1
0
mirror of https://github.com/nlohmann/json synced 2024-11-26 22:00:07 +00:00

add detail/serializer.hpp

This commit is contained in:
Théo DELRIEU 2017-08-14 18:04:51 +02:00
parent c117515e31
commit a3473fda6a
No known key found for this signature in database
GPG Key ID: 51AC4B3A2C47C10F
3 changed files with 797 additions and 769 deletions

View File

@ -20,7 +20,8 @@ SRCS = ${SRCDIR}/json.hpp \
${SRCDIR}/detail/iterators/json_reverse_iterator.hpp \
${SRCDIR}/detail/parsing/output_adapters.hpp \
${SRCDIR}/detail/parsing/binary_reader.hpp \
${SRCDIR}/detail/parsing/binary_writer.hpp
${SRCDIR}/detail/parsing/binary_writer.hpp \
${SRCDIR}/detail/serializer.hpp
# main target
all:

794
src/detail/serializer.hpp Normal file
View File

@ -0,0 +1,794 @@
#ifndef NLOHMANN_JSON_DETAIL_SERIALIZER_HPP
#define NLOHMANN_JSON_DETAIL_SERIALIZER_HPP
#include <algorithm>
#include <array>
#include <clocale>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <iterator>
#include <limits>
#include <string>
#include <type_traits>
#include "detail/macro_scope.hpp"
#include "detail/meta.hpp"
#include "detail/parsing/output_adapters.hpp"
namespace nlohmann
{
namespace detail
{
///////////////////
// serialization //
///////////////////
template<typename BasicJsonType>
class serializer
{
using string_t = typename BasicJsonType::string_t;
using number_float_t = typename BasicJsonType::number_float_t;
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
public:
/*!
@param[in] s output stream to serialize to
@param[in] ichar indentation character to use
*/
serializer(output_adapter_t<char> s, const char ichar)
: o(std::move(s)), loc(std::localeconv()),
thousands_sep(loc->thousands_sep == nullptr ? '\0' : * (loc->thousands_sep)),
decimal_point(loc->decimal_point == nullptr ? '\0' : * (loc->decimal_point)),
indent_char(ichar), indent_string(512, indent_char) {}
// delete because of pointer members
serializer(const serializer&) = delete;
serializer& operator=(const serializer&) = delete;
/*!
@brief internal implementation of the serialization function
This function is called by the public member function dump and organizes
the serialization internally. The indentation level is propagated as
additional parameter. In case of arrays and objects, the function is
called recursively.
- strings and object keys are escaped using `escape_string()`
- integer numbers are converted implicitly via `operator<<`
- floating-point numbers are converted to a string using `"%g"` format
@param[in] val value to serialize
@param[in] pretty_print whether the output shall be pretty-printed
@param[in] indent_step the indent level
@param[in] current_indent the current indent level (only used internally)
*/
void dump(const BasicJsonType& val, const bool pretty_print,
const bool ensure_ascii,
const unsigned int indent_step,
const unsigned int current_indent = 0)
{
switch (val.m_type)
{
case value_t::object:
{
if (val.m_value.object->empty())
{
o->write_characters("{}", 2);
return;
}
if (pretty_print)
{
o->write_characters("{\n", 2);
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step;
if (JSON_UNLIKELY(indent_string.size() < new_indent))
{
indent_string.resize(indent_string.size() * 2, ' ');
}
// first n-1 elements
auto i = val.m_value.object->cbegin();
for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
{
o->write_characters(indent_string.c_str(), new_indent);
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\": ", 3);
dump(i->second, true, ensure_ascii, indent_step, new_indent);
o->write_characters(",\n", 2);
}
// last element
assert(i != val.m_value.object->cend());
assert(std::next(i) == val.m_value.object->cend());
o->write_characters(indent_string.c_str(), new_indent);
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\": ", 3);
dump(i->second, true, ensure_ascii, indent_step, new_indent);
o->write_character('\n');
o->write_characters(indent_string.c_str(), current_indent);
o->write_character('}');
}
else
{
o->write_character('{');
// first n-1 elements
auto i = val.m_value.object->cbegin();
for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
{
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\":", 2);
dump(i->second, false, ensure_ascii, indent_step, current_indent);
o->write_character(',');
}
// last element
assert(i != val.m_value.object->cend());
assert(std::next(i) == val.m_value.object->cend());
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\":", 2);
dump(i->second, false, ensure_ascii, indent_step, current_indent);
o->write_character('}');
}
return;
}
case value_t::array:
{
if (val.m_value.array->empty())
{
o->write_characters("[]", 2);
