protobuf/conformance/binary_json_conformance_suite.cc

3034 lines
105 KiB
C++
Raw Normal View History

2018-08-09 00:00:41 +00:00
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "binary_json_conformance_suite.h"
2018-08-09 00:00:41 +00:00
#include "conformance_test.h"
#include "third_party/jsoncpp/json.h"
#include <google/protobuf/test_messages_proto3.pb.h>
#include <google/protobuf/test_messages_proto2.pb.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/text_format.h>
#include <google/protobuf/util/json_util.h>
2018-08-09 00:00:41 +00:00
#include <google/protobuf/util/type_resolver_util.h>
#include <google/protobuf/wire_format_lite.h>
using conformance::ConformanceRequest;
using conformance::ConformanceResponse;
using conformance::WireFormat;
2018-08-09 00:00:41 +00:00
using google::protobuf::Descriptor;
using google::protobuf::FieldDescriptor;
using google::protobuf::Message;
using google::protobuf::internal::WireFormatLite;
using google::protobuf::TextFormat;
using google::protobuf::util::NewTypeResolverForDescriptorPool;
using protobuf_test_messages::proto3::TestAllTypesProto3;
using protobuf_test_messages::proto2::TestAllTypesProto2;
using std::string;
namespace {
static const char kTypeUrlPrefix[] = "type.googleapis.com";
static string GetTypeUrl(const Descriptor* message) {
return string(kTypeUrlPrefix) + "/" + message->full_name();
}
/* Routines for building arbitrary protos *************************************/
// We would use CodedOutputStream except that we want more freedom to build
// arbitrary protos (even invalid ones).
const string empty;
string cat(const string& a, const string& b,
const string& c = empty,
const string& d = empty,
const string& e = empty,
const string& f = empty,
const string& g = empty,
const string& h = empty,
const string& i = empty,
const string& j = empty,
const string& k = empty,
const string& l = empty) {
string ret;
ret.reserve(a.size() + b.size() + c.size() + d.size() + e.size() + f.size() +
g.size() + h.size() + i.size() + j.size() + k.size() + l.size());
ret.append(a);
ret.append(b);
ret.append(c);
ret.append(d);
ret.append(e);
ret.append(f);
ret.append(g);
ret.append(h);
ret.append(i);
ret.append(j);
ret.append(k);
ret.append(l);
return ret;
}
// The maximum number of bytes that it takes to encode a 64-bit varint.
#define VARINT_MAX_LEN 10
size_t vencode64(uint64_t val, int over_encoded_bytes, char *buf) {
if (val == 0) { buf[0] = 0; return 1; }
size_t i = 0;
while (val) {
uint8_t byte = val & 0x7fU;
val >>= 7;
if (val || over_encoded_bytes) byte |= 0x80U;
buf[i++] = byte;
}
while (over_encoded_bytes--) {
assert(i < 10);
uint8_t byte = over_encoded_bytes ? 0x80 : 0;
buf[i++] = byte;
}
return i;
}
string varint(uint64_t x) {
char buf[VARINT_MAX_LEN];
size_t len = vencode64(x, 0, buf);
return string(buf, len);
}
// Encodes a varint that is |extra| bytes longer than it needs to be, but still
// valid.
string longvarint(uint64_t x, int extra) {
char buf[VARINT_MAX_LEN];
size_t len = vencode64(x, extra, buf);
return string(buf, len);
}
// TODO: proper byte-swapping for big-endian machines.
string fixed32(void *data) { return string(static_cast<char*>(data), 4); }
string fixed64(void *data) { return string(static_cast<char*>(data), 8); }
string delim(const string& buf) { return cat(varint(buf.size()), buf); }
string u32(uint32_t u32) { return fixed32(&u32); }
string u64(uint64_t u64) { return fixed64(&u64); }
string flt(float f) { return fixed32(&f); }
string dbl(double d) { return fixed64(&d); }
string zz32(int32_t x) { return varint(WireFormatLite::ZigZagEncode32(x)); }
string zz64(int64_t x) { return varint(WireFormatLite::ZigZagEncode64(x)); }
string tag(uint32_t fieldnum, char wire_type) {
return varint((fieldnum << 3) | wire_type);
}
string GetDefaultValue(FieldDescriptor::Type type) {
switch (type) {
case FieldDescriptor::TYPE_INT32:
case FieldDescriptor::TYPE_INT64:
case FieldDescriptor::TYPE_UINT32:
case FieldDescriptor::TYPE_UINT64:
case FieldDescriptor::TYPE_ENUM:
case FieldDescriptor::TYPE_BOOL:
return varint(0);
case FieldDescriptor::TYPE_SINT32:
return zz32(0);
case FieldDescriptor::TYPE_SINT64:
return zz64(0);
case FieldDescriptor::TYPE_FIXED32:
case FieldDescriptor::TYPE_SFIXED32:
return u32(0);
case FieldDescriptor::TYPE_FIXED64:
case FieldDescriptor::TYPE_SFIXED64:
return u64(0);
case FieldDescriptor::TYPE_FLOAT:
return flt(0);
case FieldDescriptor::TYPE_DOUBLE:
return dbl(0);
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES:
case FieldDescriptor::TYPE_MESSAGE:
return delim("");
}
return "";
}
string GetNonDefaultValue(FieldDescriptor::Type type) {
switch (type) {
case FieldDescriptor::TYPE_INT32:
case FieldDescriptor::TYPE_INT64:
case FieldDescriptor::TYPE_UINT32:
case FieldDescriptor::TYPE_UINT64:
case FieldDescriptor::TYPE_ENUM:
case FieldDescriptor::TYPE_BOOL:
return varint(1);
case FieldDescriptor::TYPE_SINT32:
return zz32(1);
case FieldDescriptor::TYPE_SINT64:
return zz64(1);
case FieldDescriptor::TYPE_FIXED32:
case FieldDescriptor::TYPE_SFIXED32:
return u32(1);
case FieldDescriptor::TYPE_FIXED64:
case FieldDescriptor::TYPE_SFIXED64:
return u64(1);
case FieldDescriptor::TYPE_FLOAT:
return flt(1);
case FieldDescriptor::TYPE_DOUBLE:
return dbl(1);
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES:
return delim("a");
case FieldDescriptor::TYPE_MESSAGE:
return delim(cat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1234)));
}
return "";
}
2018-08-09 00:00:41 +00:00
#define UNKNOWN_FIELD 666
enum class Packed {
UNSPECIFIED = 0,
TRUE = 1,
FALSE = 2,
};
2019-08-22 23:14:22 +00:00
const FieldDescriptor* GetFieldForType(FieldDescriptor::Type type,
bool repeated, bool is_proto3,
Packed packed = Packed::UNSPECIFIED) {
2018-08-09 00:00:41 +00:00
const Descriptor* d = is_proto3 ?
TestAllTypesProto3().GetDescriptor() : TestAllTypesProto2().GetDescriptor();
for (int i = 0; i < d->field_count(); i++) {
const FieldDescriptor* f = d->field(i);
if (f->type() == type && f->is_repeated() == repeated) {
2019-08-22 23:14:22 +00:00
if ((packed == Packed::TRUE && !f->is_packed()) ||
(packed == Packed::FALSE && f->is_packed())) {
continue;
}
2018-08-09 00:00:41 +00:00
return f;
}
}
string packed_string = "";
const string repeated_string = repeated ? "Repeated " : "Singular ";
const string proto_string = is_proto3 ? "Proto3" : "Proto2";
if (packed == Packed::TRUE) {
packed_string = "Packed ";
}
if (packed == Packed::FALSE) {
packed_string = "Unpacked ";
}
GOOGLE_LOG(FATAL) << "Couldn't find field with type: "
2019-08-22 23:14:22 +00:00
<< repeated_string.c_str() << packed_string.c_str()
<< FieldDescriptor::TypeName(type) << " for "
<< proto_string.c_str();
2018-08-09 00:00:41 +00:00
return nullptr;
}
const FieldDescriptor* GetFieldForMapType(
FieldDescriptor::Type key_type,
FieldDescriptor::Type value_type,
bool is_proto3) {
const Descriptor* d = is_proto3 ?
TestAllTypesProto3().GetDescriptor() : TestAllTypesProto2().GetDescriptor();
for (int i = 0; i < d->field_count(); i++) {
const FieldDescriptor* f = d->field(i);
if (f->is_map()) {
const Descriptor* map_entry = f->message_type();
const FieldDescriptor* key = map_entry->field(0);
const FieldDescriptor* value = map_entry->field(1);
if (key->type() == key_type && value->type() == value_type) {
return f;
}
}
}
const string proto_string = is_proto3 ? "Proto3" : "Proto2";
GOOGLE_LOG(FATAL) << "Couldn't find map field with type: "
<< FieldDescriptor::TypeName(key_type)
<< " and "
<< FieldDescriptor::TypeName(key_type)
<< " for "
<< proto_string.c_str();
return nullptr;
}
2018-08-09 00:00:41 +00:00
string UpperCase(string str) {
for (int i = 0; i < str.size(); i++) {
str[i] = toupper(str[i]);
}
return str;
}
std::unique_ptr<Message> NewTestMessage(bool is_proto3) {
std::unique_ptr<Message> prototype;
if (is_proto3) {
prototype.reset(new TestAllTypesProto3());
} else {
prototype.reset(new TestAllTypesProto2());
}
return prototype;
}
bool IsProto3Default(FieldDescriptor::Type type, const string& binary_data) {
switch (type) {
case FieldDescriptor::TYPE_DOUBLE:
return binary_data == dbl(0);
case FieldDescriptor::TYPE_FLOAT:
return binary_data == flt(0);
case FieldDescriptor::TYPE_BOOL:
case FieldDescriptor::TYPE_INT64:
case FieldDescriptor::TYPE_UINT64:
case FieldDescriptor::TYPE_INT32:
case FieldDescriptor::TYPE_UINT32:
case FieldDescriptor::TYPE_SINT32:
case FieldDescriptor::TYPE_SINT64:
case FieldDescriptor::TYPE_ENUM:
return binary_data == varint(0);
case FieldDescriptor::TYPE_FIXED64:
case FieldDescriptor::TYPE_SFIXED64:
return binary_data == u64(0);
case FieldDescriptor::TYPE_FIXED32:
case FieldDescriptor::TYPE_SFIXED32:
return binary_data == u32(0);
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES:
return binary_data == delim("");
default:
return false;
}
}
2018-08-09 00:00:41 +00:00
} // anonymous namespace
namespace google {
namespace protobuf {
bool BinaryAndJsonConformanceSuite::ParseJsonResponse(
const ConformanceResponse& response,
Message* test_message) {
string binary_protobuf;
util::Status status =
JsonToBinaryString(type_resolver_.get(), type_url_,
response.json_payload(), &binary_protobuf);
if (!status.ok()) {
return false;
}
if (!test_message->ParseFromString(binary_protobuf)) {
GOOGLE_LOG(FATAL)
<< "INTERNAL ERROR: internal JSON->protobuf transcode "
<< "yielded unparseable proto.";
return false;
}
return true;
}
bool BinaryAndJsonConformanceSuite::ParseResponse(
const ConformanceResponse& response,
const ConformanceRequestSetting& setting,
Message* test_message) {
const ConformanceRequest& request = setting.GetRequest();
WireFormat requested_output = request.requested_output_format();
const string& test_name = setting.GetTestName();
ConformanceLevel level = setting.GetLevel();
switch (response.result_case()) {
case ConformanceResponse::kProtobufPayload: {
if (requested_output != conformance::PROTOBUF) {
ReportFailure(
test_name, level, request, response,
StrCat("Test was asked for ", WireFormatToString(requested_output),
" output but provided PROTOBUF instead.").c_str());
return false;
}
if (!test_message->ParseFromString(response.protobuf_payload())) {
ReportFailure(test_name, level, request, response,
"Protobuf output we received from test was unparseable.");
return false;
}
break;
}
case ConformanceResponse::kJsonPayload: {
if (requested_output != conformance::JSON) {
ReportFailure(
test_name, level, request, response,
StrCat("Test was asked for ", WireFormatToString(requested_output),
" output but provided JSON instead.").c_str());
return false;
}
if (!ParseJsonResponse(response, test_message)) {
ReportFailure(test_name, level, request, response,
"JSON output we received from test was unparseable.");
return false;
}
break;
}
default:
GOOGLE_LOG(FATAL) << test_name << ": unknown payload type: "
<< response.result_case();
}
return true;
}
void BinaryAndJsonConformanceSuite::ExpectParseFailureForProtoWithProtoVersion (
2018-08-09 00:00:41 +00:00
const string& proto, const string& test_name, ConformanceLevel level,
bool is_proto3) {
std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
// We don't expect output, but if the program erroneously accepts the protobuf
// we let it send its response as this. We must not leave it unspecified.
