap_get_free_small_page(heap,size); mi_page_t* page = _mi_heap_get_free_small_page(heap,size + MI_PADDING_SIZE);
return _mi_page_malloc(heap, page, size); void* p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE);
mi_assert_internal(p==NULL || mi_usable_size(p) >= size);
#if MI_STAT>1
if (p != NULL) {
if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); }
mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
}
#endif
return p;
} }
extern inline mi_decl_allocator void* mi_malloc_small(size_t size) mi_attr_noexcept { extern inline mi_decl_allocator void* mi_malloc_small(size_t size) mi_attr_noexcept {
return mi_heap_malloc_small(mi_get_default_heap(), size); return mi_heap_malloc_small(mi_get_default_heap(), size);
} }
// zero initialized small block
mi_decl_allocator void* mi_zalloc_small(size_t size) mi_attr_noexcept {
void* p = mi_malloc_small(size);
if (p != NULL) { memset(p, 0, size); }
return p;
}
// The main allocation function // The main allocation function
extern inline mi_decl_allocator void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { extern inline mi_decl_allocator void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
mi_assert(heap!=NULL);
mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
void* p;
if (mi_likely(size <= MI_SMALL_SIZE_MAX)) { if (mi_likely(size <= MI_SMALL_SIZE_MAX)) {
p = mi_heap_malloc_small(heap, size); return mi_heap_malloc_small(heap, size);
} }
else { else {
p = _mi_malloc_generic(heap, size); mi_assert(heap!=NULL);
mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE);
mi_assert_internal(p == NULL || mi_usable_size(p) >= size);
#if MI_STAT>1
if (p != NULL) {
if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); }
mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
}
#endif
return p;
} }
#if MI_STAT>1
if (p != NULL) {
if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); }
mi_heap_stat_increase( heap, malloc, mi_good_size(size) ); // overestimate for aligned sizes
}
#endif
return p;
} }
extern inline mi_decl_allocator void* mi_malloc(size_t size) mi_attr_noexcept { extern inline mi_decl_allocator void* mi_malloc(size_t size) mi_attr_noexcept {
return mi_heap_malloc(mi_get_default_heap(), size); return mi_heap_malloc(mi_get_default_heap(), size);
} }
void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size) { void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size) {
// note: we need to initialize the whole block to zero, not just size // note: we need to initialize the whole usable block size to zero, not just the requested size,
// or the recalloc/rezalloc functions cannot safely expand in place (see issue #63) // or the recalloc/rezalloc functions cannot safely expand in place (see issue #63)
UNUSED_RELEASE(size); UNUSED(size);
mi_assert_internal(p != NULL); mi_assert_internal(p != NULL);
mi_assert_internal(mi_page_block_size(page) >= size); // size can be zero mi_assert_internal(mi_usable_size(p) >= size); // size can be zero
mi_assert_internal(_mi_ptr_page(p)==page); mi_assert_internal(_mi_ptr_page(p)==page);
if (page->is_zero) { if (page->is_zero) {
// already zero initialized memory? // already zero initialized memory?
((mi_block_t*)p)->next = 0; // clear the free list pointer ((mi_block_t*)p)->next = 0; // clear the free list pointer
mi_assert_expensive(mi_mem_is_zero(p, mi_page_block_size(page))); mi_assert_expensive(mi_mem_is_zero(p, mi_usable_size(p)));
} }
else { else {
// otherwise memset // otherwise memset
memset(p, 0, mi_page_block_size(page)); memset(p, 0, mi_usable_size(p));
} }
} }
// zero initialized small block
mi_decl_allocator void* mi_zalloc_small(size_t size) mi_attr_noexcept {
void* p = mi_malloc_small(size);
if (p != NULL) {
_mi_block_zero_init(_mi_ptr_page(p), p, size); // todo: can we avoid getting the page again?
}
return p;
}
void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) { void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) {
void* p = mi_heap_malloc(heap,size); void* p = mi_heap_malloc(heap,size);
if (zero && p != NULL) { if (zero && p != NULL) {
@ -153,7 +176,7 @@ static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, con
} }
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
mi_block_t* n = mi_block_nextx(page, block, page->key[0], page->key[1]); // pretend it is freed, and get the decoded first field mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer? if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
(n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL? (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
{ {
@ -171,49 +194,112 @@ static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block
} }
#endif #endif
// ---------------------------------------------------------------------------
// Check for heap block overflow by setting up padding at the end of the block
// ---------------------------------------------------------------------------
#if defined(MI_PADDING) && defined(MI_ENCODE_FREELIST)
static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
*bsize = mi_page_usable_block_size(page);
const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
*delta = padding->delta;
return ((uint32_t)mi_ptr_encode(page,block,page->keys) == padding->canary && *delta <= *bsize);
}
// Return the exact usable size of a block.
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
return (ok ? bsize - delta : 0);
}
static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
*size = *wrong = bsize;
if (!ok) return false;
mi_assert_internal(bsize >= delta);
*size = bsize - delta;
uint8_t* fill = (uint8_t*)block + bsize - delta;
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
for (size_t i = 0; i < maxpad; i++) {
