/* ---------------------------------------------------------------------------- Copyright (c) 2018, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #pragma once #ifndef MIMALLOC_ATOMIC_H #define MIMALLOC_ATOMIC_H // ------------------------------------------------------ // Atomics // We need to be portable between C, C++, and MSVC. // ------------------------------------------------------ #if defined(__cplusplus) #include #define _Atomic(tp) std::atomic #elif defined(_MSC_VER) #define _Atomic(tp) tp #define ATOMIC_VAR_INIT(x) x #else #include #endif // ------------------------------------------------------ // Atomic operations specialized for mimalloc // ------------------------------------------------------ // Atomically add a value; returns the previous value. Memory ordering is acquire-release. static inline uintptr_t mi_atomic_add(_Atomic(uintptr_t)* p, uintptr_t add); // Atomically "and" a value; returns the previous value. Memory ordering is acquire-release. static inline uintptr_t mi_atomic_and(_Atomic(uintptr_t)* p, uintptr_t x); // Atomically "or" a value; returns the previous value. Memory ordering is acquire-release. static inline uintptr_t mi_atomic_or(_Atomic(uintptr_t)* p, uintptr_t x); // Atomically compare and exchange a value; returns `true` if successful. // May fail spuriously. Memory ordering is acquire-release; with acquire on failure. static inline bool mi_atomic_cas_weak(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired); // Atomically compare and exchange a value; returns `true` if successful. // Memory ordering is acquire-release; with acquire on failure. static inline bool mi_atomic_cas_strong(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired); // Atomically exchange a value. Memory ordering is acquire-release. static inline uintptr_t mi_atomic_exchange(_Atomic(uintptr_t)* p, uintptr_t exchange); // Atomically read a value. Memory ordering is relaxed. static inline uintptr_t mi_atomic_read_relaxed(const _Atomic(uintptr_t)* p); // Atomically read a value. Memory ordering is acquire. static inline uintptr_t mi_atomic_read(const _Atomic(uintptr_t)* p); // Atomically write a value. Memory ordering is release. static inline void mi_atomic_write(_Atomic(uintptr_t)* p, uintptr_t x); // Yield static inline void mi_atomic_yield(void); // Atomically add a 64-bit value; returns the previous value. Memory ordering is relaxed. // Note: not using _Atomic(int64_t) as it is only used for statistics. static inline int64_t mi_atomic_addi64_relaxed(volatile int64_t* p, int64_t add); // Atomically update `*p` with the maximum of `*p` and `x` as a 64-bit value. // Returns the previous value. Note: not using _Atomic(int64_t) as it is only used for statistics. static inline void mi_atomic_maxi64_relaxed(volatile int64_t* p, int64_t x); // Atomically subtract a value; returns the previous value. static inline uintptr_t mi_atomic_sub(_Atomic(uintptr_t)* p, uintptr_t sub) { return mi_atomic_add(p, (uintptr_t)(-((intptr_t)sub))); } // Atomically increment a value; returns the incremented result. static inline uintptr_t mi_atomic_increment(_Atomic(uintptr_t)* p) { return mi_atomic_add(p, 1); } // Atomically decrement a value; returns the decremented result. static inline uintptr_t mi_atomic_decrement(_Atomic(uintptr_t)* p) { return mi_atomic_sub(p, 1); } // Atomically add a signed value; returns the previous value. static inline intptr_t mi_atomic_addi(_Atomic(intptr_t)* p, intptr_t add) { return (intptr_t)mi_atomic_add((_Atomic(uintptr_t)*)p, (uintptr_t)add); } // Atomically subtract a signed value; returns the previous value. static inline intptr_t mi_atomic_subi(_Atomic(intptr_t)* p, intptr_t sub) { return (intptr_t)mi_atomic_addi(p,-sub); } // Atomically compare and exchange a void