return;
}
if (pretty_print)
{
o->write_characters("[\n", 2);
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step;
if (JSON_UNLIKELY(indent_string.size() < new_indent))
{
indent_string.resize(indent_string.size() * 2, ' ');
}
// first n-1 elements
for (auto i = val.m_value.array->cbegin();
i != val.m_value.array->cend() - 1; ++i)
{
o->write_characters(indent_string.c_str(), new_indent);
dump(*i, true, ensure_ascii, indent_step, new_indent);
o->write_characters(",\n", 2);
}
// last element
assert(not val.m_value.array->empty());
o->write_characters(indent_string.c_str(), new_indent);
dump(val.m_value.array->back(), true, ensure_ascii, indent_step, new_indent);
o->write_character('\n');
o->write_characters(indent_string.c_str(), current_indent);
o->write_character(']');
}
else
{
o->write_character('[');
// first n-1 elements
for (auto i = val.m_value.array->cbegin();
i != val.m_value.array->cend() - 1; ++i)
{
dump(*i, false, ensure_ascii, indent_step, current_indent);
o->write_character(',');
}
// last element
assert(not val.m_value.array->empty());
dump(val.m_value.array->back(), false, ensure_ascii, indent_step, current_indent);
o->write_character(']');
}
return;
}
case value_t::string:
{
o->write_character('\"');
dump_escaped(*val.m_value.string, ensure_ascii);
o->write_character('\"');
return;
}
case value_t::boolean:
{
if (val.m_value.boolean)
{
o->write_characters("true", 4);
}
else
{
o->write_characters("false", 5);
}
return;
}
case value_t::number_integer:
{
dump_integer(val.m_value.number_integer);
return;
}
case value_t::number_unsigned:
{
dump_integer(val.m_value.number_unsigned);
return;
}
case value_t::number_float:
{
dump_float(val.m_value.number_float);
return;
}
case value_t::discarded:
{
o->write_characters("<discarded>", 11);
return;
}
case value_t::null:
{
o->write_characters("null", 4);
return;
}
}
}
private:
/*!
@brief returns the number of expected bytes following in UTF-8 string
@param[in] u the first byte of a UTF-8 string
@return the number of expected bytes following
*/
static constexpr std::size_t bytes_following(const uint8_t u)
{
return ((u <= 127) ? 0
: ((192 <= u and u <= 223) ? 1
: ((224 <= u and u <= 239) ? 2
: ((240 <= u and u <= 247) ? 3 : std::string::npos))));
}
/*!
@brief calculates the extra space to escape a JSON string
@param[in] s the string to escape
@param[in] ensure_ascii whether to escape non-ASCII characters with
\uXXXX sequences
@return the number of characters required to escape string @a s
@complexity Linear in the length of string @a s.
*/
static std::size_t extra_space(const string_t& s,
const bool ensure_ascii) noexcept
{
std::size_t res = 0;
for (std::size_t i = 0; i < s.size(); ++i)
{
switch (s[i])
{
// control characters that can be escaped with a backslash
case '"':
case '\\':
case '\b':
case '\f':
case '\n':
case '\r':
case '\t':
{
// from c (1 byte) to \x (2 bytes)
res += 1;
break;
}
// control characters that need \uxxxx escaping
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x0B:
case 0x0E:
case 0x0F:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1A:
case 0x1B:
case 0x1C:
case 0x1D:
case 0x1E:
case 0x1F:
{
// from c (1 byte) to \uxxxx (6 bytes)
res += 5;
break;
}
default:
{
if (ensure_ascii and (s[i] & 0x80 or s[i] == 0x7F))
{
const auto bytes = bytes_following(static_cast<uint8_t>(s[i]));
// invalid characters will be detected by throw_if_invalid_utf8
assert (bytes != std::string::npos);
if (bytes == 3)
{
// codepoints that need 4 bytes (i.e., 3 additional
// bytes) in UTF-8 need a surrogate pair when \u
// escaping is used: from 4 bytes to \uxxxx\uxxxx
// (12 bytes)
res += (12 - bytes - 1);
}
else
{
// from x bytes to \uxxxx (6 bytes)
res += (6 - bytes - 1);
}
// skip the additional bytes
i += bytes;
}
break;
}
}
}
return res;
}
static void escape_codepoint(int codepoint, string_t& result, std::size_t& pos)
{
// expecting a proper codepoint
assert(0x00 <= codepoint and codepoint <= 0x10FFFF);
// the last written character was the backslash before the 'u'
assert(result[pos] == '\\');
// write the 'u'
result[++pos] = 'u';
// convert a number 0..15 to its hex representation (0..f)
static const std::array<char, 16> hexify =
{
{
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
}
};
if (codepoint < 0x10000)
{
// codepoints U+0000..U+FFFF can be represented as \uxxxx.
result[++pos] = hexify[(codepoint >> 12) & 0x0F];
result[++pos] = hexify[(codepoint >> 8) & 0x0F];
result[++pos] = hexify[(codepoint >> 4) & 0x0F];
result[++pos] = hexify[codepoint & 0x0F];
}
else
{
// codepoints U+10000..U+10FFFF need a surrogate pair to be
// represented as \uxxxx\uxxxx.