ConformanceRequestSetting setting(
level, conformance::PROTOBUF, conformance::PROTOBUF,
conformance::BINARY_TEST,
*prototype, test_name, proto);
const ConformanceRequest& request = setting.GetRequest();
ConformanceResponse response;
string effective_test_name =
StrCat(setting.ConformanceLevelToString(level),
(is_proto3 ? ".Proto3" : ".Proto2"),
".ProtobufInput.", test_name);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kParseError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, level, request, response,
"Should have failed to parse, but didn't.");
}
}
// Expect that this precise protobuf will cause a parse error.
void BinaryAndJsonConformanceSuite::ExpectParseFailureForProto(
2018-08-09 00:00:41 +00:00
const string& proto, const string& test_name, ConformanceLevel level) {
ExpectParseFailureForProtoWithProtoVersion(proto, test_name, level, true);
ExpectParseFailureForProtoWithProtoVersion(proto, test_name, level, false);
}
// Expect that this protobuf will cause a parse error, even if it is followed
// by valid protobuf data. We can try running this twice: once with this
// data verbatim and once with this data followed by some valid data.
//
// TODO(haberman): implement the second of these.
void BinaryAndJsonConformanceSuite::ExpectHardParseFailureForProto(
2018-08-09 00:00:41 +00:00
const string& proto, const string& test_name, ConformanceLevel level) {
return ExpectParseFailureForProto(proto, test_name, level);
}
void BinaryAndJsonConformanceSuite::RunValidJsonTest(
2018-08-09 00:00:41 +00:00
const string& test_name, ConformanceLevel level, const string& input_json,
const string& equivalent_text_format) {
TestAllTypesProto3 prototype;
ConformanceRequestSetting setting1(
level, conformance::JSON, conformance::PROTOBUF,
conformance::JSON_TEST,
prototype, test_name, input_json);
RunValidInputTest(setting1, equivalent_text_format);
ConformanceRequestSetting setting2(
level, conformance::JSON, conformance::JSON,
conformance::JSON_TEST,
prototype, test_name, input_json);
RunValidInputTest(setting2, equivalent_text_format);
}
void BinaryAndJsonConformanceSuite::RunValidJsonTestWithProtobufInput(
2018-08-09 00:00:41 +00:00
const string& test_name, ConformanceLevel level, const TestAllTypesProto3& input,
const string& equivalent_text_format) {
ConformanceRequestSetting setting(
level, conformance::PROTOBUF, conformance::JSON,
conformance::JSON_TEST,
input, test_name, input.SerializeAsString());
RunValidInputTest(setting, equivalent_text_format);
}
void BinaryAndJsonConformanceSuite::RunValidJsonIgnoreUnknownTest(
2018-08-09 00:00:41 +00:00
const string& test_name, ConformanceLevel level, const string& input_json,
const string& equivalent_text_format) {
TestAllTypesProto3 prototype;
ConformanceRequestSetting setting(
level, conformance::JSON, conformance::PROTOBUF,
conformance::JSON_IGNORE_UNKNOWN_PARSING_TEST,
prototype, test_name, input_json);
RunValidInputTest(setting, equivalent_text_format);
}
void BinaryAndJsonConformanceSuite::RunValidProtobufTest(
2018-08-09 00:00:41 +00:00
const string& test_name, ConformanceLevel level,
const string& input_protobuf, const string& equivalent_text_format,
bool is_proto3) {
std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
ConformanceRequestSetting setting1(
level, conformance::PROTOBUF, conformance::PROTOBUF,
conformance::BINARY_TEST,
*prototype, test_name, input_protobuf);
RunValidInputTest(setting1, equivalent_text_format);
if (is_proto3) {
ConformanceRequestSetting setting2(
level, conformance::PROTOBUF, conformance::JSON,
conformance::BINARY_TEST,
*prototype, test_name, input_protobuf);
RunValidInputTest(setting2, equivalent_text_format);
}
}
void BinaryAndJsonConformanceSuite::RunValidBinaryProtobufTest(
2018-08-09 00:00:41 +00:00
const string& test_name, ConformanceLevel level,
const string& input_protobuf, bool is_proto3) {
2019-08-22 23:14:22 +00:00
RunValidBinaryProtobufTest(test_name, level, input_protobuf, input_protobuf,
is_proto3);
}
void BinaryAndJsonConformanceSuite::RunValidBinaryProtobufTest(
const string& test_name, ConformanceLevel level,
2019-08-22 23:14:22 +00:00
const string& input_protobuf, const string& expected_protobuf,
bool is_proto3) {
2018-08-09 00:00:41 +00:00
std::unique_ptr<Message> prototype = NewTestMessage(is_proto3);
ConformanceRequestSetting setting(
level, conformance::PROTOBUF, conformance::PROTOBUF,
conformance::BINARY_TEST,
*prototype, test_name, input_protobuf);
RunValidBinaryInputTest(setting, expected_protobuf, true);
2018-08-09 00:00:41 +00:00
}
void BinaryAndJsonConformanceSuite::RunValidProtobufTestWithMessage(
2018-08-09 00:00:41 +00:00
const string& test_name, ConformanceLevel level, const Message *input,
const string& equivalent_text_format, bool is_proto3) {
RunValidProtobufTest(test_name, level, input->SerializeAsString(),
equivalent_text_format, is_proto3);
}
// According to proto3 JSON specification, JSON serializers follow more strict
// rules than parsers (e.g., a serializer must serialize int32 values as JSON
// numbers while the parser is allowed to accept them as JSON strings). This
// method allows strict checking on a proto3 JSON serializer by inspecting
// the JSON output directly.
void BinaryAndJsonConformanceSuite::RunValidJsonTestWithValidator(
2018-08-09 00:00:41 +00:00
const string& test_name, ConformanceLevel level, const string& input_json,
const Validator& validator) {
TestAllTypesProto3 prototype;
ConformanceRequestSetting setting(
level, conformance::JSON, conformance::JSON,
conformance::JSON_TEST,
prototype, test_name, input_json);
const ConformanceRequest& request = setting.GetRequest();
ConformanceResponse response;
string effective_test_name =
StrCat(setting.ConformanceLevelToString(level),
".Proto3.JsonInput.",
test_name, ".Validator");
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
return;
}
if (response.result_case() != ConformanceResponse::kJsonPayload) {
ReportFailure(effective_test_name, level, request, response,
"Expected JSON payload but got type %d.",
response.result_case());
return;
}
Json::Reader reader;
Json::Value value;
if (!reader.parse(response.json_payload(), value)) {
ReportFailure(effective_test_name, level, request, response,
"JSON payload cannot be parsed as valid JSON: %s",
reader.getFormattedErrorMessages().c_str());
return;
}
if (!validator(value)) {
ReportFailure(effective_test_name, level, request, response,
"JSON payload validation failed.");
return;
}
ReportSuccess(effective_test_name);
}
void BinaryAndJsonConformanceSuite::ExpectParseFailureForJson(
2018-08-09 00:00:41 +00:00
const string& test_name, ConformanceLevel level, const string& input_json) {
TestAllTypesProto3 prototype;
// We don't expect output, but if the program erroneously accepts the protobuf
// we let it send its response as this. We must not leave it unspecified.
ConformanceRequestSetting setting(
level, conformance::JSON, conformance::JSON,
conformance::JSON_TEST,
prototype, test_name, input_json);
const ConformanceRequest& request = setting.GetRequest();
ConformanceResponse response;
string effective_test_name =
StrCat(setting.ConformanceLevelToString(level),
".Proto3.JsonInput.", test_name);
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kParseError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, level, request, response,
"Should have failed to parse, but didn't.");
}
}
void BinaryAndJsonConformanceSuite::ExpectSerializeFailureForJson(
2018-08-09 00:00:41 +00:00
const string& test_name, ConformanceLevel level, const string& text_format) {
TestAllTypesProto3 payload_message;
GOOGLE_CHECK(
TextFormat::ParseFromString(text_format, &payload_message))
<< "Failed to parse: " << text_format;
TestAllTypesProto3 prototype;
ConformanceRequestSetting setting(
level, conformance::PROTOBUF, conformance::JSON,
conformance::JSON_TEST,
prototype, test_name, payload_message.SerializeAsString());
const ConformanceRequest& request = setting.GetRequest();
ConformanceResponse response;
string effective_test_name =
StrCat(setting.ConformanceLevelToString(level),
".", test_name, ".JsonOutput");
RunTest(effective_test_name, request, &response);
if (response.result_case() == ConformanceResponse::kSerializeError) {
ReportSuccess(effective_test_name);
} else if (response.result_case() == ConformanceResponse::kSkipped) {
ReportSkip(effective_test_name, request, response);
} else {
ReportFailure(effective_test_name, level, request, response,
"Should have failed to serialize, but didn't.");
}
}
void BinaryAndJsonConformanceSuite::TestPrematureEOFForType(
2018-08-09 00:00:41 +00:00
FieldDescriptor::Type type) {
// Incomplete values for each wire type.
static const string incompletes[6] = {
string("\x80"), // VARINT
string("abcdefg"), // 64BIT
string("\x80"), // DELIMITED (partial length)
string(), // START_GROUP (no value required)
string(), // END_GROUP (no value required)
string("abc") // 32BIT
};
const FieldDescriptor* field = GetFieldForType(type, false, true);
const FieldDescriptor* rep_field = GetFieldForType(type, true, true);
WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(type));
const string& incomplete = incompletes[wire_type];
const string type_name =
UpperCase(string(".") + FieldDescriptor::TypeName(type));
ExpectParseFailureForProto(
tag(field->number(), wire_type),
"PrematureEofBeforeKnownNonRepeatedValue" + type_name, REQUIRED);
ExpectParseFailureForProto(
tag(rep_field->number(), wire_type),
"PrematureEofBeforeKnownRepeatedValue" + type_name, REQUIRED);
ExpectParseFailureForProto(
tag(UNKNOWN_FIELD, wire_type),
"PrematureEofBeforeUnknownValue" + type_name, REQUIRED);
ExpectParseFailureForProto(
cat( tag(field->number(), wire_type), incomplete ),
"PrematureEofInsideKnownNonRepeatedValue" + type_name, REQUIRED);
ExpectParseFailureForProto(
cat( tag(rep_field->number(), wire_type), incomplete ),
"PrematureEofInsideKnownRepeatedValue" + type_name, REQUIRED);
ExpectParseFailureForProto(
cat( tag(UNKNOWN_FIELD, wire_type), incomplete ),
"PrematureEofInsideUnknownValue" + type_name, REQUIRED);
if (wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
ExpectParseFailureForProto(
cat( tag(field->number(), wire_type), varint(1) ),
"PrematureEofInDelimitedDataForKnownNonRepeatedValue" + type_name,
REQUIRED);
ExpectParseFailureForProto(
cat( tag(rep_field->number(), wire_type), varint(1) ),
"PrematureEofInDelimitedDataForKnownRepeatedValue" + type_name,
REQUIRED);
// EOF in the middle of delimited data for unknown value.