if (fill[i] != MI_DEBUG_PADDING) {
*wrong = bsize - delta + i;
return false;
}
}
return true;
}
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
size_t size;
size_t wrong;
if (!mi_verify_padding(page,block,&size,&wrong)) {
_mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
}
}
// When a non-thread-local block is freed, it becomes part of the thread delayed free
// list that is freed later by the owning heap. If the exact usable size is too small to
// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
// so it will later not trigger an overflow error in `mi_free_block`.
static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
mi_assert_internal(ok);
if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
mi_assert_internal(bsize >= min_size);
if (bsize < min_size) return; // should never happen
size_t new_delta = (bsize - min_size);
mi_assert_internal(new_delta < bsize);
mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
padding->delta = (uint32_t)new_delta;
}
#else
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
UNUSED(page);
UNUSED(block);
}
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
UNUSED(block);
return mi_page_usable_block_size(page);
}
static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
UNUSED(page);
UNUSED(block);
UNUSED(min_size);
}
#endif
// ------------------------------------------------------ // ------------------------------------------------------
// Free // Free
// ------------------------------------------------------ // ------------------------------------------------------
// free huge block from another thread
static mi_decl_noinline void mi_free_huge_block_mt(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) {
// huge page segments are always abandoned and can be freed immediately
mi_assert_internal(segment->page_kind==MI_PAGE_HUGE);
mi_assert_internal(segment == _mi_page_segment(page));
mi_assert_internal(mi_atomic_read_relaxed(&segment->thread_id)==0);
// claim it and free
mi_heap_t* heap = mi_get_default_heap();
// paranoia: if this it the last reference, the cas should always succeed
if (mi_atomic_cas_strong(&segment->thread_id, heap->thread_id, 0)) {
mi_block_set_next(page, block, page->free);
page->free = block;
page->used--;
page->is_zero = false;
mi_assert(page->used == 0);
mi_tld_t* tld = heap->tld;
const size_t bsize = mi_page_block_size(page);
if (bsize > MI_HUGE_OBJ_SIZE_MAX) {
_mi_stat_decrease(&tld->stats.giant, bsize);
}
else {
_mi_stat_decrease(&tld->stats.huge, bsize);
}
_mi_segment_page_free(page, true, &tld->segments);
}
}
// multi-threaded free // multi-threaded free
static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block) static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
{ {
// The padding check may access the non-thread-owned page for the key values.
// that is safe as these are constant and the page won't be freed (as the block is not freed yet).
mi_check_padding(page, block);
mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
#if (MI_DEBUG!=0)
memset(block, MI_DEBUG_FREED, mi_usable_size(block));
#endif
// huge page segments are always abandoned and can be freed immediately // huge page segments are always abandoned and can be freed immediately
mi_segment_t* segment = _mi_page_segment(page); mi_segment_t* const segment = _mi_page_segment(page);
if (segment->page_kind==MI_PAGE_HUGE) { if (segment->page_kind==MI_PAGE_HUGE) {
mi_free_huge_block_mt(segment, page, block); _mi_segment_huge_page_free(segment, page, block);
return; return;
} }
// Try to put the block on either the page-local thread free list, or the heap delayed free list.
mi_thread_free_t tfree; mi_thread_free_t tfree;
mi_thread_free_t tfreex; mi_thread_free_t tfreex;
bool use_delayed; bool use_delayed;
@ -233,14 +319,14 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
if (mi_unlikely(use_delayed)) { if (mi_unlikely(use_delayed)) {
// racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`) // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
mi_heap_t* heap = mi_page_heap(page); mi_heap_t* const heap = mi_page_heap(page);
mi_assert_internal(heap != NULL); mi_assert_internal(heap != NULL);
if (heap != NULL) { if (heap != NULL) {
// add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity) // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
mi_block_t* dfree; mi_block_t* dfree;
do { do {
dfree = mi_atomic_read_ptr_relaxed(mi_block_t,&heap->thread_delayed_free); dfree = mi_atomic_read_ptr_relaxed(mi_block_t,&heap->thread_delayed_free);
mi_block_set_nextx(heap,block,dfree, heap->key[0], heap->key[1]); mi_block_set_nextx(heap,block,dfree, heap->keys);
} while (!mi_atomic_cas_ptr_weak(mi_block_t,&heap->thread_delayed_free, block, dfree)); } while (!mi_atomic_cas_ptr_weak(mi_block_t,&heap->thread_delayed_free, block, dfree));
} }
@ -257,14 +343,14 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
// regular free // regular free
static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block) static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
{ {
#if (MI_DEBUG)
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
#endif
// and push it on the free list // and push it on the free list
if (mi_likely(local)) { if (mi_likely(local)) {
// owning thread can free a block directly // owning thread can free a block directly
if (mi_unlikely(mi_check_is_double_free(page, block))) return; if (mi_unlikely(mi_check_is_double_free(page, block))) return;
mi_check_padding(page, block);
#if (MI_DEBUG!=0)
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
#endif
mi_block_set_next(page, block, page->local_free); mi_block_set_next(page, block, page->local_free);
page->local_free = block; page->local_free = block;