// http://www.unicode.org/faq/utf_bom.html#utf16-4
codepoint -= 0x10000;
const int high_surrogate = 0xD800 | ((codepoint >> 10) & 0x3FF);
const int low_surrogate = 0xDC00 | (codepoint & 0x3FF);
result[++pos] = hexify[(high_surrogate >> 12) & 0x0F];
result[++pos] = hexify[(high_surrogate >> 8) & 0x0F];
result[++pos] = hexify[(high_surrogate >> 4) & 0x0F];
result[++pos] = hexify[high_surrogate & 0x0F];
++pos; // backslash is already in output
result[++pos] = 'u';
result[++pos] = hexify[(low_surrogate >> 12) & 0x0F];
result[++pos] = hexify[(low_surrogate >> 8) & 0x0F];
result[++pos] = hexify[(low_surrogate >> 4) & 0x0F];
result[++pos] = hexify[low_surrogate & 0x0F];
}
++pos;
}
/*!
@brief dump escaped string
Escape a string by replacing certain special characters by a sequence of an
escape character (backslash) and another character and other control
characters by a sequence of "\u" followed by a four-digit hex
representation. The escaped string is written to output stream @a o.
@param[in] s the string to escape
@param[in] ensure_ascii whether to escape non-ASCII characters with
\uXXXX sequences
@complexity Linear in the length of string @a s.
*/
void dump_escaped(const string_t& s, const bool ensure_ascii) const
{
throw_if_invalid_utf8(s);
const auto space = extra_space(s, ensure_ascii);
if (space == 0)
{
o->write_characters(s.c_str(), s.size());
return;
}
// create a result string of necessary size
string_t result(s.size() + space, '\\');
std::size_t pos = 0;
for (std::size_t i = 0; i < s.size(); ++i)
{
switch (s[i])
{
case '"': // quotation mark (0x22)
{
result[pos + 1] = '"';
pos += 2;
break;
}
case '\\': // reverse solidus (0x5C)
{
// nothing to change
pos += 2;
break;
}
case '\b': // backspace (0x08)
{
result[pos + 1] = 'b';
pos += 2;
break;
}
case '\f': // formfeed (0x0C)
{
result[pos + 1] = 'f';
pos += 2;
break;
}
case '\n': // newline (0x0A)
{
result[pos + 1] = 'n';
pos += 2;
break;
}
case '\r': // carriage return (0x0D)
{
result[pos + 1] = 'r';
pos += 2;
break;
}
case '\t': // horizontal tab (0x09)
{
result[pos + 1] = 't';
pos += 2;
break;
}
default:
{
// escape control characters (0x00..0x1F) or, if
// ensure_ascii parameter is used, non-ASCII characters
if ((0x00 <= s[i] and s[i] <= 0x1F) or
(ensure_ascii and (s[i] & 0x80 or s[i] == 0x7F)))
{
const auto bytes = bytes_following(static_cast<uint8_t>(s[i]));
// invalid characters will be detected by throw_if_invalid_utf8
assert (bytes != std::string::npos);
// check that the additional bytes are present
assert(i + bytes < s.size());
// to use \uxxxx escaping, we first need to calculate
// the codepoint from the UTF-8 bytes
int codepoint = 0;
// bytes is unsigned type:
assert(bytes <= 3);
switch (bytes)
{
case 0:
{
codepoint = s[i] & 0xFF;
break;
}
case 1:
{
codepoint = ((s[i] & 0x3F) << 6)
+ (s[i + 1] & 0x7F);
break;
}
case 2:
{
codepoint = ((s[i] & 0x1F) << 12)
+ ((s[i + 1] & 0x7F) << 6)
+ (s[i + 2] & 0x7F);
break;
}
case 3:
{
codepoint = ((s[i] & 0xF) << 18)
+ ((s[i + 1] & 0x7F) << 12)
+ ((s[i + 2] & 0x7F) << 6)
+ (s[i + 3] & 0x7F);
break;
}
default:
break; // LCOV_EXCL_LINE
}
escape_codepoint(codepoint, result, pos);
i += bytes;
}
else
{
// all other characters are added as-is
result[pos++] = s[i];
}
break;
}
}
}
assert(pos == result.size());
o->write_characters(result.c_str(), result.size());
}
/*!
@brief dump an integer
Dump a given integer to output stream @a o. Works internally with
@a number_buffer.