ExpectParseFailureForProto(
cat( tag(UNKNOWN_FIELD, wire_type), varint(1) ),
"PrematureEofInDelimitedDataForUnknownValue" + type_name, REQUIRED);
if (type == FieldDescriptor::TYPE_MESSAGE) {
// Submessage ends in the middle of a value.
string incomplete_submsg =
cat( tag(WireFormatLite::TYPE_INT32, WireFormatLite::WIRETYPE_VARINT),
incompletes[WireFormatLite::WIRETYPE_VARINT] );
ExpectHardParseFailureForProto(
cat( tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(incomplete_submsg.size()),
incomplete_submsg ),
"PrematureEofInSubmessageValue" + type_name, REQUIRED);
}
} else if (type != FieldDescriptor::TYPE_GROUP) {
// Non-delimited, non-group: eligible for packing.
// Packed region ends in the middle of a value.
ExpectHardParseFailureForProto(
cat(tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(incomplete.size()), incomplete),
"PrematureEofInPackedFieldValue" + type_name, REQUIRED);
// EOF in the middle of packed region.
ExpectParseFailureForProto(
cat(tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
varint(1)),
"PrematureEofInPackedField" + type_name, REQUIRED);
}
}
void BinaryAndJsonConformanceSuite::TestValidDataForType(
2018-08-09 00:00:41 +00:00
FieldDescriptor::Type type,
std::vector<std::pair<std::string, std::string>> values) {
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
const string type_name =
UpperCase(string(".") + FieldDescriptor::TypeName(type));
WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(type));
const FieldDescriptor* field = GetFieldForType(type, false, is_proto3);
const FieldDescriptor* rep_field = GetFieldForType(type, true, is_proto3);
// Test singular data for singular fields.
for (size_t i = 0; i < values.size(); i++) {
2019-08-22 23:14:22 +00:00
string proto = cat(tag(field->number(), wire_type), values[i].first);
// In proto3, default primitive fields should not be encoded.
string expected_proto =
is_proto3 && IsProto3Default(field->type(), values[i].second) ?
"" :
cat(tag(field->number(), wire_type), values[i].second);
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(expected_proto);
string text = test_message->DebugString();
RunValidProtobufTest(StrCat("ValidDataScalar", type_name, "[", i, "]"),
REQUIRED, proto, text, is_proto3);
RunValidBinaryProtobufTest(
StrCat("ValidDataScalarBinary", type_name, "[", i, "]"),
RECOMMENDED,
proto,
expected_proto, is_proto3);
}
2018-08-09 00:00:41 +00:00
// Test repeated data for singular fields.
// For scalar message fields, repeated values are merged, which is tested
// separately.
if (type != FieldDescriptor::TYPE_MESSAGE) {
string proto;
for (size_t i = 0; i < values.size(); i++) {
proto += cat(tag(field->number(), wire_type), values[i].first);
}
string expected_proto =
cat(tag(field->number(), wire_type), values.back().second);
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(expected_proto);
string text = test_message->DebugString();
RunValidProtobufTest("RepeatedScalarSelectsLast" + type_name, REQUIRED,
proto, text, is_proto3);
}
2018-08-09 00:00:41 +00:00
// Test repeated fields.
if (FieldDescriptor::IsTypePackable(type)) {
const FieldDescriptor* packed_field =
GetFieldForType(type, true, is_proto3, Packed::TRUE);
const FieldDescriptor* unpacked_field =
GetFieldForType(type, true, is_proto3, Packed::FALSE);
string default_proto_packed;
string default_proto_unpacked;
string default_proto_packed_expected;
string default_proto_unpacked_expected;
string packed_proto_packed;
string packed_proto_unpacked;
string packed_proto_expected;
string unpacked_proto_packed;
string unpacked_proto_unpacked;
string unpacked_proto_expected;
for (size_t i = 0; i < values.size(); i++) {
default_proto_unpacked +=
cat(tag(rep_field->number(), wire_type), values[i].first);
default_proto_unpacked_expected +=
cat(tag(rep_field->number(), wire_type), values[i].second);
default_proto_packed += values[i].first;
default_proto_packed_expected += values[i].second;
packed_proto_unpacked +=
cat(tag(packed_field->number(), wire_type), values[i].first);
packed_proto_packed += values[i].first;
packed_proto_expected += values[i].second;
unpacked_proto_unpacked +=
cat(tag(unpacked_field->number(), wire_type), values[i].first);
unpacked_proto_packed += values[i].first;
unpacked_proto_expected +=
cat(tag(unpacked_field->number(), wire_type), values[i].second);
}
2019-08-22 23:14:22 +00:00
default_proto_packed = cat(
tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(default_proto_packed));
default_proto_packed_expected = cat(
tag(rep_field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(default_proto_packed_expected));
packed_proto_packed = cat(tag(packed_field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(packed_proto_packed));
packed_proto_expected =
cat(tag(packed_field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(packed_proto_expected));
unpacked_proto_packed =
cat(tag(unpacked_field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(unpacked_proto_packed));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(default_proto_packed_expected);
string text = test_message->DebugString();
// Ensures both packed and unpacked data can be parsed.
RunValidProtobufTest(
2019-08-22 23:14:22 +00:00
StrCat("ValidDataRepeated", type_name, ".UnpackedInput"), REQUIRED,
default_proto_unpacked, text, is_proto3);
RunValidProtobufTest(
2019-08-22 23:14:22 +00:00
StrCat("ValidDataRepeated", type_name, ".PackedInput"), REQUIRED,
default_proto_packed, text, is_proto3);
// proto2 should encode as unpacked by default and proto3 should encode as
// packed by default.
2019-08-22 23:14:22 +00:00
string expected_proto = rep_field->is_packed()
? default_proto_packed_expected
: default_proto_unpacked_expected;
RunValidBinaryProtobufTest(StrCat("ValidDataRepeated", type_name,
".UnpackedInput.DefaultOutput"),
RECOMMENDED, default_proto_unpacked,
expected_proto, is_proto3);
RunValidBinaryProtobufTest(
2019-08-22 23:14:22 +00:00
StrCat("ValidDataRepeated", type_name, ".PackedInput.DefaultOutput"),
RECOMMENDED, default_proto_packed, expected_proto, is_proto3);
RunValidBinaryProtobufTest(
2019-08-22 23:14:22 +00:00
StrCat("ValidDataRepeated", type_name, ".UnpackedInput.PackedOutput"),
RECOMMENDED, packed_proto_unpacked, packed_proto_expected, is_proto3);
RunValidBinaryProtobufTest(
2019-08-22 23:14:22 +00:00
StrCat("ValidDataRepeated", type_name, ".PackedInput.PackedOutput"),
RECOMMENDED, packed_proto_packed, packed_proto_expected, is_proto3);
RunValidBinaryProtobufTest(StrCat("ValidDataRepeated", type_name,
".UnpackedInput.UnpackedOutput"),
RECOMMENDED, unpacked_proto_unpacked,
unpacked_proto_expected, is_proto3);
RunValidBinaryProtobufTest(
2019-08-22 23:14:22 +00:00
StrCat("ValidDataRepeated", type_name, ".PackedInput.UnpackedOutput"),
RECOMMENDED, unpacked_proto_packed, unpacked_proto_expected,
is_proto3);
} else {
string proto;
string expected_proto;
for (size_t i = 0; i < values.size(); i++) {
proto += cat(tag(rep_field->number(), wire_type), values[i].first);
expected_proto +=
cat(tag(rep_field->number(), wire_type), values[i].second);
}
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(expected_proto);
string text = test_message->DebugString();
2018-08-09 00:00:41 +00:00
2019-08-22 23:14:22 +00:00
RunValidProtobufTest(StrCat("ValidDataRepeated", type_name), REQUIRED,
proto, text, is_proto3);
2018-08-09 00:00:41 +00:00
}
}
}
void BinaryAndJsonConformanceSuite::TestValidDataForRepeatedScalarMessage() {
std::vector<std::string> values = {
2019-08-22 23:14:22 +00:00
delim(cat(
tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1234),
tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1234),
2019-08-22 23:14:22 +00:00
tag(31, WireFormatLite::WIRETYPE_VARINT), varint(1234))))),
delim(cat(
tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(4321),
tag(3, WireFormatLite::WIRETYPE_VARINT), varint(4321),
2019-08-22 23:14:22 +00:00
tag(31, WireFormatLite::WIRETYPE_VARINT), varint(4321))))),
};
const std::string expected =
R"({
corecursive: {
optional_int32: 4321,
optional_int64: 1234,
optional_uint32: 4321,
repeated_int32: [1234, 4321],
}
})";
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
string proto;
const FieldDescriptor* field =
GetFieldForType(FieldDescriptor::TYPE_MESSAGE, false, is_proto3);
for (size_t i = 0; i < values.size(); i++) {
proto +=
cat(tag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
values[i]);
}
2019-08-22 23:14:22 +00:00
RunValidProtobufTest("RepeatedScalarMessageMerge", REQUIRED, proto,
field->name() + ": " + expected, is_proto3);
}
}
void BinaryAndJsonConformanceSuite::TestValidDataForMapType(
FieldDescriptor::Type key_type,
FieldDescriptor::Type value_type) {
const string key_type_name =
UpperCase(string(".") + FieldDescriptor::TypeName(key_type));
const string value_type_name =
UpperCase(string(".") + FieldDescriptor::TypeName(value_type));
WireFormatLite::WireType key_wire_type =
WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(key_type));
WireFormatLite::WireType value_wire_type =
WireFormatLite::WireTypeForFieldType(
static_cast<WireFormatLite::FieldType>(value_type));
string key1_data =
cat(tag(1, key_wire_type), GetDefaultValue(key_type));
string value1_data =
cat(tag(2, value_wire_type), GetDefaultValue(value_type));
string key2_data =
cat(tag(1, key_wire_type), GetNonDefaultValue(key_type));
string value2_data =
cat(tag(2, value_wire_type), GetNonDefaultValue(value_type));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
const FieldDescriptor* field =
GetFieldForMapType(key_type, value_type, is_proto3);
{
// Tests map with default key and value.
string proto = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(key1_data, value1_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text = test_message->DebugString();
RunValidProtobufTest(
StrCat("ValidDataMap",
key_type_name,
value_type_name,
".Default"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with missing default key and value.
string proto = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(""));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text = test_message->DebugString();
RunValidProtobufTest(
StrCat("ValidDataMap",
key_type_name,
value_type_name,
".MissingDefault"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with non-default key and value.
string proto = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(key2_data, value2_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text = test_message->DebugString();
RunValidProtobufTest(
StrCat("ValidDataMap",
key_type_name,
value_type_name,
".NonDefault"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with unordered key and value.
string proto = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(value2_data, key2_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text = test_message->DebugString();
RunValidProtobufTest(
StrCat("ValidDataMap",
key_type_name,
value_type_name,
".Unordered"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with duplicate key.