page->used--; page->used--;
@ -273,7 +359,7 @@ static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block
} }
else if (mi_unlikely(mi_page_is_in_full(page))) { else if (mi_unlikely(mi_page_is_in_full(page))) {
_mi_page_unfull(page); _mi_page_unfull(page);
} }
} }
else { else {
_mi_free_block_mt(page,block); _mi_free_block_mt(page,block);
@ -284,15 +370,15 @@ static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block
// Adjust a block that was allocated aligned, to the actual start of the block in the page. // Adjust a block that was allocated aligned, to the actual start of the block in the page.
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) { mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
mi_assert_internal(page!=NULL && p!=NULL); mi_assert_internal(page!=NULL && p!=NULL);
size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL); const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL);
size_t adjust = (diff % mi_page_block_size(page)); const size_t adjust = (diff % mi_page_block_size(page));
return (mi_block_t*)((uintptr_t)p - adjust); return (mi_block_t*)((uintptr_t)p - adjust);
} }
static void mi_decl_noinline mi_free_generic(const mi_segment_t* segment, bool local, void* p) { static void mi_decl_noinline mi_free_generic(const mi_segment_t* segment, bool local, void* p) {
mi_page_t* page = _mi_segment_page_of(segment, p); mi_page_t* const page = _mi_segment_page_of(segment, p);
mi_block_t* block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p); mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
_mi_free_block(page, local, block); _mi_free_block(page, local, block);
} }
@ -327,26 +413,30 @@ void mi_free(void* p) mi_attr_noexcept
const uintptr_t tid = _mi_thread_id(); const uintptr_t tid = _mi_thread_id();
mi_page_t* const page = _mi_segment_page_of(segment, p); mi_page_t* const page = _mi_segment_page_of(segment, p);
mi_block_t* const block = (mi_block_t*)p;
#if (MI_STAT>1) #if (MI_STAT>1)
mi_heap_t* heap = mi_heap_get_default(); mi_heap_t* const heap = mi_heap_get_default();
mi_heap_stat_decrease(heap, malloc, mi_usable_size(p)); const size_t bsize = mi_page_usable_block_size(page);
if (page->xblock_size <= MI_LARGE_OBJ_SIZE_MAX) { mi_heap_stat_decrease(heap, malloc, bsize);
mi_heap_stat_decrease(heap, normal[_mi_bin(page->xblock_size)], 1); if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { // huge page stats are accounted for in `_mi_page_retire`
} mi_heap_stat_decrease(heap, normal[_mi_bin(bsize)], 1);
// huge page stat is accounted for in `_mi_page_retire` }
#endif #endif
if (mi_likely(tid == segment->thread_id && page->flags.full_aligned == 0)) { // the thread id matches and it is not a full page, nor has aligned blocks if (mi_likely(tid == segment->thread_id && page->flags.full_aligned == 0)) { // the thread id matches and it is not a full page, nor has aligned blocks
// local, and not full or aligned // local, and not full or aligned
mi_block_t* const block = (mi_block_t*)p;
if (mi_unlikely(mi_check_is_double_free(page,block))) return; if (mi_unlikely(mi_check_is_double_free(page,block))) return;
mi_check_padding(page, block);
#if (MI_DEBUG!=0)
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
#endif
mi_block_set_next(page, block, page->local_free); mi_block_set_next(page, block, page->local_free);
page->local_free = block; page->local_free = block;
page->used--; page->used--;
if (mi_unlikely(mi_page_all_free(page))) { if (mi_unlikely(mi_page_all_free(page))) {
_mi_page_retire(page); _mi_page_retire(page);
} }
} }
else { else {
// non-local, aligned blocks, or a full page; use the more generic path // non-local, aligned blocks, or a full page; use the more generic path
@ -357,10 +447,10 @@ void mi_free(void* p) mi_attr_noexcept
bool _mi_free_delayed_block(mi_block_t* block) { bool _mi_free_delayed_block(mi_block_t* block) {
// get segment and page // get segment and page
const mi_segment_t* segment = _mi_ptr_segment(block); const mi_segment_t* const segment = _mi_ptr_segment(block);
mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(_mi_thread_id() == segment->thread_id); mi_assert_internal(_mi_thread_id() == segment->thread_id);
mi_page_t* page = _mi_segment_page_of(segment, block); mi_page_t* const page = _mi_segment_page_of(segment, block);
// Clear the no-delayed flag so delayed freeing is used again for this page. // Clear the no-delayed flag so delayed freeing is used again for this page.
// This must be done before collecting the free lists on this page -- otherwise // This must be done before collecting the free lists on this page -- otherwise
@ -380,11 +470,12 @@ bool _mi_free_delayed_block(mi_block_t* block) {
// Bytes available in a block // Bytes available in a block
size_t mi_usable_size(const void* p) mi_attr_noexcept { size_t mi_usable_size(const void* p) mi_attr_noexcept {
if (p==NULL) return 0; if (p==NULL) return 0;
const mi_segment_t* segment = _mi_ptr_segment(p); const mi_segment_t* const segment = _mi_ptr_segment(p);
const mi_page_t* page = _mi_segment_page_of(segment,p); const mi_page_t* const page = _mi_segment_page_of(segment, p);
size_t size = mi_page_block_size(page); const mi_block_t* const block = (const mi_block_t*)p;
const size_t size = mi_page_usable_size_of(page, block);
if (mi_unlikely(mi_page_has_aligned(page))) { if (mi_unlikely(mi_page_has_aligned(page))) {
ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)_mi_page_ptr_unalign(segment,page,p); ptrdiff_t const adjust = (uint8_t*)p - (uint8_t*)_mi_page_ptr_unalign(segment,page,p);
mi_assert_internal(adjust >= 0 && (size_t)adjust <= size); mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
return (size - adjust); return (size - adjust);
} }