@param[in] x integer number (signed or unsigned) to dump
@tparam NumberType either @a number_integer_t or @a number_unsigned_t
*/
template<typename NumberType, detail::enable_if_t<
std::is_same<NumberType, number_unsigned_t>::value or
std::is_same<NumberType, number_integer_t>::value,
int> = 0>
void dump_integer(NumberType x)
{
// special case for "0"
if (x == 0)
{
o->write_character('0');
return;
}
const bool is_negative = (x <= 0) and (x != 0); // see issue #755
std::size_t i = 0;
while (x != 0)
{
// spare 1 byte for '\0'
assert(i < number_buffer.size() - 1);
const auto digit = std::labs(static_cast<long>(x % 10));
number_buffer[i++] = static_cast<char>('0' + digit);
x /= 10;
}
if (is_negative)
{
// make sure there is capacity for the '-'
assert(i < number_buffer.size() - 2);
number_buffer[i++] = '-';
}
std::reverse(number_buffer.begin(), number_buffer.begin() + i);
o->write_characters(number_buffer.data(), i);
}
/*!
@brief dump a floating-point number
Dump a given floating-point number to output stream @a o. Works internally
with @a number_buffer.
@param[in] x floating-point number to dump
*/
void dump_float(number_float_t x)
{
// NaN / inf
if (not std::isfinite(x) or std::isnan(x))
{
o->write_characters("null", 4);
return;
}
// get number of digits for a text -> float -> text round-trip
static constexpr auto d = std::numeric_limits<number_float_t>::digits10;
// the actual conversion
std::ptrdiff_t len = snprintf(number_buffer.data(), number_buffer.size(), "%.*g", d, x);
// negative value indicates an error
assert(len > 0);
// check if buffer was large enough
assert(static_cast<std::size_t>(len) < number_buffer.size());
// erase thousands separator
if (thousands_sep != '\0')
{
const auto end = std::remove(number_buffer.begin(),
number_buffer.begin() + len, thousands_sep);
std::fill(end, number_buffer.end(), '\0');
assert((end - number_buffer.begin()) <= len);
len = (end - number_buffer.begin());
}
// convert decimal point to '.'
if (decimal_point != '\0' and decimal_point != '.')
{
const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point);
if (dec_pos != number_buffer.end())
{
*dec_pos = '.';
}
}
o->write_characters(number_buffer.data(), static_cast<std::size_t>(len));
// determine if need to append ".0"
const bool value_is_int_like =
std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1,
[](char c)
{
return (c == '.' or c == 'e');
});
if (value_is_int_like)
{
o->write_characters(".0", 2);
}
}
/*!
@brief check whether a string is UTF-8 encoded
The function checks each byte of a string whether it is UTF-8 encoded. The
result of the check is stored in the @a state parameter. The function must
be called initially with state 0 (accept). State 1 means the string must
be rejected, because the current byte is not allowed. If the string is
completely processed, but the state is non-zero, the string ended
prematurely; that is, the last byte indicated more bytes should have
followed.
@param[in,out] state the state of the decoding
@param[in] byte next byte to decode
@note The function has been edited: a std::array is used and the code
point is not calculated.
@copyright Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>
@sa http://bjoern.hoehrmann.de/utf-8/decoder/dfa/
*/
static void decode(uint8_t& state, const uint8_t byte)
{
static const std::array<uint8_t, 400> utf8d =
{
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9F
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // A0..BF
8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0..DF
0xA, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // E0..EF
0xB, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // F0..FF
0x0, 0x1, 0x2, 0x3, 0x5, 0x8, 0x7, 0x1, 0x1, 0x1, 0x4, 0x6, 0x1, 0x1, 0x1, 0x1, // s0..s0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, // s1..s2
1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // s3..s4
1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, // s5..s6
1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // s7..s8
}
};
const uint8_t type = utf8d[byte];
state = utf8d[256u + state * 16u + type];
}
/*!
@brief throw an exception if a string is not UTF-8 encoded
@param[in] str UTF-8 string to check
@throw type_error.316 if passed string is not UTF-8 encoded
@since version 3.0.0
*/
static void throw_if_invalid_utf8(const std::string& str)
{
// start with state 0 (= accept)
uint8_t state = 0;
for (size_t i = 0; i < str.size(); ++i)
{
const auto byte = static_cast<uint8_t>(str[i]);
decode(state, byte);
if (state == 1)
{
// state 1 means reject
std::stringstream ss;
ss << std::setw(2) << std::uppercase << std::setfill('0') << std::hex << static_cast<int>(byte);
JSON_THROW(type_error::create(316, "invalid UTF-8 byte at index " + std::to_string(i) + ": 0x" + ss.str()));
}
}
if (state != 0)
{
// we finish reading, but do not accept: string was incomplete
std::stringstream ss;
ss << std::setw(2) << std::uppercase << std::setfill('0') << std::hex << static_cast<int>(static_cast<uint8_t>(str.back()));
JSON_THROW(type_error::create(316, "incomplete UTF-8 string; last byte: 0x" + ss.str()));
}
}
private:
/// the output of the serializer
output_adapter_t<char> o = nullptr;
/// a (hopefully) large enough character buffer
std::array<char, 64> number_buffer{{}};
/// the locale
const std::lconv* loc = nullptr;
/// the locale's thousand separator character
const char thousands_sep = '\0';
/// the locale's decimal point character
const char decimal_point = '\0';
/// the indentation character
const char indent_char;
/// the indentation string
string_t indent_string;
};
}
}
#endif

View File

@ -68,6 +68,7 @@ SOFTWARE.