string proto1 = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(key2_data, value1_data)));
string proto2 = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(key2_data, value2_data)));
string proto = cat(proto1, proto2);
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto2);
string text = test_message->DebugString();
RunValidProtobufTest(
StrCat("ValidDataMap",
key_type_name,
value_type_name,
".DuplicateKey"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with duplicate key in map entry.
string proto = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(key1_data, key2_data, value2_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text = test_message->DebugString();
RunValidProtobufTest(
StrCat("ValidDataMap",
key_type_name,
value_type_name,
".DuplicateKeyInMapEntry"),
REQUIRED, proto, text, is_proto3);
}
{
// Tests map with duplicate value in map entry.
string proto = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(key2_data, value1_data, value2_data)));
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto);
string text = test_message->DebugString();
RunValidProtobufTest(
StrCat("ValidDataMap",
key_type_name,
value_type_name,
".DuplicateValueInMapEntry"),
REQUIRED, proto, text, is_proto3);
}
}
}
void BinaryAndJsonConformanceSuite::TestOverwriteMessageValueMap() {
string key_data =
cat(tag(1, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), delim(""));
string field1_data = cat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1));
string field2_data = cat(tag(2, WireFormatLite::WIRETYPE_VARINT), varint(1));
string field31_data = cat(tag(31, WireFormatLite::WIRETYPE_VARINT), varint(1));
string submsg1_data = delim(cat(field1_data, field31_data));
string submsg2_data = delim(cat(field2_data, field31_data));
string value1_data =
cat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
submsg1_data)));
string value2_data =
cat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(tag(2, WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
submsg2_data)));
for (int is_proto3 = 0; is_proto3 < 2; is_proto3++) {
const FieldDescriptor* field =
GetFieldForMapType(
FieldDescriptor::TYPE_STRING,
FieldDescriptor::TYPE_MESSAGE, is_proto3);
string proto1 = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(key_data, value1_data)));
string proto2 = cat(tag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED),
delim(cat(key_data, value2_data)));
string proto = cat(proto1, proto2);
std::unique_ptr<Message> test_message = NewTestMessage(is_proto3);
test_message->MergeFromString(proto2);
string text = test_message->DebugString();
RunValidProtobufTest(
"ValidDataMap.STRING.MESSAGE.MergeValue",
REQUIRED, proto, text, is_proto3);
}
}
void BinaryAndJsonConformanceSuite::TestIllegalTags() {
2018-08-09 00:00:41 +00:00
// field num 0 is illegal
string nullfield[] = {
"\1DEADBEEF",
"\2\1\1",
"\3\4",
"\5DEAD"
};
for (int i = 0; i < 4; i++) {
string name = "IllegalZeroFieldNum_Case_0";
name.back() += i;
ExpectParseFailureForProto(nullfield[i], name, REQUIRED);
}
}
template <class MessageType>
void BinaryAndJsonConformanceSuite::TestOneofMessage (
2018-08-09 00:00:41 +00:00
MessageType &message, bool is_proto3) {
message.set_oneof_uint32(0);
RunValidProtobufTestWithMessage(
"OneofZeroUint32", RECOMMENDED, &message, "oneof_uint32: 0", is_proto3);
message.mutable_oneof_nested_message()->set_a(0);
RunValidProtobufTestWithMessage(
"OneofZeroMessage", RECOMMENDED, &message,
is_proto3 ? "oneof_nested_message: {}" : "oneof_nested_message: {a: 0}",
is_proto3);
message.mutable_oneof_nested_message()->set_a(1);
RunValidProtobufTestWithMessage(
"OneofZeroMessageSetTwice", RECOMMENDED, &message,
"oneof_nested_message: {a: 1}",
is_proto3);
message.set_oneof_string("");
RunValidProtobufTestWithMessage(
"OneofZeroString", RECOMMENDED, &message, "oneof_string: \"\"", is_proto3);
message.set_oneof_bytes("");
RunValidProtobufTestWithMessage(
"OneofZeroBytes", RECOMMENDED, &message, "oneof_bytes: \"\"", is_proto3);
message.set_oneof_bool(false);
RunValidProtobufTestWithMessage(
"OneofZeroBool", RECOMMENDED, &message, "oneof_bool: false", is_proto3);
message.set_oneof_uint64(0);
RunValidProtobufTestWithMessage(
"OneofZeroUint64", RECOMMENDED, &message, "oneof_uint64: 0", is_proto3);
message.set_oneof_float(0.0f);
RunValidProtobufTestWithMessage(
"OneofZeroFloat", RECOMMENDED, &message, "oneof_float: 0", is_proto3);
message.set_oneof_double(0.0);
RunValidProtobufTestWithMessage(
"OneofZeroDouble", RECOMMENDED, &message, "oneof_double: 0", is_proto3);
message.set_oneof_enum(MessageType::FOO);
RunValidProtobufTestWithMessage(
"OneofZeroEnum", RECOMMENDED, &message, "oneof_enum: FOO", is_proto3);
}
template <class MessageType>
void BinaryAndJsonConformanceSuite::TestUnknownMessage(
2018-08-09 00:00:41 +00:00
MessageType& message, bool is_proto3) {
message.ParseFromString("\xA8\x1F\x01");
RunValidBinaryProtobufTest("UnknownVarint", REQUIRED,
message.SerializeAsString(), is_proto3);
}
void BinaryAndJsonConformanceSuite::RunSuiteImpl() {
2019-02-22 10:13:33 +00:00
// Hack to get the list of test failures based on whether
// GOOGLE3_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER is enabled or not.
conformance::FailureSet failure_set;
ConformanceRequest req;
ConformanceResponse res;
req.set_message_type(failure_set.GetTypeName());
req.set_protobuf_payload("");
req.set_requested_output_format(conformance::WireFormat::PROTOBUF);
RunTest("FindFailures", req, &res);
GOOGLE_CHECK(failure_set.MergeFromString(res.protobuf_payload()));
for (const string& failure : failure_set.failure()) {
AddExpectedFailedTest(failure);
}
2018-08-09 00:00:41 +00:00
type_resolver_.reset(NewTypeResolverForDescriptorPool(
kTypeUrlPrefix, DescriptorPool::generated_pool()));
type_url_ = GetTypeUrl(TestAllTypesProto3::descriptor());
for (int i = 1; i <= FieldDescriptor::MAX_TYPE; i++) {
if (i == FieldDescriptor::TYPE_GROUP) continue;
TestPrematureEOFForType(static_cast<FieldDescriptor::Type>(i));
}
TestIllegalTags();
int64 kInt64Min = -9223372036854775808ULL;
int64 kInt64Max = 9223372036854775807ULL;
uint64 kUint64Max = 18446744073709551615ULL;
int32 kInt32Max = 2147483647;
int32 kInt32Min = -2147483648;
uint32 kUint32Max = 4294967295UL;
TestValidDataForType(FieldDescriptor::TYPE_DOUBLE, {
{dbl(0), dbl(0)},
{dbl(0.1), dbl(0.1)},
{dbl(1.7976931348623157e+308), dbl(1.7976931348623157e+308)},
{dbl(2.22507385850720138309e-308), dbl(2.22507385850720138309e-308)},
});
TestValidDataForType(FieldDescriptor::TYPE_FLOAT, {
{flt(0), flt(0)},
{flt(0.1), flt(0.1)},
{flt(1.00000075e-36), flt(1.00000075e-36)},
{flt(3.402823e+38), flt(3.402823e+38)}, // 3.40282347e+38
{flt(1.17549435e-38f), flt(1.17549435e-38)},
});
TestValidDataForType(FieldDescriptor::TYPE_INT64, {
{varint(0), varint(0)},
{varint(12345), varint(12345)},
{varint(kInt64Max), varint(kInt64Max)},
{varint(kInt64Min), varint(kInt64Min)},
});
TestValidDataForType(FieldDescriptor::TYPE_UINT64, {
{varint(0), varint(0)},
{varint(12345), varint(12345)},
{varint(kUint64Max), varint(kUint64Max)},
});
TestValidDataForType(FieldDescriptor::TYPE_INT32, {
{varint(0), varint(0)},
{varint(12345), varint(12345)},
{longvarint(12345, 2), varint(12345)},
{longvarint(12345, 7), varint(12345)},
{varint(kInt32Max), varint(kInt32Max)},
{varint(kInt32Min), varint(kInt32Min)},
{varint(1LL << 33), varint(0)},
{varint((1LL << 33) - 1), varint(-1)},
});
TestValidDataForType(FieldDescriptor::TYPE_UINT32, {
{varint(0), varint(0)},
{varint(12345), varint(12345)},
{longvarint(12345, 2), varint(12345)},
{longvarint(12345, 7), varint(12345)},
{varint(kUint32Max), varint(kUint32Max)}, // UINT32_MAX
{varint(1LL << 33), varint(0)},
{varint((1LL << 33) - 1), varint((1LL << 32) - 1)},
});
TestValidDataForType(FieldDescriptor::TYPE_FIXED64, {
{u64(0), u64(0)},
{u64(12345), u64(12345)},
{u64(kUint64Max), u64(kUint64Max)},
});
TestValidDataForType(FieldDescriptor::TYPE_FIXED32, {
{u32(0), u32(0)},
{u32(12345), u32(12345)},
{u32(kUint32Max), u32(kUint32Max)}, // UINT32_MAX
});
TestValidDataForType(FieldDescriptor::TYPE_SFIXED64, {
{u64(0), u64(0)},
{u64(12345), u64(12345)},
{u64(kInt64Max), u64(kInt64Max)},
{u64(kInt64Min), u64(kInt64Min)},
});
TestValidDataForType(FieldDescriptor::TYPE_SFIXED32, {
{u32(0), u32(0)},
{u32(12345), u32(12345)},
{u32(kInt32Max), u32(kInt32Max)},
{u32(kInt32Min), u32(kInt32Min)},
});
TestValidDataForType(FieldDescriptor::TYPE_BOOL, {
{varint(0), varint(0)},
{varint(1), varint(1)},
{varint(12345678), varint(1)},
});
TestValidDataForType(FieldDescriptor::TYPE_SINT32, {
{zz32(0), zz32(0)},
{zz32(12345), zz32(12345)},
{zz32(kInt32Max), zz32(kInt32Max)},
{zz32(kInt32Min), zz32(kInt32Min)},
});
TestValidDataForType(FieldDescriptor::TYPE_SINT64, {
{zz64(0), zz64(0)},
{zz64(12345), zz64(12345)},
{zz64(kInt64Max), zz64(kInt64Max)},
{zz64(kInt64Min), zz64(kInt64Min)},
});
TestValidDataForType(FieldDescriptor::TYPE_STRING, {
{delim(""), delim("")},
{delim("Hello world!"), delim("Hello world!")},
{delim("\'\"\?\\\a\b\f\n\r\t\v"),
delim("\'\"\?\\\a\b\f\n\r\t\v")}, // escape
{delim("谷歌"), delim("谷歌")}, // Google in Chinese
{delim("\u8C37\u6B4C"), delim("谷歌")}, // unicode escape
{delim("\u8c37\u6b4c"), delim("谷歌")}, // lowercase unicode
{delim("\xF0\x9F\x98\x81"), delim("\xF0\x9F\x98\x81")}, // emoji: 😁
});
TestValidDataForType(FieldDescriptor::TYPE_BYTES, {
{delim(""), delim("")},
{delim("\x01\x02"), delim("\x01\x02")},
{delim("\xfb"), delim("\xfb")},
});
TestValidDataForType(FieldDescriptor::TYPE_ENUM, {
2019-08-22 23:14:22 +00:00
{varint(0), varint(0)},
{varint(1), varint(1)},
{varint(2), varint(2)},
{varint(-1), varint(-1)},
});
TestValidDataForRepeatedScalarMessage();
TestValidDataForType(FieldDescriptor::TYPE_MESSAGE, {
{delim(""), delim("")},
{delim(cat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1234))),
delim(cat(tag(1, WireFormatLite::WIRETYPE_VARINT), varint(1234)))},
});
2018-08-09 00:00:41 +00:00
TestValidDataForMapType(
FieldDescriptor::TYPE_INT32,
FieldDescriptor::TYPE_INT32);
TestValidDataForMapType(
FieldDescriptor::TYPE_INT64,
FieldDescriptor::TYPE_INT64);
TestValidDataForMapType(
FieldDescriptor::TYPE_UINT32,
FieldDescriptor::TYPE_UINT32);
TestValidDataForMapType(
FieldDescriptor::TYPE_UINT64,
FieldDescriptor::TYPE_UINT64);
TestValidDataForMapType(
FieldDescriptor::TYPE_SINT32,
FieldDescriptor::TYPE_SINT32);
TestValidDataForMapType(
FieldDescriptor::TYPE_SINT64,
FieldDescriptor::TYPE_SINT64);
TestValidDataForMapType(
FieldDescriptor::TYPE_FIXED32,
FieldDescriptor::TYPE_FIXED32);
TestValidDataForMapType(
FieldDescriptor::TYPE_FIXED64,
FieldDescriptor::TYPE_FIXED64);
TestValidDataForMapType(
FieldDescriptor::TYPE_SFIXED32,
FieldDescriptor::TYPE_SFIXED32);
TestValidDataForMapType(
FieldDescriptor::TYPE_SFIXED64,
FieldDescriptor::TYPE_SFIXED64);
TestValidDataForMapType(
FieldDescriptor::TYPE_INT32,
FieldDescriptor::TYPE_FLOAT);
TestValidDataForMapType(
FieldDescriptor::TYPE_INT32,
FieldDescriptor::TYPE_DOUBLE);
TestValidDataForMapType(
FieldDescriptor::TYPE_BOOL,
FieldDescriptor::TYPE_BOOL);
TestValidDataForMapType(
FieldDescriptor::TYPE_STRING,
FieldDescriptor::TYPE_STRING);
TestValidDataForMapType(
FieldDescriptor::TYPE_STRING,
FieldDescriptor::TYPE_BYTES);
TestValidDataForMapType(
FieldDescriptor::TYPE_STRING,
FieldDescriptor::TYPE_ENUM);
TestValidDataForMapType(
FieldDescriptor::TYPE_STRING,
FieldDescriptor::TYPE_MESSAGE);
// Additional test to check overwriting message value map.
