/* ---------------------------------------------------------------------------- Copyright (c) 2018, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #pragma once #ifndef MIMALLOC_ATOMIC_H #define MIMALLOC_ATOMIC_H // ------------------------------------------------------ // Atomics // We need to be portable between C, C++, and MSVC. // ------------------------------------------------------ #if defined(_MSC_VER) #define _Atomic(tp) tp #define ATOMIC_VAR_INIT(x) x #elif defined(__cplusplus) #include #define _Atomic(tp) std::atomic #else #include #endif // ------------------------------------------------------ // Atomic operations specialized for mimalloc // ------------------------------------------------------ // Atomically add a value; returns the previous value. Memory ordering is relaxed. static inline uintptr_t mi_atomic_add(volatile _Atomic(uintptr_t)* p, uintptr_t add); // Atomically "and" a value; returns the previous value. Memory ordering is relaxed. static inline uintptr_t mi_atomic_and(volatile _Atomic(uintptr_t)* p, uintptr_t x); // Atomically "or" a value; returns the previous value. Memory ordering is relaxed. static inline uintptr_t mi_atomic_or(volatile _Atomic(uintptr_t)* p, uintptr_t x); // Atomically compare and exchange a value; returns `true` if successful. // May fail spuriously. Memory ordering as release on success, and relaxed on failure. // (Note: expected and desired are in opposite order from atomic_compare_exchange) static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected); // Atomically compare and exchange a value; returns `true` if successful. // Memory ordering is acquire-release // (Note: expected and desired are in opposite order from atomic_compare_exchange) static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected); // Atomically exchange a value. Memory ordering is acquire-release. static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange); // Atomically read a value. Memory ordering is relaxed. static inline uintptr_t mi_atomic_read_relaxed(const volatile _Atomic(uintptr_t)* p); // Atomically read a value. Memory ordering is acquire. static inline uintptr_t mi_atomic_read(const volatile _Atomic(uintptr_t)* p); // Atomically write a value. Memory ordering is release. static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x); // Yield static inline void mi_atomic_yield(void); // Atomically add a 64-bit value; returns the previous value. // Note: not using _Atomic(int64_t) as it is only used for statistics. static inline void mi_atomic_addi64(volatile int64_t* p, int64_t add); // Atomically update `*p` with the maximum of `*p` and `x` as a 64-bit value. // Returns the previous value. Note: not using _Atomic(int64_t) as it is only used for statistics. static inline void mi_atomic_maxi64(volatile int64_t* p, int64_t x); // Atomically read a 64-bit value // Note: not using _Atomic(int64_t) as it is only used for statistics. static inline int64_t mi_atomic_readi64(volatile int64_t* p); // Atomically subtract a value; returns the previous value. static inline uintptr_t mi_atomic_sub(volatile _Atomic(uintptr_t)* p, uintptr_t sub) { return mi_atomic_add(p, (uintptr_t)(-((intptr_t)sub))); } // Atomically increment a value; returns the incremented result. static inline uintptr_t mi_atomic_increment(volatile _Atomic(uintptr_t)* p) { return mi_atomic_add(p, 1); } // Atomically decrement a value; returns the decremented result. static inline uintptr_t mi_atomic_decrement(volatile _Atomic(uintptr_t)* p) { return mi_atomic_sub(p, 1); } // Atomically add a signed value; returns the previous value. static inline intptr_t mi_atomic_addi(volatile _Atomic(intptr_t)* p, intptr_t add) { return (intptr_t)mi_atomic_add((volatile _Atomic(uintptr_t)*)p, (uintptr_t)add); } // Atomically subtract a signed value; returns the previous value. static inline intptr_t mi_atomic_subi(volatile _Atomic(intptr_t)* p, intptr_t sub) { return (intptr_t)mi_atomic_addi(p,-sub); } // Atomically read a pointer; Memory order is relaxed (i.e. no fence, only atomic). #define mi_atomic_read_ptr_relaxed(T,p) \ (T*)(mi_atomic_read_relaxed((const volatile _Atomic(uintptr_t)*)(p))) // Atomically read a pointer; Memory order is acquire. #define mi_atomic_read_ptr(T,p) \ (T*)(mi_atomic_read((const volatile _Atomic(uintptr_t)*)(p))) // Atomically write a pointer; Memory order is acquire. #define mi_atomic_write_ptr(T,p,x) \ mi_atomic_write((volatile _Atomic(uintptr_t)*)(p), (uintptr_t)((T*)x)) // Atomically compare and exchange a pointer; returns `true` if successful. May fail spuriously. // Memory order is release. (like a write) // (Note: expected and desired are in opposite order from atomic_compare_exchange) #define mi_atomic_cas_ptr_weak(T,p,desired,expected) \ mi_atomic_cas_weak((volatile _Atomic(uintptr_t)*)(p), (uintptr_t)((T*)(desired)), (uintptr_t)((T*)(expected))) // Atomically compare and exchange a pointer; returns `true` if successful. Memory order is acquire_release. // (Note: expected and desired are in opposite order from atomic_compare_exchange) #define mi_atomic_cas_ptr_strong(T,p,desired,expected) \ mi_atomic_cas_strong((volatile _Atomic(uintptr_t)*)(p),(uintptr_t)((T*)(desired)), (uintptr_t)((T*)(expected))) // Atomically exchange a pointer value. #define