View File

@ -283,7 +283,7 @@ int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msec
_mi_warning_message("failed to reserve %zu gb huge pages\n", pages); _mi_warning_message("failed to reserve %zu gb huge pages\n", pages);
return ENOMEM; return ENOMEM;
} }
_mi_verbose_message("reserved %zu gb huge pages on numa node %i (of the %zu gb requested)\n", pages_reserved, numa_node, pages); _mi_verbose_message("numa node %i: reserved %zu gb huge pages (of the %zu gb requested)\n", numa_node, pages_reserved, pages);
size_t bcount = mi_block_count_of_size(hsize); size_t bcount = mi_block_count_of_size(hsize);
size_t fields = _mi_divide_up(bcount, MI_BITMAP_FIELD_BITS); size_t fields = _mi_divide_up(bcount, MI_BITMAP_FIELD_BITS);

View File

@ -138,6 +138,9 @@ static void mi_heap_collect_ex(mi_heap_t* heap, mi_collect_t collect)
// (if abandoning, after this there are no more thread-delayed references into the pages.) // (if abandoning, after this there are no more thread-delayed references into the pages.)
_mi_heap_delayed_free(heap); _mi_heap_delayed_free(heap);
// collect retired pages
_mi_heap_collect_retired(heap, collect >= MI_FORCE);
// collect all pages owned by this thread // collect all pages owned by this thread
mi_heap_visit_pages(heap, &mi_heap_page_collect, &collect, NULL); mi_heap_visit_pages(heap, &mi_heap_page_collect, &collect, NULL);
mi_assert_internal( collect != MI_ABANDON || mi_atomic_read_ptr(mi_block_t,&heap->thread_delayed_free) == NULL ); mi_assert_internal( collect != MI_ABANDON || mi_atomic_read_ptr(mi_block_t,&heap->thread_delayed_free) == NULL );
@ -194,9 +197,9 @@ mi_heap_t* mi_heap_new(void) {
heap->tld = bheap->tld; heap->tld = bheap->tld;
heap->thread_id = _mi_thread_id(); heap->thread_id = _mi_thread_id();
_mi_random_split(&bheap->random, &heap->random); _mi_random_split(&bheap->random, &heap->random);
heap->cookie = _mi_heap_random_next(heap) | 1; heap->cookie = _mi_heap_random_next(heap) | 1;
heap->key[0] = _mi_heap_random_next(heap); heap->keys[0] = _mi_heap_random_next(heap);
heap->key[1] = _mi_heap_random_next(heap); heap->keys[1] = _mi_heap_random_next(heap);
heap->no_reclaim = true; // don't reclaim abandoned pages or otherwise destroy is unsafe heap->no_reclaim = true; // don't reclaim abandoned pages or otherwise destroy is unsafe
return heap; return heap;
} }