TestOverwriteMessageValueMap();
2018-08-09 00:00:41 +00:00
// TODO(haberman):
// TestValidDataForType(FieldDescriptor::TYPE_GROUP
RunValidJsonTest("HelloWorld", REQUIRED,
"{\"optionalString\":\"Hello, World!\"}",
"optional_string: 'Hello, World!'");
// NOTE: The spec for JSON support is still being sorted out, these may not
// all be correct.
// Test field name conventions.
RunValidJsonTest(
"FieldNameInSnakeCase", REQUIRED,
R"({
"fieldname1": 1,
"fieldName2": 2,
"FieldName3": 3,
"fieldName4": 4
})",
R"(
fieldname1: 1
field_name2: 2
_field_name3: 3
field__name4_: 4
)");
RunValidJsonTest(
"FieldNameWithNumbers", REQUIRED,
R"({
"field0name5": 5,
"field0Name6": 6
})",
R"(
field0name5: 5
field_0_name6: 6
)");
RunValidJsonTest(
"FieldNameWithMixedCases", REQUIRED,
R"({
"fieldName7": 7,
"FieldName8": 8,
"fieldName9": 9,
"FieldName10": 10,
"FIELDNAME11": 11,
"FIELDName12": 12
})",
R"(
fieldName7: 7
FieldName8: 8
field_Name9: 9
Field_Name10: 10
FIELD_NAME11: 11
FIELD_name12: 12
)");
RunValidJsonTest(
"FieldNameWithDoubleUnderscores", RECOMMENDED,
R"({
"FieldName13": 13,
"FieldName14": 14,
"fieldName15": 15,
"fieldName16": 16,
"fieldName17": 17,
"FieldName18": 18
})",
R"(
__field_name13: 13
__Field_name14: 14
field__name15: 15
field__Name16: 16
field_name17__: 17
Field_name18__: 18
)");
// Using the original proto field name in JSON is also allowed.
RunValidJsonTest(
"OriginalProtoFieldName", REQUIRED,
R"({
"fieldname1": 1,
"field_name2": 2,
"_field_name3": 3,
"field__name4_": 4,
"field0name5": 5,
"field_0_name6": 6,
"fieldName7": 7,
"FieldName8": 8,
"field_Name9": 9,
"Field_Name10": 10,
"FIELD_NAME11": 11,
"FIELD_name12": 12,
"__field_name13": 13,
"__Field_name14": 14,
"field__name15": 15,
"field__Name16": 16,
"field_name17__": 17,
"Field_name18__": 18
})",
R"(
fieldname1: 1
field_name2: 2
_field_name3: 3
field__name4_: 4
field0name5: 5
field_0_name6: 6
fieldName7: 7
FieldName8: 8
field_Name9: 9
Field_Name10: 10
FIELD_NAME11: 11
FIELD_name12: 12
__field_name13: 13
__Field_name14: 14
field__name15: 15
field__Name16: 16
field_name17__: 17
Field_name18__: 18
)");
// Field names can be escaped.
RunValidJsonTest(
"FieldNameEscaped", REQUIRED,
R"({"fieldn\u0061me1": 1})",
"fieldname1: 1");
// String ends with escape character.
ExpectParseFailureForJson(
"StringEndsWithEscapeChar", RECOMMENDED,
"{\"optionalString\": \"abc\\");
// Field names must be quoted (or it's not valid JSON).
ExpectParseFailureForJson(
"FieldNameNotQuoted", RECOMMENDED,
"{fieldname1: 1}");
// Trailing comma is not allowed (not valid JSON).
ExpectParseFailureForJson(
"TrailingCommaInAnObject", RECOMMENDED,
R"({"fieldname1":1,})");
ExpectParseFailureForJson(
"TrailingCommaInAnObjectWithSpace", RECOMMENDED,
R"({"fieldname1":1 ,})");
ExpectParseFailureForJson(
"TrailingCommaInAnObjectWithSpaceCommaSpace", RECOMMENDED,
R"({"fieldname1":1 , })");
ExpectParseFailureForJson(
"TrailingCommaInAnObjectWithNewlines", RECOMMENDED,
R"({
"fieldname1":1,
})");
// JSON doesn't support comments.
ExpectParseFailureForJson(
"JsonWithComments", RECOMMENDED,
R"({
// This is a comment.
"fieldname1": 1
})");
// JSON spec says whitespace doesn't matter, so try a few spacings to be sure.
RunValidJsonTest(
"OneLineNoSpaces", RECOMMENDED,
"{\"optionalInt32\":1,\"optionalInt64\":2}",
R"(
optional_int32: 1
optional_int64: 2
)");
RunValidJsonTest(
"OneLineWithSpaces", RECOMMENDED,
"{ \"optionalInt32\" : 1 , \"optionalInt64\" : 2 }",
R"(
optional_int32: 1
optional_int64: 2
)");
RunValidJsonTest(
"MultilineNoSpaces", RECOMMENDED,
"{\n\"optionalInt32\"\n:\n1\n,\n\"optionalInt64\"\n:\n2\n}",
R"(
optional_int32: 1
optional_int64: 2
)");
RunValidJsonTest(
"MultilineWithSpaces", RECOMMENDED,
"{\n \"optionalInt32\" : 1\n ,\n \"optionalInt64\" : 2\n}\n",
R"(
optional_int32: 1
optional_int64: 2
)");
// Missing comma between key/value pairs.
ExpectParseFailureForJson(
"MissingCommaOneLine", RECOMMENDED,
"{ \"optionalInt32\": 1 \"optionalInt64\": 2 }");
ExpectParseFailureForJson(
"MissingCommaMultiline", RECOMMENDED,
"{\n \"optionalInt32\": 1\n \"optionalInt64\": 2\n}");
// Duplicated field names are not allowed.
ExpectParseFailureForJson(
"FieldNameDuplicate", RECOMMENDED,
R"({
"optionalNestedMessage": {a: 1},
"optionalNestedMessage": {}
})");
ExpectParseFailureForJson(
"FieldNameDuplicateDifferentCasing1", RECOMMENDED,
R"({
"optional_nested_message": {a: 1},
"optionalNestedMessage": {}
})");
ExpectParseFailureForJson(
"FieldNameDuplicateDifferentCasing2", RECOMMENDED,
R"({
"optionalNestedMessage": {a: 1},
"optional_nested_message": {}
})");
// Serializers should use lowerCamelCase by default.
RunValidJsonTestWithValidator(
"FieldNameInLowerCamelCase", REQUIRED,
R"({
"fieldname1": 1,
"fieldName2": 2,
"FieldName3": 3,
"fieldName4": 4
})",
[](const Json::Value& value) {
return value.isMember("fieldname1") &&
value.isMember("fieldName2") &&
value.isMember("FieldName3") &&
value.isMember("fieldName4");
});
RunValidJsonTestWithValidator(
"FieldNameWithNumbers", REQUIRED,
R"({
"field0name5": 5,
"field0Name6": 6
})",
[](const Json::Value& value) {
return value.isMember("field0name5") &&
value.isMember("field0Name6");
});
RunValidJsonTestWithValidator(
"FieldNameWithMixedCases", REQUIRED,
R"({
"fieldName7": 7,
"FieldName8": 8,
"fieldName9": 9,
"FieldName10": 10,
"FIELDNAME11": 11,
"FIELDName12": 12
})",
[](const Json::Value& value) {
return value.isMember("fieldName7") &&
value.isMember("FieldName8") &&
value.isMember("fieldName9") &&
value.isMember("FieldName10") &&
value.isMember("FIELDNAME11") &&
value.isMember("FIELDName12");
});
RunValidJsonTestWithValidator(
"FieldNameWithDoubleUnderscores", RECOMMENDED,
R"({
"FieldName13": 13,
"FieldName14": 14,
"fieldName15": 15,
"fieldName16": 16,
"fieldName17": 17,
"FieldName18": 18
})",
[](const Json::Value& value) {
return value.isMember("FieldName13") &&
value.isMember("FieldName14") &&
value.isMember("fieldName15") &&
value.isMember("fieldName16") &&
value.isMember("fieldName17") &&
value.isMember("FieldName18");
});
// Integer fields.
RunValidJsonTest(
"Int32FieldMaxValue", REQUIRED,
R"({"optionalInt32": 2147483647})",
"optional_int32: 2147483647");
RunValidJsonTest(
"Int32FieldMinValue", REQUIRED,
R"({"optionalInt32": -2147483648})",
"optional_int32: -2147483648");
RunValidJsonTest(
"Uint32FieldMaxValue", REQUIRED,
R"({"optionalUint32": 4294967295})",
"optional_uint32: 4294967295");
RunValidJsonTest(
"Int64FieldMaxValue", REQUIRED,
R"({"optionalInt64": "9223372036854775807"})",
"optional_int64: 9223372036854775807");
RunValidJsonTest(
"Int64FieldMinValue", REQUIRED,
R"({"optionalInt64": "-9223372036854775808"})",
"optional_int64: -9223372036854775808");
RunValidJsonTest(
"Uint64FieldMaxValue", REQUIRED,
R"({"optionalUint64": "18446744073709551615"})",
"optional_uint64: 18446744073709551615");
// While not the largest Int64, this is the largest
// Int64 which can be exactly represented within an
// IEEE-754 64-bit float, which is the expected level
// of interoperability guarantee. Larger values may
// work in some implementations, but should not be
// relied upon.