#include "detail/parsing/output_adapters.hpp"
#include "detail/parsing/binary_reader.hpp"
#include "detail/parsing/binary_writer.hpp"
#include "detail/serializer.hpp"
/*!
@brief namespace for Niels Lohmann
@ -78,774 +79,6 @@ namespace nlohmann
{
namespace detail
{
///////////////////
// serialization //
///////////////////
template<typename BasicJsonType>
class serializer
{
using string_t = typename BasicJsonType::string_t;
using number_float_t = typename BasicJsonType::number_float_t;
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
public:
/*!
@param[in] s output stream to serialize to
@param[in] ichar indentation character to use
*/
serializer(output_adapter_t<char> s, const char ichar)
: o(std::move(s)), loc(std::localeconv()),
thousands_sep(loc->thousands_sep == nullptr ? '\0' : * (loc->thousands_sep)),
decimal_point(loc->decimal_point == nullptr ? '\0' : * (loc->decimal_point)),
indent_char(ichar), indent_string(512, indent_char) {}
// delete because of pointer members
serializer(const serializer&) = delete;
serializer& operator=(const serializer&) = delete;
/*!
@brief internal implementation of the serialization function
This function is called by the public member function dump and organizes
the serialization internally. The indentation level is propagated as
additional parameter. In case of arrays and objects, the function is
called recursively.
- strings and object keys are escaped using `escape_string()`
- integer numbers are converted implicitly via `operator<<`
- floating-point numbers are converted to a string using `"%g"` format
@param[in] val value to serialize
@param[in] pretty_print whether the output shall be pretty-printed
@param[in] indent_step the indent level
@param[in] current_indent the current indent level (only used internally)
*/
void dump(const BasicJsonType& val, const bool pretty_print,
const bool ensure_ascii,
const unsigned int indent_step,
const unsigned int current_indent = 0)
{
switch (val.m_type)
{
case value_t::object:
{
if (val.m_value.object->empty())
{
o->write_characters("{}", 2);
return;
}
if (pretty_print)
{
o->write_characters("{\n", 2);
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step;
if (JSON_UNLIKELY(indent_string.size() < new_indent))
{
indent_string.resize(indent_string.size() * 2, ' ');
}
// first n-1 elements
auto i = val.m_value.object->cbegin();
for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
{
o->write_characters(indent_string.c_str(), new_indent);
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\": ", 3);
dump(i->second, true, ensure_ascii, indent_step, new_indent);
o->write_characters(",\n", 2);
}
// last element
assert(i != val.m_value.object->cend());
assert(std::next(i) == val.m_value.object->cend());
o->write_characters(indent_string.c_str(), new_indent);
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\": ", 3);
dump(i->second, true, ensure_ascii, indent_step, new_indent);
o->write_character('\n');
o->write_characters(indent_string.c_str(), current_indent);
o->write_character('}');
}
else
{
o->write_character('{');
// first n-1 elements
auto i = val.m_value.object->cbegin();
for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
{
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\":", 2);
dump(i->second, false, ensure_ascii, indent_step, current_indent);
o->write_character(',');
}
// last element
assert(i != val.m_value.object->cend());
assert(std::next(i) == val.m_value.object->cend());
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\":", 2);
dump(i->second, false, ensure_ascii, indent_step, current_indent);
o->write_character('}');
}
return;
}
case value_t::array:
{
if (val.m_value.array->empty())
{
o->write_characters("[]", 2);
return;
}
if (pretty_print)
{
o->write_characters("[\n", 2);
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step;
if (JSON_UNLIKELY(indent_string.size() < new_indent))
{
indent_string.resize(indent_string.size() * 2, ' ');
}
// first n-1 elements
for (auto i = val.m_value.array->cbegin();
i != val.m_value.array->cend() - 1; ++i)
{
o->write_characters(indent_string.c_str(), new_indent);
dump(*i, true, ensure_ascii, indent_step, new_indent);
o->write_characters(",\n", 2);
}
// last element
assert(not val.m_value.array->empty());
o->write_characters(indent_string.c_str(), new_indent);
dump(val.m_value.array->back(), true, ensure_ascii, indent_step, new_indent);
o->write_character('\n');
o->write_characters(indent_string.c_str(), current_indent);
o->write_character(']');
}
else
{
o->write_character('[');
// first n-1 elements
for (auto i = val.m_value.array->cbegin();
i != val.m_value.array->cend() - 1; ++i)
{
dump(*i, false, ensure_ascii, indent_step, current_indent);
o->write_character(',');
}
// last element
assert(not val.m_value.array->empty());
dump(val.m_value.array->back(), false, ensure_ascii, indent_step, current_indent);
o->write_character(']');
}
return;
}
case value_t::string:
{
o->write_character('\"');
dump_escaped(*val.m_value.string, ensure_ascii);
o->write_character('\"');
return;
}
case value_t::boolean:
{
if (val.m_value.boolean)
{
o->write_characters("true", 4);
}
else
{
o->write_characters("false", 5);
}
return;
}
case value_t::number_integer:
{
dump_integer(val.m_value.number_integer);
return;
}
case value_t::number_unsigned:
{
dump_integer(val.m_value.number_unsigned);
return;
}
case value_t::number_float:
{
dump_float(val.m_value.number_float);
return;
}
case value_t::discarded:
{
o->write_characters("<discarded>", 11);
return;
}
case value_t::null:
{
o->write_characters("null", 4);
return;
}
}
}
private:
/*!