View File

@ -31,8 +31,14 @@ const mi_page_t _mi_page_empty = {
}; };
#define MI_PAGE_EMPTY() ((mi_page_t*)&_mi_page_empty) #define MI_PAGE_EMPTY() ((mi_page_t*)&_mi_page_empty)
#define MI_SMALL_PAGES_EMPTY \
{ MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY(), MI_PAGE_EMPTY() } #if defined(MI_PADDING) && (MI_INTPTR_SIZE >= 8)
#define MI_SMALL_PAGES_EMPTY { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY(), MI_PAGE_EMPTY() }
#elif defined(MI_PADDING)
#define MI_SMALL_PAGES_EMPTY { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY(), MI_PAGE_EMPTY(), MI_PAGE_EMPTY() }
#else
#define MI_SMALL_PAGES_EMPTY { MI_INIT128(MI_PAGE_EMPTY), MI_PAGE_EMPTY() }
#endif
// Empty page queues for every bin // Empty page queues for every bin
@ -112,12 +118,6 @@ static mi_tld_t tld_main = {
{ MI_STATS_NULL } // stats { MI_STATS_NULL } // stats
}; };
#if MI_INTPTR_SIZE==8
#define MI_INIT_COOKIE (0xCDCDCDCDCDCDCDCDUL)
#else
#define MI_INIT_COOKIE (0xCDCDCDCDUL)
#endif
mi_heap_t _mi_heap_main = { mi_heap_t _mi_heap_main = {
&tld_main, &tld_main,
MI_SMALL_PAGES_EMPTY, MI_SMALL_PAGES_EMPTY,
@ -136,6 +136,17 @@ bool _mi_process_is_initialized = false; // set to `true` in `mi_process_init`.
mi_stats_t _mi_stats_main = { MI_STATS_NULL }; mi_stats_t _mi_stats_main = { MI_STATS_NULL };
static void mi_heap_main_init(void) {
if (_mi_heap_main.cookie == 0) {
_mi_heap_main.thread_id = _mi_thread_id();
_mi_heap_main.cookie = _os_random_weak((uintptr_t)&mi_heap_main_init);
_mi_random_init(&_mi_heap_main.random);
_mi_heap_main.keys[0] = _mi_heap_random_next(&_mi_heap_main);
_mi_heap_main.keys[1] = _mi_heap_random_next(&_mi_heap_main);
}
}
/* ----------------------------------------------------------- /* -----------------------------------------------------------
Initialization and freeing of the thread local heaps Initialization and freeing of the thread local heaps
----------------------------------------------------------- */ ----------------------------------------------------------- */
@ -152,6 +163,7 @@ static bool _mi_heap_init(void) {
if (_mi_is_main_thread()) { if (_mi_is_main_thread()) {
mi_assert_internal(_mi_heap_main.thread_id != 0); mi_assert_internal(_mi_heap_main.thread_id != 0);
// the main heap is statically allocated // the main heap is statically allocated
mi_heap_main_init();
_mi_heap_set_default_direct(&_mi_heap_main); _mi_heap_set_default_direct(&_mi_heap_main);
//mi_assert_internal(_mi_heap_default->tld->heap_backing == mi_get_default_heap()); //mi_assert_internal(_mi_heap_default->tld->heap_backing == mi_get_default_heap());
} }
@ -168,10 +180,10 @@ static bool _mi_heap_init(void) {
memcpy(heap, &_mi_heap_empty, sizeof(*heap)); memcpy(heap, &_mi_heap_empty, sizeof(*heap));
heap->thread_id = _mi_thread_id(); heap->thread_id = _mi_thread_id();
_mi_random_init(&heap->random); _mi_random_init(&heap->random);
heap->cookie = _mi_heap_random_next(heap) | 1; heap->cookie = _mi_heap_random_next(heap) | 1;
heap->key[0] = _mi_heap_random_next(heap); heap->keys[0] = _mi_heap_random_next(heap);
heap->key[1] = _mi_heap_random_next(heap); heap->keys[1] = _mi_heap_random_next(heap);
heap->tld = tld; heap->tld = tld;
tld->heap_backing = heap; tld->heap_backing = heap;
tld->segments.stats = &tld->stats; tld->segments.stats = &tld->stats;
tld->segments.os = &tld->os; tld->segments.os = &tld->os;
@ -255,7 +267,7 @@ static void _mi_thread_done(mi_heap_t* default_heap);
#elif defined(MI_USE_PTHREADS) #elif defined(MI_USE_PTHREADS)
// use pthread locol storage keys to detect thread ending // use pthread locol storage keys to detect thread ending
#include <pthread.h> #include <pthread.h>
static pthread_key_t mi_pthread_key; pthread_key_t _mi_heap_default_key;
static void mi_pthread_done(void* value) { static void mi_pthread_done(void* value) {
if (value!=NULL) _mi_thread_done((mi_heap_t*)value); if (value!=NULL) _mi_thread_done((mi_heap_t*)value);
} }
@ -275,8 +287,9 @@ static void mi_process_setup_auto_thread_done(void) {
#elif defined(_WIN32) && !defined(MI_SHARED_LIB) #elif defined(_WIN32) && !defined(MI_SHARED_LIB)
mi_fls_key = FlsAlloc(&mi_fls_done); mi_fls_key = FlsAlloc(&mi_fls_done);
#elif defined(MI_USE_PTHREADS) #elif defined(MI_USE_PTHREADS)
pthread_key_create(&mi_pthread_key, &mi_pthread_done); pthread_key_create(&_mi_heap_default_key, &mi_pthread_done);
#endif #endif
_mi_heap_set_default_direct(&_mi_heap_main);
} }
@ -318,33 +331,22 @@ static void _mi_thread_done(mi_heap_t* heap) {
void _mi_heap_set_default_direct(mi_heap_t* heap) { void _mi_heap_set_default_direct(mi_heap_t* heap) {
mi_assert_internal(heap != NULL); mi_assert_internal(heap != NULL);
#if !defined(MI_TLS_PTHREADS)
_mi_heap_default = heap;
#endif
// ensure the default heap is passed to `_mi_thread_done` // ensure the default heap is passed to `_mi_thread_done`
// setting to a non-NULL value also ensures `mi_thread_done` is called. // setting to a non-NULL value also ensures `mi_thread_done` is called.
#if defined(_WIN32) && defined(MI_SHARED_LIB) #if defined(_WIN32) && defined(MI_SHARED_LIB)
// nothing to do as it is done in DllMain // nothing to do as it is done in DllMain
#elif defined(_WIN32) && !defined(MI_SHARED_LIB) #elif defined(_WIN32) && !defined(MI_SHARED_LIB)
mi_assert_internal(mi_fls_key != 0);
FlsSetValue(mi_fls_key, heap); FlsSetValue(mi_fls_key, heap);
#elif defined(MI_USE_PTHREADS) #elif defined(MI_USE_PTHREADS)
pthread_setspecific(mi_pthread_key, heap); // mi_assert_internal(_mi_heap_default_key != 0); // often 0 is also the allocated key
pthread_setspecific(_mi_heap_default_key, heap);
#endif #endif
if (_mi_tls_recurse < 100) {
_mi_heap_default = heap;
}
} }
#ifdef MI_TLS_RECURSE_GUARD
// initialize high so the first call uses safe TLS
size_t _mi_tls_recurse = 10000;
#else
size_t _mi_tls_recurse = 0;
#endif
mi_heap_t* _mi_get_default_heap_tls_safe(void) {
if (mi_unlikely(mi_pthread_key==0)) return (mi_heap_t*)&_mi_heap_empty;
mi_heap_t* heap = pthread_getspecific(mi_pthread_key);
return (mi_likely(heap!=NULL) ? heap : (mi_heap_t*)&_mi_heap_empty);
}
// -------------------------------------------------------- // --------------------------------------------------------
// Run functions on process init/done, and thread init/done // Run functions on process init/done, and thread init/done
@ -399,10 +401,9 @@ static void mi_allocator_done() {
static void mi_process_load(void) { static void mi_process_load(void) {
volatile mi_heap_t* dummy = _mi_heap_default; // access TLS to allocate it before setting tls_initialized to true; volatile mi_heap_t* dummy = _mi_heap_default; // access TLS to allocate it before setting tls_initialized to true;
UNUSED(dummy); UNUSED(dummy);
os_preloading = false; os_preloading = false;
_mi_heap_set_default_direct(&_mi_heap_main);
atexit(&mi_process_done); atexit(&mi_process_done);
_mi_options_init(); _mi_options_init();
mi_process_init(); mi_process_init();
//mi_stats_reset(); //mi_stats_reset();
if (mi_redirected) _mi_verbose_message("malloc is redirected.\n"); if (mi_redirected) _mi_verbose_message("malloc is redirected.\n");
@ -415,18 +416,6 @@ static void mi_process_load(void) {
} }
} }
void _mi_heap_main_init(void) {
if (_mi_heap_main.cookie == 0) {
_mi_heap_main.thread_id = _mi_thread_id();
_mi_heap_main.cookie = _os_random_weak((uintptr_t)&_mi_heap_main_init);
}
if (_mi_tls_recurse < 100) {
_mi_random_init(&_mi_heap_main.random);
_mi_heap_main.key[0] = _mi_heap_random_next(&_mi_heap_main);
_mi_heap_main.key[1] = _mi_heap_random_next(&_mi_heap_main);
}
}
// Initialize the process; called by thread_init or the process loader // Initialize the process; called by thread_init or the process loader
void mi_process_init(void) mi_attr_noexcept { void mi_process_init(void) mi_attr_noexcept {
// ensure we are called once // ensure we are called once
@ -436,7 +425,7 @@ void mi_process_init(void) mi_attr_noexcept {
_mi_verbose_message("process init: 0x%zx\n", _mi_thread_id()); _mi_verbose_message("process init: 0x%zx\n", _mi_thread_id());
_mi_os_init(); _mi_os_init();
_mi_heap_main_init(); mi_heap_main_init();
#if (MI_DEBUG) #if (MI_DEBUG)
_mi_verbose_message("debug level : %d\n", MI_DEBUG); _mi_verbose_message("debug level : %d\n", MI_DEBUG);
#endif #endif