RunValidJsonTest(
"Int64FieldMaxValueNotQuoted", REQUIRED,
R"({"optionalInt64": 9223372036854774784})",
"optional_int64: 9223372036854774784");
RunValidJsonTest(
"Int64FieldMinValueNotQuoted", REQUIRED,
R"({"optionalInt64": -9223372036854775808})",
"optional_int64: -9223372036854775808");
// Largest interoperable Uint64; see comment above
// for Int64FieldMaxValueNotQuoted.
RunValidJsonTest(
"Uint64FieldMaxValueNotQuoted", REQUIRED,
R"({"optionalUint64": 18446744073709549568})",
"optional_uint64: 18446744073709549568");
// Values can be represented as JSON strings.
RunValidJsonTest(
"Int32FieldStringValue", REQUIRED,
R"({"optionalInt32": "2147483647"})",
"optional_int32: 2147483647");
RunValidJsonTest(
"Int32FieldStringValueEscaped", REQUIRED,
R"({"optionalInt32": "2\u003147483647"})",
"optional_int32: 2147483647");
// Parsers reject out-of-bound integer values.
ExpectParseFailureForJson(
"Int32FieldTooLarge", REQUIRED,
R"({"optionalInt32": 2147483648})");
ExpectParseFailureForJson(
"Int32FieldTooSmall", REQUIRED,
R"({"optionalInt32": -2147483649})");
ExpectParseFailureForJson(
"Uint32FieldTooLarge", REQUIRED,
R"({"optionalUint32": 4294967296})");
ExpectParseFailureForJson(
"Int64FieldTooLarge", REQUIRED,
R"({"optionalInt64": "9223372036854775808"})");
ExpectParseFailureForJson(
"Int64FieldTooSmall", REQUIRED,
R"({"optionalInt64": "-9223372036854775809"})");
ExpectParseFailureForJson(
"Uint64FieldTooLarge", REQUIRED,
R"({"optionalUint64": "18446744073709551616"})");
// Parser reject non-integer numeric values as well.
ExpectParseFailureForJson(
"Int32FieldNotInteger", REQUIRED,
R"({"optionalInt32": 0.5})");
ExpectParseFailureForJson(
"Uint32FieldNotInteger", REQUIRED,
R"({"optionalUint32": 0.5})");
ExpectParseFailureForJson(
"Int64FieldNotInteger", REQUIRED,
R"({"optionalInt64": "0.5"})");
ExpectParseFailureForJson(
"Uint64FieldNotInteger", REQUIRED,
R"({"optionalUint64": "0.5"})");
// Integers but represented as float values are accepted.
RunValidJsonTest(
"Int32FieldFloatTrailingZero", REQUIRED,
R"({"optionalInt32": 100000.000})",
"optional_int32: 100000");
RunValidJsonTest(
"Int32FieldExponentialFormat", REQUIRED,
R"({"optionalInt32": 1e5})",
"optional_int32: 100000");
RunValidJsonTest(
"Int32FieldMaxFloatValue", REQUIRED,
R"({"optionalInt32": 2.147483647e9})",
"optional_int32: 2147483647");
RunValidJsonTest(
"Int32FieldMinFloatValue", REQUIRED,
R"({"optionalInt32": -2.147483648e9})",
"optional_int32: -2147483648");
RunValidJsonTest(
"Uint32FieldMaxFloatValue", REQUIRED,
R"({"optionalUint32": 4.294967295e9})",
"optional_uint32: 4294967295");
// Parser reject non-numeric values.
ExpectParseFailureForJson(
"Int32FieldNotNumber", REQUIRED,
R"({"optionalInt32": "3x3"})");
ExpectParseFailureForJson(
"Uint32FieldNotNumber", REQUIRED,
R"({"optionalUint32": "3x3"})");
ExpectParseFailureForJson(
"Int64FieldNotNumber", REQUIRED,
R"({"optionalInt64": "3x3"})");
ExpectParseFailureForJson(
"Uint64FieldNotNumber", REQUIRED,
R"({"optionalUint64": "3x3"})");
// JSON does not allow "+" on numric values.
ExpectParseFailureForJson(
"Int32FieldPlusSign", REQUIRED,
R"({"optionalInt32": +1})");
// JSON doesn't allow leading 0s.
ExpectParseFailureForJson(
"Int32FieldLeadingZero", REQUIRED,
R"({"optionalInt32": 01})");
ExpectParseFailureForJson(
"Int32FieldNegativeWithLeadingZero", REQUIRED,
R"({"optionalInt32": -01})");
// String values must follow the same syntax rule. Specifically leading
// or trailing spaces are not allowed.
ExpectParseFailureForJson(
"Int32FieldLeadingSpace", REQUIRED,
R"({"optionalInt32": " 1"})");
ExpectParseFailureForJson(
"Int32FieldTrailingSpace", REQUIRED,
R"({"optionalInt32": "1 "})");
// 64-bit values are serialized as strings.
RunValidJsonTestWithValidator(
"Int64FieldBeString", RECOMMENDED,
R"({"optionalInt64": 1})",
[](const Json::Value& value) {
return value["optionalInt64"].type() == Json::stringValue &&
value["optionalInt64"].asString() == "1";
});
RunValidJsonTestWithValidator(
"Uint64FieldBeString", RECOMMENDED,
R"({"optionalUint64": 1})",
[](const Json::Value& value) {
return value["optionalUint64"].type() == Json::stringValue &&
value["optionalUint64"].asString() == "1";
});
// Bool fields.
RunValidJsonTest(
"BoolFieldTrue", REQUIRED,
R"({"optionalBool":true})",
"optional_bool: true");
RunValidJsonTest(
"BoolFieldFalse", REQUIRED,
R"({"optionalBool":false})",
"optional_bool: false");
// Other forms are not allowed.
ExpectParseFailureForJson(
"BoolFieldIntegerZero", RECOMMENDED,
R"({"optionalBool":0})");
ExpectParseFailureForJson(
"BoolFieldIntegerOne", RECOMMENDED,
R"({"optionalBool":1})");
ExpectParseFailureForJson(
"BoolFieldCamelCaseTrue", RECOMMENDED,
R"({"optionalBool":True})");
ExpectParseFailureForJson(
"BoolFieldCamelCaseFalse", RECOMMENDED,
R"({"optionalBool":False})");
ExpectParseFailureForJson(
"BoolFieldAllCapitalTrue", RECOMMENDED,
R"({"optionalBool":TRUE})");
ExpectParseFailureForJson(
"BoolFieldAllCapitalFalse", RECOMMENDED,
R"({"optionalBool":FALSE})");
ExpectParseFailureForJson(
"BoolFieldDoubleQuotedTrue", RECOMMENDED,
R"({"optionalBool":"true"})");
ExpectParseFailureForJson(
"BoolFieldDoubleQuotedFalse", RECOMMENDED,
R"({"optionalBool":"false"})");
// Float fields.
RunValidJsonTest(
"FloatFieldMinPositiveValue", REQUIRED,
R"({"optionalFloat": 1.175494e-38})",
"optional_float: 1.175494e-38");
RunValidJsonTest(
"FloatFieldMaxNegativeValue", REQUIRED,
R"({"optionalFloat": -1.175494e-38})",
"optional_float: -1.175494e-38");
RunValidJsonTest(
"FloatFieldMaxPositiveValue", REQUIRED,
R"({"optionalFloat": 3.402823e+38})",
"optional_float: 3.402823e+38");
RunValidJsonTest(
"FloatFieldMinNegativeValue", REQUIRED,
R"({"optionalFloat": 3.402823e+38})",
"optional_float: 3.402823e+38");
// Values can be quoted.
RunValidJsonTest(
"FloatFieldQuotedValue", REQUIRED,
R"({"optionalFloat": "1"})",
"optional_float: 1");
// Special values.
RunValidJsonTest(
"FloatFieldNan", REQUIRED,
R"({"optionalFloat": "NaN"})",
"optional_float: nan");
RunValidJsonTest(
"FloatFieldInfinity", REQUIRED,
R"({"optionalFloat": "Infinity"})",
"optional_float: inf");
RunValidJsonTest(
"FloatFieldNegativeInfinity", REQUIRED,
R"({"optionalFloat": "-Infinity"})",
"optional_float: -inf");
// Non-cannonical Nan will be correctly normalized.
{
TestAllTypesProto3 message;
// IEEE floating-point standard 32-bit quiet NaN:
// 0111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
message.set_optional_float(
WireFormatLite::DecodeFloat(0x7FA12345));
RunValidJsonTestWithProtobufInput(
"FloatFieldNormalizeQuietNan", REQUIRED, message,
"optional_float: nan");
// IEEE floating-point standard 64-bit signaling NaN:
// 1111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
message.set_optional_float(
WireFormatLite::DecodeFloat(0xFFB54321));
RunValidJsonTestWithProtobufInput(
"FloatFieldNormalizeSignalingNan", REQUIRED, message,
"optional_float: nan");
}
// Special values must be quoted.
ExpectParseFailureForJson(
"FloatFieldNanNotQuoted", RECOMMENDED,
R"({"optionalFloat": NaN})");
ExpectParseFailureForJson(
"FloatFieldInfinityNotQuoted", RECOMMENDED,
R"({"optionalFloat": Infinity})");
ExpectParseFailureForJson(
"FloatFieldNegativeInfinityNotQuoted", RECOMMENDED,
R"({"optionalFloat": -Infinity})");
// Parsers should reject out-of-bound values.
ExpectParseFailureForJson(
"FloatFieldTooSmall", REQUIRED,
R"({"optionalFloat": -3.502823e+38})");
ExpectParseFailureForJson(
"FloatFieldTooLarge", REQUIRED,
R"({"optionalFloat": 3.502823e+38})");
// Double fields.
RunValidJsonTest(
"DoubleFieldMinPositiveValue", REQUIRED,
R"({"optionalDouble": 2.22507e-308})",
"optional_double: 2.22507e-308");
RunValidJsonTest(
"DoubleFieldMaxNegativeValue", REQUIRED,
R"({"optionalDouble": -2.22507e-308})",
"optional_double: -2.22507e-308");
RunValidJsonTest(
"DoubleFieldMaxPositiveValue", REQUIRED,
R"({"optionalDouble": 1.79769e+308})",
"optional_double: 1.79769e+308");
RunValidJsonTest(
"DoubleFieldMinNegativeValue", REQUIRED,
R"({"optionalDouble": -1.79769e+308})",
"optional_double: -1.79769e+308");
// Values can be quoted.
RunValidJsonTest(
"DoubleFieldQuotedValue", REQUIRED,
R"({"optionalDouble": "1"})",
"optional_double: 1");
// Speical values.
RunValidJsonTest(
"DoubleFieldNan", REQUIRED,
R"({"optionalDouble": "NaN"})",
"optional_double: nan");
RunValidJsonTest(
"DoubleFieldInfinity", REQUIRED,
R"({"optionalDouble": "Infinity"})",
"optional_double: inf");
RunValidJsonTest(
"DoubleFieldNegativeInfinity", REQUIRED,
R"({"optionalDouble": "-Infinity"})",
"optional_double: -inf");
// Non-cannonical Nan will be correctly normalized.