@brief returns the number of expected bytes following in UTF-8 string
@param[in] u the first byte of a UTF-8 string
@return the number of expected bytes following
*/
static constexpr std::size_t bytes_following(const uint8_t u)
{
return ((u <= 127) ? 0
: ((192 <= u and u <= 223) ? 1
: ((224 <= u and u <= 239) ? 2
: ((240 <= u and u <= 247) ? 3 : std::string::npos))));
}
/*!
@brief calculates the extra space to escape a JSON string
@param[in] s the string to escape
@param[in] ensure_ascii whether to escape non-ASCII characters with
\uXXXX sequences
@return the number of characters required to escape string @a s
@complexity Linear in the length of string @a s.
*/
static std::size_t extra_space(const string_t& s,
const bool ensure_ascii) noexcept
{
std::size_t res = 0;
for (std::size_t i = 0; i < s.size(); ++i)
{
switch (s[i])
{
// control characters that can be escaped with a backslash
case '"':
case '\\':
case '\b':
case '\f':
case '\n':
case '\r':
case '\t':
{
// from c (1 byte) to \x (2 bytes)
res += 1;
break;
}
// control characters that need \uxxxx escaping
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x0B:
case 0x0E:
case 0x0F:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1A:
case 0x1B:
case 0x1C:
case 0x1D:
case 0x1E:
case 0x1F:
{
// from c (1 byte) to \uxxxx (6 bytes)
res += 5;
break;
}
default:
{
if (ensure_ascii and (s[i] & 0x80 or s[i] == 0x7F))
{
const auto bytes = bytes_following(static_cast<uint8_t>(s[i]));
// invalid characters will be detected by throw_if_invalid_utf8
assert (bytes != std::string::npos);
if (bytes == 3)
{
// codepoints that need 4 bytes (i.e., 3 additional
// bytes) in UTF-8 need a surrogate pair when \u
// escaping is used: from 4 bytes to \uxxxx\uxxxx
// (12 bytes)
res += (12 - bytes - 1);
}
else
{
// from x bytes to \uxxxx (6 bytes)
res += (6 - bytes - 1);
}
// skip the additional bytes
i += bytes;
}
break;
}
}
}
return res;
}
static void escape_codepoint(int codepoint, string_t& result, std::size_t& pos)
{
// expecting a proper codepoint
assert(0x00 <= codepoint and codepoint <= 0x10FFFF);
// the last written character was the backslash before the 'u'
assert(result[pos] == '\\');
// write the 'u'
result[++pos] = 'u';
// convert a number 0..15 to its hex representation (0..f)
static const std::array<char, 16> hexify =
{
{
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
}
};
if (codepoint < 0x10000)
{
// codepoints U+0000..U+FFFF can be represented as \uxxxx.
result[++pos] = hexify[(codepoint >> 12) & 0x0F];
result[++pos] = hexify[(codepoint >> 8) & 0x0F];
result[++pos] = hexify[(codepoint >> 4) & 0x0F];
result[++pos] = hexify[codepoint & 0x0F];
}
else
{
// codepoints U+10000..U+10FFFF need a surrogate pair to be
// represented as \uxxxx\uxxxx.