View File

@ -53,7 +53,7 @@ static mi_option_desc_t options[_mi_option_last] =
// stable options // stable options
{ MI_DEBUG, UNINIT, MI_OPTION(show_errors) }, { MI_DEBUG, UNINIT, MI_OPTION(show_errors) },
{ 0, UNINIT, MI_OPTION(show_stats) }, { 0, UNINIT, MI_OPTION(show_stats) },
{ 1, UNINIT, MI_OPTION(verbose) }, { 0, UNINIT, MI_OPTION(verbose) },
// the following options are experimental and not all combinations make sense. // the following options are experimental and not all combinations make sense.
{ 1, UNINIT, MI_OPTION(eager_commit) }, // commit on demand { 1, UNINIT, MI_OPTION(eager_commit) }, // commit on demand
@ -331,6 +331,14 @@ static volatile _Atomic(void*) mi_error_arg; // = NULL
static void mi_error_default(int err) { static void mi_error_default(int err) {
UNUSED(err); UNUSED(err);
#if (MI_DEBUG>0)
if (err==EFAULT) {
#ifdef _MSC_VER
__debugbreak();
#endif
abort();
}
#endif
#if (MI_SECURE>0) #if (MI_SECURE>0)
if (err==EFAULT) { // abort on serious errors in secure mode (corrupted meta-data) if (err==EFAULT) { // abort on serious errors in secure mode (corrupted meta-data)
abort(); abort();

View File

@ -851,7 +851,7 @@ static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node)
else { else {
// fall back to regular large pages // fall back to regular large pages
mi_huge_pages_available = false; // don't try further huge pages mi_huge_pages_available = false; // don't try further huge pages
_mi_warning_message("unable to allocate using huge (1GiB) pages, trying large (2MiB) pages instead (status 0x%lx)\n", err); _mi_warning_message("unable to allocate using huge (1gb) pages, trying large (2mb) pages instead (status 0x%lx)\n", err);
} }
} }
// on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation // on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation
@ -892,7 +892,7 @@ static void* mi_os_alloc_huge_os_pagesx(void* addr, size_t size, int numa_node)
// see: <https://lkml.org/lkml/2017/2/9/875> // see: <https://lkml.org/lkml/2017/2/9/875>
long err = mi_os_mbind(p, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0); long err = mi_os_mbind(p, size, MPOL_PREFERRED, &numa_mask, 8*MI_INTPTR_SIZE, 0);
if (err != 0) { if (err != 0) {
_mi_warning_message("failed to bind huge (1GiB) pages to NUMA node %d: %s\n", numa_node, strerror(errno)); _mi_warning_message("failed to bind huge (1gb) pages to numa node %d: %s\n", numa_node, strerror(errno));
} }
} }
return p; return p;