{
TestAllTypesProto3 message;
message.set_optional_double(
WireFormatLite::DecodeDouble(0x7FFA123456789ABCLL));
RunValidJsonTestWithProtobufInput(
"DoubleFieldNormalizeQuietNan", REQUIRED, message,
"optional_double: nan");
message.set_optional_double(
WireFormatLite::DecodeDouble(0xFFFBCBA987654321LL));
RunValidJsonTestWithProtobufInput(
"DoubleFieldNormalizeSignalingNan", REQUIRED, message,
"optional_double: nan");
}
// Special values must be quoted.
ExpectParseFailureForJson(
"DoubleFieldNanNotQuoted", RECOMMENDED,
R"({"optionalDouble": NaN})");
ExpectParseFailureForJson(
"DoubleFieldInfinityNotQuoted", RECOMMENDED,
R"({"optionalDouble": Infinity})");
ExpectParseFailureForJson(
"DoubleFieldNegativeInfinityNotQuoted", RECOMMENDED,
R"({"optionalDouble": -Infinity})");
// Parsers should reject out-of-bound values.
ExpectParseFailureForJson(
"DoubleFieldTooSmall", REQUIRED,
R"({"optionalDouble": -1.89769e+308})");
ExpectParseFailureForJson(
"DoubleFieldTooLarge", REQUIRED,
R"({"optionalDouble": +1.89769e+308})");
// Enum fields.
RunValidJsonTest(
"EnumField", REQUIRED,
R"({"optionalNestedEnum": "FOO"})",
"optional_nested_enum: FOO");
// Enum fields with alias
RunValidJsonTest(
"EnumFieldWithAlias", REQUIRED,
R"({"optionalAliasedEnum": "ALIAS_BAZ"})",
"optional_aliased_enum: ALIAS_BAZ");
RunValidJsonTest(
"EnumFieldWithAliasUseAlias", REQUIRED,
R"({"optionalAliasedEnum": "QUX"})",
"optional_aliased_enum: ALIAS_BAZ");
RunValidJsonTest(
"EnumFieldWithAliasLowerCase", REQUIRED,
R"({"optionalAliasedEnum": "qux"})",
"optional_aliased_enum: ALIAS_BAZ");
RunValidJsonTest(
"EnumFieldWithAliasDifferentCase", REQUIRED,
R"({"optionalAliasedEnum": "bAz"})",
"optional_aliased_enum: ALIAS_BAZ");
2018-08-09 00:00:41 +00:00
// Enum values must be represented as strings.
ExpectParseFailureForJson(
"EnumFieldNotQuoted", REQUIRED,
R"({"optionalNestedEnum": FOO})");
// Numeric values are allowed.
RunValidJsonTest(
"EnumFieldNumericValueZero", REQUIRED,
R"({"optionalNestedEnum": 0})",
"optional_nested_enum: FOO");
RunValidJsonTest(
"EnumFieldNumericValueNonZero", REQUIRED,
R"({"optionalNestedEnum": 1})",
"optional_nested_enum: BAR");
// Unknown enum values are represented as numeric values.
RunValidJsonTestWithValidator(
"EnumFieldUnknownValue", REQUIRED,
R"({"optionalNestedEnum": 123})",
[](const Json::Value& value) {
return value["optionalNestedEnum"].type() == Json::intValue &&
value["optionalNestedEnum"].asInt() == 123;
});
// String fields.
RunValidJsonTest(
"StringField", REQUIRED,
R"({"optionalString": "Hello world!"})",
"optional_string: \"Hello world!\"");
RunValidJsonTest(
"StringFieldUnicode", REQUIRED,
// Google in Chinese.
R"({"optionalString": ""})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldEscape", REQUIRED,
R"({"optionalString": "\"\\\/\b\f\n\r\t"})",
R"(optional_string: "\"\\/\b\f\n\r\t")");
RunValidJsonTest(
"StringFieldUnicodeEscape", REQUIRED,
R"({"optionalString": "\u8C37\u6B4C"})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldUnicodeEscapeWithLowercaseHexLetters", REQUIRED,
R"({"optionalString": "\u8c37\u6b4c"})",
R"(optional_string: "")");
RunValidJsonTest(
"StringFieldSurrogatePair", REQUIRED,
// The character is an emoji: grinning face with smiling eyes. 😁
R"({"optionalString": "\uD83D\uDE01"})",
R"(optional_string: "\xF0\x9F\x98\x81")");
// Unicode escapes must start with "\u" (lowercase u).
ExpectParseFailureForJson(
"StringFieldUppercaseEscapeLetter", RECOMMENDED,
R"({"optionalString": "\U8C37\U6b4C"})");
ExpectParseFailureForJson(
"StringFieldInvalidEscape", RECOMMENDED,
R"({"optionalString": "\uXXXX\u6B4C"})");
ExpectParseFailureForJson(
"StringFieldUnterminatedEscape", RECOMMENDED,
R"({"optionalString": "\u8C3"})");
ExpectParseFailureForJson(
"StringFieldUnpairedHighSurrogate", RECOMMENDED,
R"({"optionalString": "\uD800"})");
ExpectParseFailureForJson(
"StringFieldUnpairedLowSurrogate", RECOMMENDED,
R"({"optionalString": "\uDC00"})");
ExpectParseFailureForJson(
"StringFieldSurrogateInWrongOrder", RECOMMENDED,
R"({"optionalString": "\uDE01\uD83D"})");
ExpectParseFailureForJson(
"StringFieldNotAString", REQUIRED,
R"({"optionalString": 12345})");
// Bytes fields.
RunValidJsonTest(
"BytesField", REQUIRED,
R"({"optionalBytes": "AQI="})",
R"(optional_bytes: "\x01\x02")");
RunValidJsonTest(
"BytesFieldBase64Url", RECOMMENDED,
R"({"optionalBytes": "-_"})",
R"(optional_bytes: "\xfb")");
// Message fields.
RunValidJsonTest(
"MessageField", REQUIRED,
R"({"optionalNestedMessage": {"a": 1234}})",
"optional_nested_message: {a: 1234}");
// Oneof fields.
ExpectParseFailureForJson(
"OneofFieldDuplicate", REQUIRED,
R"({"oneofUint32": 1, "oneofString": "test"})");
// Ensure zero values for oneof make it out/backs.
TestAllTypesProto3 messageProto3;
TestAllTypesProto2 messageProto2;
TestOneofMessage(messageProto3, true);
TestOneofMessage(messageProto2, false);
RunValidJsonTest(
"OneofZeroUint32", RECOMMENDED,
R"({"oneofUint32": 0})", "oneof_uint32: 0");
RunValidJsonTest(
"OneofZeroMessage", RECOMMENDED,
R"({"oneofNestedMessage": {}})", "oneof_nested_message: {}");
RunValidJsonTest(
"OneofZeroString", RECOMMENDED,
R"({"oneofString": ""})", "oneof_string: \"\"");
RunValidJsonTest(
"OneofZeroBytes", RECOMMENDED,
R"({"oneofBytes": ""})", "oneof_bytes: \"\"");
RunValidJsonTest(
"OneofZeroBool", RECOMMENDED,
R"({"oneofBool": false})", "oneof_bool: false");
RunValidJsonTest(
"OneofZeroUint64", RECOMMENDED,
R"({"oneofUint64": 0})", "oneof_uint64: 0");
RunValidJsonTest(
"OneofZeroFloat", RECOMMENDED,
R"({"oneofFloat": 0.0})", "oneof_float: 0");
RunValidJsonTest(
"OneofZeroDouble", RECOMMENDED,
R"({"oneofDouble": 0.0})", "oneof_double: 0");
RunValidJsonTest(
"OneofZeroEnum", RECOMMENDED,
R"({"oneofEnum":"FOO"})", "oneof_enum: FOO");
// Repeated fields.
RunValidJsonTest(
"PrimitiveRepeatedField", REQUIRED,
R"({"repeatedInt32": [1, 2, 3, 4]})",
"repeated_int32: [1, 2, 3, 4]");
RunValidJsonTest(
"EnumRepeatedField", REQUIRED,
R"({"repeatedNestedEnum": ["FOO", "BAR", "BAZ"]})",
"repeated_nested_enum: [FOO, BAR, BAZ]");
RunValidJsonTest(
"StringRepeatedField", REQUIRED,
R"({"repeatedString": ["Hello", "world"]})",
R"(repeated_string: ["Hello", "world"])");
RunValidJsonTest(
"BytesRepeatedField", REQUIRED,
R"({"repeatedBytes": ["AAEC", "AQI="]})",
R"(repeated_bytes: ["\x00\x01\x02", "\x01\x02"])");
RunValidJsonTest(
"MessageRepeatedField", REQUIRED,
R"({"repeatedNestedMessage": [{"a": 1234}, {"a": 5678}]})",
"repeated_nested_message: {a: 1234}"
"repeated_nested_message: {a: 5678}");
// Repeated field elements are of incorrect type.
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotBool", REQUIRED,
R"({"repeatedInt32": [1, false, 3, 4]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotString", REQUIRED,
R"({"repeatedInt32": [1, 2, "name", 4]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingIntegersGotMessage", REQUIRED,
R"({"repeatedInt32": [1, 2, 3, {"a": 4}]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotInt", REQUIRED,
R"({"repeatedString": ["1", 2, "3", "4"]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotBool", REQUIRED,
R"({"repeatedString": ["1", "2", false, "4"]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingStringsGotMessage", REQUIRED,
R"({"repeatedString": ["1", 2, "3", {"a": 4}]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotInt", REQUIRED,
R"({"repeatedNestedMessage": [{"a": 1}, 2]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotBool", REQUIRED,
R"({"repeatedNestedMessage": [{"a": 1}, false]})");
ExpectParseFailureForJson(
"RepeatedFieldWrongElementTypeExpectingMessagesGotString", REQUIRED,
R"({"repeatedNestedMessage": [{"a": 1}, "2"]})");
// Trailing comma in the repeated field is not allowed.
ExpectParseFailureForJson(
"RepeatedFieldTrailingComma", RECOMMENDED,
R"({"repeatedInt32": [1, 2, 3, 4,]})");
ExpectParseFailureForJson(
"RepeatedFieldTrailingCommaWithSpace", RECOMMENDED,
"{\"repeatedInt32\": [1, 2, 3, 4 ,]}");
ExpectParseFailureForJson(
"RepeatedFieldTrailingCommaWithSpaceCommaSpace", RECOMMENDED,
"{\"repeatedInt32\": [1, 2, 3, 4 , ]}");
ExpectParseFailureForJson(
"RepeatedFieldTrailingCommaWithNewlines", RECOMMENDED,
"{\"repeatedInt32\": [\n 1,\n 2,\n 3,\n 4,\n]}");
// Map fields.
RunValidJsonTest(
"Int32MapField", REQUIRED,
R"({"mapInt32Int32": {"1": 2, "3": 4}})",
"map_int32_int32: {key: 1 value: 2}"
"map_int32_int32: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Int32MapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapInt32Int32": {1: 2, 3: 4}})");
RunValidJsonTest(
"Uint32MapField", REQUIRED,
R"({"mapUint32Uint32": {"1": 2, "3": 4}})",
"map_uint32_uint32: {key: 1 value: 2}"
"map_uint32_uint32: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Uint32MapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapUint32Uint32": {1: 2, 3: 4}})");
RunValidJsonTest(
"Int64MapField", REQUIRED,
R"({"mapInt64Int64": {"1": 2, "3": 4}})",
"map_int64_int64: {key: 1 value: 2}"
"map_int64_int64: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Int64MapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapInt64Int64": {1: 2, 3: 4}})");
RunValidJsonTest(
"Uint64MapField", REQUIRED,
R"({"mapUint64Uint64": {"1": 2, "3": 4}})",
"map_uint64_uint64: {key: 1 value: 2}"
"map_uint64_uint64: {key: 3 value: 4}");
ExpectParseFailureForJson(
"Uint64MapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapUint64Uint64": {1: 2, 3: 4}})");
RunValidJsonTest(
"BoolMapField", REQUIRED,
R"({"mapBoolBool": {"true": true, "false": false}})",
"map_bool_bool: {key: true value: true}"
"map_bool_bool: {key: false value: false}");
ExpectParseFailureForJson(
"BoolMapFieldKeyNotQuoted", RECOMMENDED,
R"({"mapBoolBool": {true: true, false: false}})");
RunValidJsonTest(
"MessageMapField", REQUIRED,
R"({
"mapStringNestedMessage": {
"hello": {"a": 1234},
"world": {"a": 5678}
}
})",
R"(
map_string_nested_message: {
key: "hello"
value: {a: 1234}
}
map_string_nested_message: {
key: "world"
value: {a: 5678}
}
)");
// Since Map keys are represented as JSON strings, escaping should be allowed.