// http://www.unicode.org/faq/utf_bom.html#utf16-4
codepoint -= 0x10000;
const int high_surrogate = 0xD800 | ((codepoint >> 10) & 0x3FF);
const int low_surrogate = 0xDC00 | (codepoint & 0x3FF);
result[++pos] = hexify[(high_surrogate >> 12) & 0x0F];
result[++pos] = hexify[(high_surrogate >> 8) & 0x0F];
result[++pos] = hexify[(high_surrogate >> 4) & 0x0F];
result[++pos] = hexify[high_surrogate & 0x0F];
++pos; // backslash is already in output
result[++pos] = 'u';
result[++pos] = hexify[(low_surrogate >> 12) & 0x0F];
result[++pos] = hexify[(low_surrogate >> 8) & 0x0F];
result[++pos] = hexify[(low_surrogate >> 4) & 0x0F];
result[++pos] = hexify[low_surrogate & 0x0F];
}
++pos;
}
/*!
@brief dump escaped string
Escape a string by replacing certain special characters by a sequence of an
escape character (backslash) and another character and other control
characters by a sequence of "\u" followed by a four-digit hex
representation. The escaped string is written to output stream @a o.
@param[in] s the string to escape
@param[in] ensure_ascii whether to escape non-ASCII characters with
\uXXXX sequences
@complexity Linear in the length of string @a s.
*/
void dump_escaped(const string_t& s, const bool ensure_ascii) const
{
throw_if_invalid_utf8(s);
const auto space = extra_space(s, ensure_ascii);
if (space == 0)
{
o->write_characters(s.c_str(), s.size());
return;
}
// create a result string of necessary size
string_t result(s.size() + space, '\\');
std::size_t pos = 0;
for (std::size_t i = 0; i < s.size(); ++i)
{
switch (s[i])
{
case '"': // quotation mark (0x22)
{
result[pos + 1] = '"';
pos += 2;
break;
}
case '\\': // reverse solidus (0x5C)
{
// nothing to change
pos += 2;
break;
}
case '\b': // backspace (0x08)
{
result[pos + 1] = 'b';
pos += 2;
break;
}
case '\f': // formfeed (0x0C)
{
result[pos + 1] = 'f';
pos += 2;
break;
}
case '\n': // newline (0x0A)
{
result[pos + 1] = 'n';
pos += 2;
break;
}
case '\r': // carriage return (0x0D)
{
result[pos + 1] = 'r';
pos += 2;
break;
}
case '\t': // horizontal tab (0x09)
{
result[pos + 1] = 't';
pos += 2;
break;
}
default:
{
// escape control characters (0x00..0x1F) or, if
// ensure_ascii parameter is used, non-ASCII characters
if ((0x00 <= s[i] and s[i] <= 0x1F) or
(ensure_ascii and (s[i] & 0x80 or s[i] == 0x7F)))
{
const auto bytes = bytes_following(static_cast<uint8_t>(s[i]));
// invalid characters will be detected by throw_if_invalid_utf8
assert (bytes != std::string::npos);
// check that the additional bytes are present
assert(i + bytes < s.size());
// to use \uxxxx escaping, we first need to calculate
// the codepoint from the UTF-8 bytes
int codepoint = 0;
// bytes is unsigned type:
assert(bytes <= 3);
switch (bytes)
{
case 0:
{
codepoint = s[i] & 0xFF;
break;
}
case 1:
{
codepoint = ((s[i] & 0x3F) << 6)
+ (s[i + 1] & 0x7F);
break;
}
case 2:
{
codepoint = ((s[i] & 0x1F) << 12)
+ ((s[i + 1] & 0x7F) << 6)
+ (s[i + 2] & 0x7F);
break;
}
case 3:
{
codepoint = ((s[i] & 0xF) << 18)
+ ((s[i + 1] & 0x7F) << 12)
+ ((s[i + 2] & 0x7F) << 6)
+ (s[i + 3] & 0x7F);
break;
}
default:
break; // LCOV_EXCL_LINE
}
escape_codepoint(codepoint, result, pos);
i += bytes;
}
else
{
// all other characters are added as-is
result[pos++] = s[i];
}
break;
}
}
}
assert(pos == result.size());
o->write_characters(result.c_str(), result.size());
}
/*!
@brief dump an integer
Dump a given integer to output stream @a o. Works internally with
@a number_buffer.
@param[in] x integer number (signed or unsigned) to dump
@tparam NumberType either @a number_integer_t or @a number_unsigned_t
*/
template<typename NumberType, detail::enable_if_t<
std::is_same<NumberType, number_unsigned_t>::value or
std::is_same<NumberType, number_integer_t>::value,
int> = 0>
void dump_integer(NumberType x)
{
// special case for "0"
if (x == 0)
{
o->write_character('0');
return;
}
const bool is_negative = (x <= 0) and (x != 0); // see issue #755
std::size_t i = 0;
while (x != 0)
{
// spare 1 byte for '\0'
assert(i < number_buffer.size() - 1);
const auto digit = std::labs(static_cast<long>(x % 10));
number_buffer[i++] = static_cast<char>('0' + digit);
x /= 10;
}
if (is_negative)
{
// make sure there is capacity for the '-'
assert(i < number_buffer.size() - 2);
number_buffer[i++] = '-';
}
std::reverse(number_buffer.begin(), number_buffer.begin() + i);
o->write_characters(number_buffer.data(), i);
}
/*!