View File

@ -281,7 +281,7 @@ void _mi_heap_delayed_free(mi_heap_t* heap) {
// and free them all // and free them all
while(block != NULL) { while(block != NULL) {
mi_block_t* next = mi_block_nextx(heap,block, heap->key[0], heap->key[1]); mi_block_t* next = mi_block_nextx(heap,block, heap->keys);
// use internal free instead of regular one to keep stats etc correct // use internal free instead of regular one to keep stats etc correct
if (!_mi_free_delayed_block(block)) { if (!_mi_free_delayed_block(block)) {
// we might already start delayed freeing while another thread has not yet // we might already start delayed freeing while another thread has not yet
@ -289,7 +289,7 @@ void _mi_heap_delayed_free(mi_heap_t* heap) {
mi_block_t* dfree; mi_block_t* dfree;
do { do {
dfree = mi_atomic_read_ptr_relaxed(mi_block_t,&heap->thread_delayed_free); dfree = mi_atomic_read_ptr_relaxed(mi_block_t,&heap->thread_delayed_free);
mi_block_set_nextx(heap, block, dfree, heap->key[0], heap->key[1]); mi_block_set_nextx(heap, block, dfree, heap->keys);
} while (!mi_atomic_cas_ptr_weak(mi_block_t,&heap->thread_delayed_free, block, dfree)); } while (!mi_atomic_cas_ptr_weak(mi_block_t,&heap->thread_delayed_free, block, dfree));
} }
block = next; block = next;
@ -348,7 +348,7 @@ void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq) {
#if MI_DEBUG>1 #if MI_DEBUG>1
// check there are no references left.. // check there are no references left..
for (mi_block_t* block = (mi_block_t*)pheap->thread_delayed_free; block != NULL; block = mi_block_nextx(pheap, block, pheap->key[0], pheap->key[1])) { for (mi_block_t* block = (mi_block_t*)pheap->thread_delayed_free; block != NULL; block = mi_block_nextx(pheap, block, pheap->keys)) {
mi_assert_internal(_mi_ptr_page(block) != page); mi_assert_internal(_mi_ptr_page(block) != page);
} }
#endif #endif
@ -609,8 +609,8 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
mi_assert_internal(page_size / block_size < (1L<<16)); mi_assert_internal(page_size / block_size < (1L<<16));
page->reserved = (uint16_t)(page_size / block_size); page->reserved = (uint16_t)(page_size / block_size);
#ifdef MI_ENCODE_FREELIST #ifdef MI_ENCODE_FREELIST
page->key[0] = _mi_heap_random_next(heap); page->keys[0] = _mi_heap_random_next(heap);
page->key[1] = _mi_heap_random_next(heap); page->keys[1] = _mi_heap_random_next(heap);
#endif #endif
page->is_zero = page->is_zero_init; page->is_zero = page->is_zero_init;
@ -623,8 +623,8 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
mi_assert_internal(page->retire_expire == 0); mi_assert_internal(page->retire_expire == 0);
mi_assert_internal(!mi_page_has_aligned(page)); mi_assert_internal(!mi_page_has_aligned(page));
#if (MI_ENCODE_FREELIST) #if (MI_ENCODE_FREELIST)
mi_assert_internal(page->key[0] != 0); mi_assert_internal(page->keys[0] != 0);
mi_assert_internal(page->key[1] != 0); mi_assert_internal(page->keys[1] != 0);
#endif #endif
mi_assert_expensive(mi_page_is_valid_init(page)); mi_assert_expensive(mi_page_is_valid_init(page));
@ -752,7 +752,7 @@ static mi_page_t* mi_huge_page_alloc(mi_heap_t* heap, size_t size) {
mi_assert_internal(_mi_bin(block_size) == MI_BIN_HUGE); mi_assert_internal(_mi_bin(block_size) == MI_BIN_HUGE);
mi_page_t* page = mi_page_fresh_alloc(heap,NULL,block_size); mi_page_t* page = mi_page_fresh_alloc(heap,NULL,block_size);
if (page != NULL) { if (page != NULL) {
const size_t bsize = mi_page_block_size(page); const size_t bsize = mi_page_usable_block_size(page);
mi_assert_internal(mi_page_immediate_available(page)); mi_assert_internal(mi_page_immediate_available(page));
mi_assert_internal(bsize >= size); mi_assert_internal(bsize >= size);
mi_assert_internal(_mi_page_segment(page)->page_kind==MI_PAGE_HUGE); mi_assert_internal(_mi_page_segment(page)->page_kind==MI_PAGE_HUGE);
@ -761,11 +761,11 @@ static mi_page_t* mi_huge_page_alloc(mi_heap_t* heap, size_t size) {
mi_page_set_heap(page, NULL); mi_page_set_heap(page, NULL);
if (bsize > MI_HUGE_OBJ_SIZE_MAX) { if (bsize > MI_HUGE_OBJ_SIZE_MAX) {
_mi_stat_increase(&heap->tld->stats.giant, block_size); _mi_stat_increase(&heap->tld->stats.giant, bsize);
_mi_stat_counter_increase(&heap->tld->stats.giant_count, 1); _mi_stat_counter_increase(&heap->tld->stats.giant_count, 1);
} }
else { else {
_mi_stat_increase(&heap->tld->stats.huge, block_size); _mi_stat_increase(&heap->tld->stats.huge, bsize);
_mi_stat_counter_increase(&heap->tld->stats.huge_count, 1); _mi_stat_counter_increase(&heap->tld->stats.huge_count, 1);
} }
} }

