mimalloc/test/test-stress.c

168 lines
4.5 KiB
C

/* ----------------------------------------------------------------------------
Copyright (c) 2018,2019 Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* This is a stress test for the allocator, using multiple threads and
transferring objects between threads. This is not a typical workload
but uses a random size distribution. Do not use this test as a benchmark!
Note: pthreads uses mimalloc to allocate stacks and thus not all
memory is freed at the end. (usually the 320 byte chunks).
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"
#define N (10) // scaling factor
#define THREADS (32)
#define TRANSFERS (1000)
static volatile void* transfer[TRANSFERS];
#if (MI_INTPTR_SIZE==8)
const uintptr_t cookie = 0xbf58476d1ce4e5b9UL;
#else
const uintptr_t cookie = 0x1ce4e5b9UL;
#endif
static void* alloc_items(size_t items) {
if ((rand()%100) == 0) items *= 100; // 1% huge objects;
if (items==40) items++; // pthreads uses that size for stack increases
uintptr_t* p = mi_mallocn_tp(uintptr_t,items);
for (uintptr_t i = 0; i < items; i++) p[i] = (items - i) ^ cookie;
return p;
}
static void free_items(void* p) {
if (p != NULL) {
uintptr_t* q = (uintptr_t*)p;
uintptr_t items = (q[0] ^ cookie);
for (uintptr_t i = 0; i < items; i++) {
if ((q[i]^cookie) != items - i) {
fprintf(stderr,"memory corruption at block %p at %zu\n", p, i);
abort();
}
}
}
mi_free(p);
}
static void stress(intptr_t tid) {
const size_t max_item = 128; // in words
const size_t max_item_retained = 10*max_item;
size_t allocs = 80*N*(tid%8 + 1); // some threads do more
size_t retain = allocs/2;
void** data = NULL;
size_t data_size = 0;
size_t data_top = 0;
void** retained = mi_mallocn_tp(void*,retain);
size_t retain_top = 0;
while (allocs>0 || retain>0) {
if (retain == 0 || ((rand()%4 == 0) && allocs > 0)) {
// 75% alloc
allocs--;
if (data_top >= data_size) {
data_size += 100000;
data = mi_reallocn_tp(data, void*, data_size);
}
data[data_top++] = alloc_items((rand() % max_item) + 1);
}
else {
// 25% retain
retained[retain_top++] = alloc_items( 10*((rand() % max_item_retained) + 1) );
retain--;
}
if ((rand()%3)!=0 && data_top > 0) {
// 66% free previous alloc
size_t idx = rand() % data_top;
free_items(data[idx]);
data[idx]=NULL;
}
if ((tid%2)==0 && (rand()%4)==0 && data_top > 0) {
// 25% transfer-swap of half the threads
size_t data_idx = rand() % data_top;
size_t transfer_idx = rand() % TRANSFERS;
void* p = data[data_idx];
void* q = mi_atomic_exchange_ptr(&transfer[transfer_idx],p);
data[data_idx] = q;
}
}
// free everything that is left
for (size_t i = 0; i < retain_top; i++) {
free_items(retained[i]);
}
for (size_t i = 0; i < data_top; i++) {
free_items(data[i]);
}
mi_free(retained);
mi_free(data);
}
static void run_os_threads();
int main() {
srand(42);
memset((void*)transfer,0,TRANSFERS*sizeof(void*));
run_os_threads();
for (int i = 0; i < TRANSFERS; i++) {
free_items((void*)transfer[i]);
}
mi_collect(false); // ensures abandoned segments are reclaimed
mi_collect(true); // frees everything
mi_stats_print(NULL);
return 0;
}
#ifdef _WIN32
#include <windows.h>
static DWORD WINAPI thread_entry(LPVOID param) {
stress((intptr_t)param);
return 0;
}
static void run_os_threads() {
DWORD tids[THREADS];
HANDLE thandles[THREADS];
for(intptr_t i = 0; i < THREADS; i++) {
thandles[i] = CreateThread(0,4096,&thread_entry,(void*)(i),0,&tids[i]);
}
for (int i = 0; i < THREADS; i++) {
WaitForSingleObject(thandles[i], INFINITE);
}
}
#else
#include <pthread.h>
static void* thread_entry( void* param ) {
stress((uintptr_t)param);
return NULL;
}
static void run_os_threads() {
pthread_t threads[THREADS];
memset(threads,0,sizeof(pthread_t)*THREADS);
//pthread_setconcurrency(THREADS);
for(uintptr_t i = 0; i < THREADS; i++) {
pthread_create(&threads[i], NULL, &thread_entry, (void*)i);
}
for (size_t i = 0; i < THREADS; i++) {
pthread_join(threads[i], NULL);
}
}
#endif