@brief dump a floating-point number
Dump a given floating-point number to output stream @a o. Works internally
with @a number_buffer.
@param[in] x floating-point number to dump
*/
void dump_float(number_float_t x)
{
// NaN / inf
if (not std::isfinite(x) or std::isnan(x))
{
o->write_characters("null", 4);
return;
}
// get number of digits for a text -> float -> text round-trip
static constexpr auto d = std::numeric_limits<number_float_t>::digits10;
// the actual conversion
std::ptrdiff_t len = snprintf(number_buffer.data(), number_buffer.size(), "%.*g", d, x);
// negative value indicates an error
assert(len > 0);
// check if buffer was large enough
assert(static_cast<std::size_t>(len) < number_buffer.size());
// erase thousands separator
if (thousands_sep != '\0')
{
const auto end = std::remove(number_buffer.begin(),
number_buffer.begin() + len, thousands_sep);
std::fill(end, number_buffer.end(), '\0');
assert((end - number_buffer.begin()) <= len);
len = (end - number_buffer.begin());
}
// convert decimal point to '.'
if (decimal_point != '\0' and decimal_point != '.')
{
const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point);
if (dec_pos != number_buffer.end())
{
*dec_pos = '.';
}
}
o->write_characters(number_buffer.data(), static_cast<std::size_t>(len));
// determine if need to append ".0"
const bool value_is_int_like =
std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1,
[](char c)
{
return (c == '.' or c == 'e');
});
if (value_is_int_like)
{
o->write_characters(".0", 2);
}
}
/*!
@brief check whether a string is UTF-8 encoded
The function checks each byte of a string whether it is UTF-8 encoded. The
result of the check is stored in the @a state parameter. The function must
be called initially with state 0 (accept). State 1 means the string must
be rejected, because the current byte is not allowed. If the string is
completely processed, but the state is non-zero, the string ended
prematurely; that is, the last byte indicated more bytes should have
followed.
@param[in,out] state the state of the decoding
@param[in] byte next byte to decode
@note The function has been edited: a std::array is used and the code
point is not calculated.
@copyright Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>
@sa http://bjoern.hoehrmann.de/utf-8/decoder/dfa/
*/
static void decode(uint8_t& state, const uint8_t byte)
{
static const std::array<uint8_t, 400> utf8d =
{
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9F
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // A0..BF
8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0..DF
0xA, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // E0..EF
0xB, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // F0..FF
0x0, 0x1, 0x2, 0x3, 0x5, 0x8, 0x7, 0x1, 0x1, 0x1, 0x4, 0x6, 0x1, 0x1, 0x1, 0x1, // s0..s0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, // s1..s2
1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // s3..s4
1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, // s5..s6
1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // s7..s8
}
};
const uint8_t type = utf8d[byte];
state = utf8d[256u + state * 16u + type];
}
/*!
@brief throw an exception if a string is not UTF-8 encoded
@param[in] str UTF-8 string to check
@throw type_error.316 if passed string is not UTF-8 encoded
@since version 3.0.0
*/
static void throw_if_invalid_utf8(const std::string& str)
{
// start with state 0 (= accept)
uint8_t state = 0;
for (size_t i = 0; i < str.size(); ++i)
{
const auto byte = static_cast<uint8_t>(str[i]);
decode(state, byte);
if (state == 1)
{
// state 1 means reject
std::stringstream ss;
ss << std::setw(2) << std::uppercase << std::setfill('0') << std::hex << static_cast<int>(byte);
JSON_THROW(type_error::create(316, "invalid UTF-8 byte at index " + std::to_string(i) + ": 0x" + ss.str()));
}
}
if (state != 0)
{
// we finish reading, but do not accept: string was incomplete
std::stringstream ss;
ss << std::setw(2) << std::uppercase << std::setfill('0') << std::hex << static_cast<int>(static_cast<uint8_t>(str.back()));
JSON_THROW(type_error::create(316, "incomplete UTF-8 string; last byte: 0x" + ss.str()));
}
}
private:
/// the output of the serializer
output_adapter_t<char> o = nullptr;
/// a (hopefully) large enough character buffer
std::array<char, 64> number_buffer{{}};
/// the locale
const std::lconv* loc = nullptr;
/// the locale's thousand separator character
const char thousands_sep = '\0';
/// the locale's decimal point character
const char decimal_point = '\0';
/// the indentation character
const char indent_char;
/// the indentation string
string_t indent_string;
};
template<typename BasicJsonType>
class json_ref
{