View File

@ -247,6 +247,7 @@ static void mi_page_reset(mi_segment_t* segment, mi_page_t* page, size_t size, m
static void mi_page_unreset(mi_segment_t* segment, mi_page_t* page, size_t size, mi_segments_tld_t* tld) static void mi_page_unreset(mi_segment_t* segment, mi_page_t* page, size_t size, mi_segments_tld_t* tld)
{ {
mi_assert_internal(page->is_reset); mi_assert_internal(page->is_reset);
mi_assert_internal(page->is_committed);
mi_assert_internal(!segment->mem_is_fixed); mi_assert_internal(!segment->mem_is_fixed);
page->is_reset = false; page->is_reset = false;
size_t psize; size_t psize;
@ -456,7 +457,6 @@ static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size; if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size;
} }
static void mi_segment_os_free(mi_segment_t* segment, size_t segment_size, mi_segments_tld_t* tld) { static void mi_segment_os_free(mi_segment_t* segment, size_t segment_size, mi_segments_tld_t* tld) {
segment->thread_id = 0; segment->thread_id = 0;
mi_segments_track_size(-((long)segment_size),tld); mi_segments_track_size(-((long)segment_size),tld);
@ -779,10 +779,14 @@ static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, bool a
// note: must come after setting `segment_in_use` to false but before block_size becomes 0 // note: must come after setting `segment_in_use` to false but before block_size becomes 0
//mi_page_reset(segment, page, 0 /*used_size*/, tld); //mi_page_reset(segment, page, 0 /*used_size*/, tld);
// zero the page data, but not the segment fields and block_size (for page size calculations) // zero the page data, but not the segment fields and capacity, and block_size (for page size calculations)
uint32_t block_size = page->xblock_size; uint32_t block_size = page->xblock_size;
uint16_t capacity = page->capacity;
uint16_t reserved = page->reserved;
ptrdiff_t ofs = offsetof(mi_page_t,capacity); ptrdiff_t ofs = offsetof(mi_page_t,capacity);
memset((uint8_t*)page + ofs, 0, sizeof(*page) - ofs); memset((uint8_t*)page + ofs, 0, sizeof(*page) - ofs);
page->capacity = capacity;
page->reserved = reserved;
page->xblock_size = block_size; page->xblock_size = block_size;
segment->used--; segment->used--;
@ -790,6 +794,9 @@ static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, bool a
if (allow_reset) { if (allow_reset) {
mi_pages_reset_add(segment, page, tld); mi_pages_reset_add(segment, page, tld);
} }
page->capacity = 0; // after reset there can be zero'd now
page->reserved = 0;
} }
void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld) void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld)
@ -1269,11 +1276,41 @@ static mi_page_t* mi_segment_huge_page_alloc(size_t size, mi_segments_tld_t* tld
if (segment == NULL) return NULL; if (segment == NULL) return NULL;
mi_assert_internal(mi_segment_page_size(segment) - segment->segment_info_size - (2*(MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= size); mi_assert_internal(mi_segment_page_size(segment) - segment->segment_info_size - (2*(MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= size);
segment->thread_id = 0; // huge pages are immediately abandoned segment->thread_id = 0; // huge pages are immediately abandoned
mi_segments_track_size(-(long)segment->segment_size, tld);
mi_page_t* page = mi_segment_find_free(segment, tld); mi_page_t* page = mi_segment_find_free(segment, tld);
mi_assert_internal(page != NULL); mi_assert_internal(page != NULL);
return page; return page;
} }
// free huge block from another thread
void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) {
// huge page segments are always abandoned and can be freed immediately by any thread
mi_assert_internal(segment->page_kind==MI_PAGE_HUGE);
mi_assert_internal(segment == _mi_page_segment(page));
mi_assert_internal(mi_atomic_read_relaxed(&segment->thread_id)==0);
// claim it and free
mi_heap_t* heap = mi_get_default_heap();
// paranoia: if this it the last reference, the cas should always succeed
if (mi_atomic_cas_strong(&segment->thread_id, heap->thread_id, 0)) {
mi_block_set_next(page, block, page->free);
page->free = block;
page->used--;
page->is_zero = false;
mi_assert(page->used == 0);
mi_segments_tld_t* tld = &heap->tld->segments;
const size_t bsize = mi_page_usable_block_size(page);
if (bsize > MI_HUGE_OBJ_SIZE_MAX) {
_mi_stat_decrease(&tld->stats->giant, bsize);
}
else {
_mi_stat_decrease(&tld->stats->huge, bsize);
}
mi_segments_track_size((long)segment->segment_size, tld);
_mi_segment_page_free(page, true, tld);
}
}
/* ----------------------------------------------------------- /* -----------------------------------------------------------
Page allocation Page allocation
----------------------------------------------------------- */ ----------------------------------------------------------- */

View File

@ -10,6 +10,7 @@
static void double_free1(); static void double_free1();
static void double_free2(); static void double_free2();
static void corrupt_free(); static void corrupt_free();
static void block_overflow1();
int main() { int main() {
mi_version(); mi_version();
@ -18,6 +19,7 @@ int main() {
// double_free1(); // double_free1();
// double_free2(); // double_free2();
// corrupt_free(); // corrupt_free();
// block_overflow1();
void* p1 = malloc(78); void* p1 = malloc(78);
void* p2 = malloc(24); void* p2 = malloc(24);
@ -41,6 +43,11 @@ int main() {
return 0; return 0;
} }
static void block_overflow1() {
uint8_t* p = (uint8_t*)mi_malloc(17);
p[18] = 0;
free(p);
}
// The double free samples come ArcHeap [1] by Insu Yun (issue #161) // The double free samples come ArcHeap [1] by Insu Yun (issue #161)
// [1]: https://arxiv.org/pdf/1903.00503.pdf // [1]: https://arxiv.org/pdf/1903.00503.pdf

View File

@ -20,14 +20,14 @@ terms of the MIT license.
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#include <string.h> #include <string.h>
// #include <mimalloc.h> #include <mimalloc.h>
// > mimalloc-test-stress [THREADS] [SCALE] [ITER] // > mimalloc-test-stress [THREADS] [SCALE] [ITER]
// //
// argument defaults // argument defaults
static int THREADS = 32; // more repeatable if THREADS <= #processors static int THREADS = 32; // more repeatable if THREADS <= #processors
static int SCALE = 10; // scaling factor static int SCALE = 10; // scaling factor
static int ITER = 50; // N full iterations destructing and re-creating all threads static int ITER = 5; // N full iterations destructing and re-creating all threads
// static int THREADS = 8; // more repeatable if THREADS <= #processors // static int THREADS = 8; // more repeatable if THREADS <= #processors
// static int SCALE = 100; // scaling factor // static int SCALE = 100; // scaling factor
@ -38,7 +38,7 @@ static bool allow_large_objects = true; // allow very large objects?
static size_t use_one_size = 0; // use single object size of `N * sizeof(uintptr_t)`? static size_t use_one_size = 0; // use single object size of `N * sizeof(uintptr_t)`?
#ifndef USE_STD_MALLOC #ifdef USE_STD_MALLOC
#define custom_calloc(n,s) calloc(n,s) #define custom_calloc(n,s) calloc(n,s)
#define custom_realloc(p,s) realloc(p,s) #define custom_realloc(p,s) realloc(p,s)
#define custom_free(p) free(p) #define custom_free(p) free(p)