mi_atomic_exchange_ptr(T,p,exchange) \ (T*)mi_atomic_exchange((volatile _Atomic(uintptr_t)*)(p), (uintptr_t)((T*)exchange)) #ifdef _MSC_VER #define WIN32_LEAN_AND_MEAN #include #include #ifdef _WIN64 typedef LONG64 msc_intptr_t; #define MI_64(f) f##64 #else typedef LONG msc_intptr_t; #define MI_64(f) f #endif static inline uintptr_t mi_atomic_add(volatile _Atomic(uintptr_t)* p, uintptr_t add) { return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add); } static inline uintptr_t mi_atomic_and(volatile _Atomic(uintptr_t)* p, uintptr_t x) { return (uintptr_t)MI_64(_InterlockedAnd)((volatile msc_intptr_t*)p, (msc_intptr_t)x); } static inline uintptr_t mi_atomic_or(volatile _Atomic(uintptr_t)* p, uintptr_t x) { return (uintptr_t)MI_64(_InterlockedOr)((volatile msc_intptr_t*)p, (msc_intptr_t)x); } static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) { return (expected == (uintptr_t)MI_64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)expected)); } static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) { return mi_atomic_cas_strong(p,desired,expected); } static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange) { return (uintptr_t)MI_64(_InterlockedExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange); } static inline uintptr_t mi_atomic_read(volatile _Atomic(uintptr_t) const* p) { return *p; } static inline uintptr_t mi_atomic_read_relaxed(volatile _Atomic(uintptr_t) const* p) { return *p; } static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x) { #if defined(_M_IX86) || defined(_M_X64) *p = x; #else mi_atomic_exchange(p,x); #endif } static inline void mi_atomic_yield(void) { YieldProcessor(); } static inline void mi_atomic_addi64(volatile _Atomic(int64_t)* p, int64_t add) { #ifdef _WIN64 mi_atomic_addi(p,add); #else int64_t current; int64_t sum; do { current = *p; sum = current + add; } while (_InterlockedCompareExchange64(p, sum, current) != current); #endif } static inline void mi_atomic_maxi64(volatile _Atomic(int64_t)*p, int64_t x) { int64_t current; do { current = *p; } while (current < x && _InterlockedCompareExchange64(p, x, current) != current); } static inline int64_t mi_atomic_readi64(volatile _Atomic(int64_t)*p) { #ifdef _WIN64 return *p; #else int64_t current; do { current = *p; } while (_InterlockedCompareExchange64(p, current, current) != current); return current; #endif } #else #ifdef __cplusplus #define MI_USING_STD using namespace std; #else #define MI_USING_STD #endif static inline uintptr_t mi_atomic_add(volatile _Atomic(uintptr_t)* p, uintptr_t add) { MI_USING_STD return atomic_fetch_add_explicit(p, add, memory_order_relaxed); } static inline uintptr_t mi_atomic_and(volatile _Atomic(uintptr_t)* p, uintptr_t x) { MI_USING_STD return atomic_fetch_and_explicit(p, x, memory_order_acq_rel); } static inline uintptr_t mi_atomic_or(volatile _Atomic(uintptr_t)* p, uintptr_t x) { MI_USING_STD return atomic_fetch_or_explicit(p, x, memory_order_acq_rel); } static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) { MI_USING_STD return atomic_compare_exchange_weak_explicit(p, &expected, desired, memory_order_acq_rel, memory_order_acquire); } static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) { MI_USING_STD return atomic_compare_exchange_strong_explicit(p, &expected, desired, memory_order_acq_rel, memory_order_acquire); } static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange) { MI_USING_STD return atomic_exchange_explicit(p, exchange, memory_order_acq_rel); } static inline uintptr_t mi_atomic_read_relaxed(const volatile _Atomic(uintptr_t)* p) { MI_USING_STD return atomic_load_explicit((volatile _Atomic(uintptr_t)*) p, memory_order_relaxed); } static inline uintptr_t mi_atomic_read(const volatile _Atomic(uintptr_t)* p) { MI_USING_STD return atomic_load_explicit((volatile _Atomic(uintptr_t)*) p, memory_order_acquire); } static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x) { MI_USING_STD return atomic_store_explicit(p, x, memory_order_release); } static inline void mi_atomic_addi64(volatile int64_t* p, int64_t add) { MI_USING_STD atomic_fetch_add_explicit((volatile _Atomic(int64_t)*)p, add, memory_order_relaxed); } static inline int64_t mi_atomic_readi64(volatile int64_t* p) { MI_USING_STD return atomic_load_explicit((volatile _Atomic(int64_t)*) p, memory_order_relaxed); } static inline void mi_atomic_maxi64(volatile int64_t* p, int64_t x) { MI_USING_STD int64_t current; do { current = mi_atomic_readi64(p); } while (current < x && !atomic_compare_exchange_weak_explicit((volatile _Atomic(int64_t)*)p, ¤t, x, memory_order_acq_rel, memory_order_relaxed)); } #if defined(__cplusplus) #include static inline void mi_atomic_yield(void) { std::this_thread::yield(); } #elif (defined(__GNUC__) || defined(__clang__)) && \ (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__)) #if defined(__x86_64__) || defined(__i386__) static inline void mi_atomic_yield(void) { asm volatile ("pause" ::: "memory"); } #elif defined(__arm__) || defined(__aarch64__) static inline void mi_atomic_yield(void) { asm volatile("yield"); } #endif #elif defined(__wasi__) #include static inline void mi_atomic_yield(void) { sched_yield(); } #else #include static inline void mi_atomic_yield(void) { sleep(0); } #endif #endif #endif // __MIMALLOC_ATOMIC_H