pointer; returns `true` if successful. May fail spuriously. // Memory order is release. (like a write) static inline bool mi_atomic_cas_weak_voidp(_Atomic(void*)* p, void** expected, void* desired, void* unused1, void* unused2) { (void)unused1; (void)unused2; // for extra type check return mi_atomic_cas_weak((_Atomic(uintptr_t)*)p, (uintptr_t*)expected, (uintptr_t)desired); } // Atomically read a void pointer; Memory order is relaxed (i.e. no fence, only atomic). static inline void* mi_atomic_read_voidp(const _Atomic(void*)* p, void* unused) { (void)unused; // for extra type check return (void*)mi_atomic_read((const _Atomic(uintptr_t)*) p); } // Atomically read a void pointer; Memory order is acquire. static inline void* mi_atomic_read_voidp_relaxed(const _Atomic(void*)*p, void* unused) { (void)unused; // for extra type check return (void*)mi_atomic_read_relaxed((const _Atomic(uintptr_t)*) p); } // Atomically write a void pointer; Memory order is acquire. static inline void mi_atomic_write_voidp(_Atomic(void*)* p, void* exchange, void* unused) { (void)unused; // for extra type check mi_atomic_write((_Atomic(uintptr_t)*) p, (uintptr_t)exchange); } // Atomically exchange a void pointer; Memory order is release-acquire. static inline void* mi_atomic_exchange_voidp(_Atomic(void*)*p, void* exchange, void* unused) { (void)unused; // for extra type check return (void*)mi_atomic_exchange((_Atomic(uintptr_t)*) p, (uintptr_t)exchange); } // Atomically compare and exchange a pointer; returns `true` if successful. May fail spuriously. // Memory order is release. (like a write) #define mi_atomic_cas_ptr_weak(T,p,expected,desired) \ mi_atomic_cas_weak_voidp((_Atomic(void*)*)(p), (void**)(expected), desired, *(p), *(expected)) // Atomically read a pointer; Memory order is relaxed (i.e. no fence, only atomic). #define mi_atomic_read_ptr_relaxed(T,p) \ (T*)(mi_atomic_read_voidp_relaxed((const _Atomic(void*)*)(p), *(p))) // Atomically read a pointer; Memory order is acquire. #define mi_atomic_read_ptr(T,p) \ (T*)(mi_atomic_read_voidp((const _Atomic(void*)*)(p), *(p))) // Atomically write a pointer; Memory order is acquire. #define mi_atomic_write_ptr(T,p,x) \ mi_atomic_write_voidp((_Atomic(void*)*)(p), x, *(p)) // Atomically exchange a pointer value. #define mi_atomic_exchange_ptr(T,p,exchange) \ (T*)(mi_atomic_exchange_voidp((_Atomic(void*)*)(p), exchange, *(p))) #if !defined(__cplusplus) && defined(_MSC_VER) #define WIN32_LEAN_AND_MEAN #include #include #ifdef _WIN64 typedef LONG64 msc_intptr_t; #define MI_64(f) f##64 #else typedef LONG msc_intptr_t; #define MI_64(f) f #endif static inline uintptr_t mi_atomic_add(_Atomic(uintptr_t)* p, uintptr_t add) { return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add); } static inline uintptr_t mi_atomic_and(_Atomic(uintptr_t)* p, uintptr_t x) { return (uintptr_t)MI_64(_InterlockedAnd)((volatile msc_intptr_t*)p, (msc_intptr_t)x); } static inline uintptr_t mi_atomic_or(_Atomic(uintptr_t)* p, uintptr_t x) { return (uintptr_t)MI_64(_InterlockedOr)((volatile msc_intptr_t*)p, (msc_intptr_t)x); } static inline bool mi_atomic_cas_strong(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired) { uintptr_t read = (uintptr_t)MI_64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)(*expected)); if (read == *expected) { return true; } else { *expected = read; return false; } } static inline bool mi_atomic_cas_weak(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired) { return mi_atomic_cas_strong(p,expected,desired); } static inline uintptr_t mi_atomic_exchange(_Atomic(uintptr_t)* p, uintptr_t exchange) { return (uintptr_t)MI_64(_InterlockedExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange); } static inline uintptr_t mi_atomic_read(_Atomic(uintptr_t) const* p) { return *p; } static inline uintptr_t mi_atomic_read_relaxed(_Atomic(uintptr_t) const* p) { return *p; } static inline void mi_atomic_write(_Atomic(uintptr_t)* p, uintptr_t x) { #if defined(_M_IX86) || defined(_M_X64) *p = x; #else mi_atomic_exchange(p,x); #endif } static inline int64_t mi_atomic_addi64_relaxed(volatile _Atomic(int64_t)* p, int64_t add) { #ifdef _WIN64 return (int64_t)mi_atomic_addi((int64_t*)p,add); #else int64_t current; int64_t sum; do { current = *p; sum = current + add; } while (_InterlockedCompareExchange64(p, sum, current) != current); return current; #endif } static inline void mi_atomic_maxi64_relaxed(volatile _Atomic(int64_t)*p, int64_t x) { int64_t current; do { current = *p; } while (current < x && _InterlockedCompareExchange64(p, x, current) != current); } #else #ifdef __cplusplus #define MI_USING_STD using namespace std; #else #define MI_USING_STD #endif static inline uintptr_t mi_atomic_add(_Atomic(uintptr_t)* p, uintptr_t add) { MI_USING_STD return atomic_fetch_add_explicit(p, add, memory_order_acq_rel); } static inline uintptr_t mi_atomic_and(_Atomic(uintptr_t)* p, uintptr_t x) { MI_USING_STD return atomic_fetch_and_explicit(p, x, memory_order_acq_rel); } static inline uintptr_t mi_atomic_or(_Atomic(uintptr_t)* p, uintptr_t x) { MI_USING_STD return atomic_fetch_or_explicit(p, x, memory_order_acq_rel); } static inline bool mi_atomic_cas_weak(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired) { MI_USING_STD return atomic_compare_exchange_weak_explicit(p, expected, desired, memory_order_acq_rel, memory_order_acquire); } static inline bool mi_atomic_cas_strong(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired) { MI_USING_STD return atomic_compare_exchange_strong_explicit(p, expected, desired, memory_order_acq_rel, memory_order_acquire); } static inline uintptr_t mi_atomic_exchange(_Atomic(uintptr_t)* p, uintptr_t exchange) { MI_USING_STD return atomic_exchange_explicit(p, exchange, memory_order_acq_rel); } static inline uintptr_t mi_atomic_read_relaxed(const _Atomic(uintptr_t)* p) { MI_USING_STD return atomic_load_explicit((_Atomic(uintptr_t)*) p, memory_order_relaxed); } static inline uintptr_t mi_atomic_read(const _Atomic(uintptr_t)* p) { MI_USING_STD return atomic_load_explicit((_Atomic(uintptr_t)*) p, memory_order_acquire); } static inline void mi_atomic_write(_Atomic(uintptr_t)* p, uintptr_t x) { MI_USING_STD return atomic_store_explicit(p, x, memory_order_release); } static inline int64_t mi_atomic_addi64_relaxed(volatile int64_t* p, int64_t add) { MI_USING_STD return atomic_fetch_add_explicit((_Atomic(int64_t)*)p, add, memory_order_relaxed); } static inline void mi_atomic_maxi64_relaxed(volatile int64_t* p, int64_t x) { MI_USING_STD int64_t current = atomic_load_explicit((_Atomic(int64_t)*)p, memory_order_relaxed); while (current < x && !atomic_compare_exchange_weak_explicit((_Atomic(int64_t)*)p, ¤t, x, memory_order_acq_rel, memory_order_acquire)) { /* nothing */ }; } #endif #if defined(__cplusplus) #include static inline void mi_atomic_yield(void) { std::this_thread::yield(); } #elif defined(_WIN32) #define WIN32_LEAN_AND_MEAN #include static inline void mi_atomic_yield(void) { YieldProcessor(); } #elif (defined(__GNUC__) || defined(__clang__)) && \ (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__)) #if defined(__x86_64__) || defined(__i386__) static inline void mi_atomic_yield(void) { asm volatile ("pause" ::: "memory"); } #elif defined(__arm__) || defined(__aarch64__) static inline void mi_atomic_yield(void) { asm volatile("yield"); } #endif #elif defined(__wasi__) #include static inline void mi_atomic_yield(void) { sched_yield(); } #else #include static inline void mi_atomic_yield(void) { sleep(0); } #endif #endif // __MIMALLOC_ATOMIC_H