RunValidJsonTest(
"Int32MapEscapedKey", REQUIRED,
R"({"mapInt32Int32": {"\u0031": 2}})",
"map_int32_int32: {key: 1 value: 2}");
RunValidJsonTest(
"Int64MapEscapedKey", REQUIRED,
R"({"mapInt64Int64": {"\u0031": 2}})",
"map_int64_int64: {key: 1 value: 2}");
RunValidJsonTest(
"BoolMapEscapedKey", REQUIRED,
R"({"mapBoolBool": {"tr\u0075e": true}})",
"map_bool_bool: {key: true value: true}");
// "null" is accepted for all fields types.
RunValidJsonTest(
"AllFieldAcceptNull", REQUIRED,
R"({
"optionalInt32": null,
"optionalInt64": null,
"optionalUint32": null,
"optionalUint64": null,
"optionalSint32": null,
"optionalSint64": null,
"optionalFixed32": null,
"optionalFixed64": null,
"optionalSfixed32": null,
"optionalSfixed64": null,
"optionalFloat": null,
"optionalDouble": null,
"optionalBool": null,
"optionalString": null,
"optionalBytes": null,
"optionalNestedEnum": null,
"optionalNestedMessage": null,
"repeatedInt32": null,
"repeatedInt64": null,
"repeatedUint32": null,
"repeatedUint64": null,
"repeatedSint32": null,
"repeatedSint64": null,
"repeatedFixed32": null,
"repeatedFixed64": null,
"repeatedSfixed32": null,
"repeatedSfixed64": null,
"repeatedFloat": null,
"repeatedDouble": null,
"repeatedBool": null,
"repeatedString": null,
"repeatedBytes": null,
"repeatedNestedEnum": null,
"repeatedNestedMessage": null,
"mapInt32Int32": null,
"mapBoolBool": null,
"mapStringNestedMessage": null
})",
"");
// Repeated field elements cannot be null.
ExpectParseFailureForJson(
"RepeatedFieldPrimitiveElementIsNull", RECOMMENDED,
R"({"repeatedInt32": [1, null, 2]})");
ExpectParseFailureForJson(
"RepeatedFieldMessageElementIsNull", RECOMMENDED,
R"({"repeatedNestedMessage": [{"a":1}, null, {"a":2}]})");
// Map field keys cannot be null.
ExpectParseFailureForJson(
"MapFieldKeyIsNull", RECOMMENDED,
R"({"mapInt32Int32": {null: 1}})");
// Map field values cannot be null.
ExpectParseFailureForJson(
"MapFieldValueIsNull", RECOMMENDED,
R"({"mapInt32Int32": {"0": null}})");
// http://www.rfc-editor.org/rfc/rfc7159.txt says strings have to use double
// quotes.
ExpectParseFailureForJson(
"StringFieldSingleQuoteKey", RECOMMENDED,
R"({'optionalString': "Hello world!"})");
ExpectParseFailureForJson(
"StringFieldSingleQuoteValue", RECOMMENDED,
R"({"optionalString": 'Hello world!'})");
ExpectParseFailureForJson(
"StringFieldSingleQuoteBoth", RECOMMENDED,
R"({'optionalString': 'Hello world!'})");
// Unknown fields.
{
TestAllTypesProto3 messageProto3;
TestAllTypesProto2 messageProto2;
//TODO(yilunchong): update this behavior when unknown field's behavior
// changed in open source. Also delete
// Required.Proto3.ProtobufInput.UnknownVarint.ProtobufOutput
// from failure list of python_cpp python java
TestUnknownMessage(messageProto3, true);
TestUnknownMessage(messageProto2, false);
}
// Wrapper types.
RunValidJsonTest(
"OptionalBoolWrapper", REQUIRED,
R"({"optionalBoolWrapper": false})",
"optional_bool_wrapper: {value: false}");
RunValidJsonTest(
"OptionalInt32Wrapper", REQUIRED,
R"({"optionalInt32Wrapper": 0})",
"optional_int32_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalUint32Wrapper", REQUIRED,
R"({"optionalUint32Wrapper": 0})",
"optional_uint32_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalInt64Wrapper", REQUIRED,
R"({"optionalInt64Wrapper": 0})",
"optional_int64_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalUint64Wrapper", REQUIRED,
R"({"optionalUint64Wrapper": 0})",
"optional_uint64_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalFloatWrapper", REQUIRED,
R"({"optionalFloatWrapper": 0})",
"optional_float_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalDoubleWrapper", REQUIRED,
R"({"optionalDoubleWrapper": 0})",
"optional_double_wrapper: {value: 0}");
RunValidJsonTest(
"OptionalStringWrapper", REQUIRED,
R"({"optionalStringWrapper": ""})",
R"(optional_string_wrapper: {value: ""})");
RunValidJsonTest(
"OptionalBytesWrapper", REQUIRED,
R"({"optionalBytesWrapper": ""})",
R"(optional_bytes_wrapper: {value: ""})");
RunValidJsonTest(
"OptionalWrapperTypesWithNonDefaultValue", REQUIRED,
R"({
"optionalBoolWrapper": true,
"optionalInt32Wrapper": 1,
"optionalUint32Wrapper": 1,
"optionalInt64Wrapper": "1",
"optionalUint64Wrapper": "1",
"optionalFloatWrapper": 1,
"optionalDoubleWrapper": 1,
"optionalStringWrapper": "1",
"optionalBytesWrapper": "AQI="
})",
R"(
optional_bool_wrapper: {value: true}
optional_int32_wrapper: {value: 1}
optional_uint32_wrapper: {value: 1}
optional_int64_wrapper: {value: 1}
optional_uint64_wrapper: {value: 1}
optional_float_wrapper: {value: 1}
optional_double_wrapper: {value: 1}
optional_string_wrapper: {value: "1"}
optional_bytes_wrapper: {value: "\x01\x02"}
)");
RunValidJsonTest(
"RepeatedBoolWrapper", REQUIRED,
R"({"repeatedBoolWrapper": [true, false]})",
"repeated_bool_wrapper: {value: true}"
"repeated_bool_wrapper: {value: false}");
RunValidJsonTest(
"RepeatedInt32Wrapper", REQUIRED,
R"({"repeatedInt32Wrapper": [0, 1]})",
"repeated_int32_wrapper: {value: 0}"
"repeated_int32_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedUint32Wrapper", REQUIRED,
R"({"repeatedUint32Wrapper": [0, 1]})",
"repeated_uint32_wrapper: {value: 0}"
"repeated_uint32_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedInt64Wrapper", REQUIRED,
R"({"repeatedInt64Wrapper": [0, 1]})",
"repeated_int64_wrapper: {value: 0}"
"repeated_int64_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedUint64Wrapper", REQUIRED,
R"({"repeatedUint64Wrapper": [0, 1]})",
"repeated_uint64_wrapper: {value: 0}"
"repeated_uint64_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedFloatWrapper", REQUIRED,
R"({"repeatedFloatWrapper": [0, 1]})",
"repeated_float_wrapper: {value: 0}"
"repeated_float_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedDoubleWrapper", REQUIRED,
R"({"repeatedDoubleWrapper": [0, 1]})",
"repeated_double_wrapper: {value: 0}"
"repeated_double_wrapper: {value: 1}");
RunValidJsonTest(
"RepeatedStringWrapper", REQUIRED,
R"({"repeatedStringWrapper": ["", "AQI="]})",
R"(
repeated_string_wrapper: {value: ""}
repeated_string_wrapper: {value: "AQI="}
)");
RunValidJsonTest(
"RepeatedBytesWrapper", REQUIRED,
R"({"repeatedBytesWrapper": ["", "AQI="]})",
R"(
repeated_bytes_wrapper: {value: ""}
repeated_bytes_wrapper: {value: "\x01\x02"}
)");
RunValidJsonTest(
"WrapperTypesWithNullValue", REQUIRED,
R"({
"optionalBoolWrapper": null,
"optionalInt32Wrapper": null,
"optionalUint32Wrapper": null,
"optionalInt64Wrapper": null,
"optionalUint64Wrapper": null,
"optionalFloatWrapper": null,
"optionalDoubleWrapper": null,
"optionalStringWrapper": null,
"optionalBytesWrapper": null,
"repeatedBoolWrapper": null,
"repeatedInt32Wrapper": null,
"repeatedUint32Wrapper": null,
"repeatedInt64Wrapper": null,
"repeatedUint64Wrapper": null,
"repeatedFloatWrapper": null,
"repeatedDoubleWrapper": null,
"repeatedStringWrapper": null,
"repeatedBytesWrapper": null
})",
"");
// Duration
RunValidJsonTest(
"DurationMinValue", REQUIRED,
R"({"optionalDuration": "-315576000000.999999999s"})",
"optional_duration: {seconds: -315576000000 nanos: -999999999}");
RunValidJsonTest(
"DurationMaxValue", REQUIRED,
R"({"optionalDuration": "315576000000.999999999s"})",
"optional_duration: {seconds: 315576000000 nanos: 999999999}");
RunValidJsonTest(
"DurationRepeatedValue", REQUIRED,
R"({"repeatedDuration": ["1.5s", "-1.5s"]})",
"repeated_duration: {seconds: 1 nanos: 500000000}"
"repeated_duration: {seconds: -1 nanos: -500000000}");
RunValidJsonTest(
"DurationNull", REQUIRED,
R"({"optionalDuration": null})",
"");
ExpectParseFailureForJson(
"DurationMissingS", REQUIRED,
R"({"optionalDuration": "1"})");
ExpectParseFailureForJson(
"DurationJsonInputTooSmall", REQUIRED,
R"({"optionalDuration": "-315576000001.000000000s"})");
ExpectParseFailureForJson(
"DurationJsonInputTooLarge", REQUIRED,
R"({"optionalDuration": "315576000001.000000000s"})");
ExpectSerializeFailureForJson(
"DurationProtoInputTooSmall", REQUIRED,
"optional_duration: {seconds: -315576000001 nanos: 0}");
ExpectSerializeFailureForJson(
"DurationProtoInputTooLarge", REQUIRED,
"optional_duration: {seconds: 315576000001 nanos: 0}");
RunValidJsonTestWithValidator(
"DurationHasZeroFractionalDigit", RECOMMENDED,
R"({"optionalDuration": "1.000000000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1s";
});
RunValidJsonTestWithValidator(
"DurationHas3FractionalDigits", RECOMMENDED,
R"({"optionalDuration": "1.010000000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.010s";
});
RunValidJsonTestWithValidator(
"DurationHas6FractionalDigits", RECOMMENDED,
R"({"optionalDuration": "1.000010000s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.000010s";
});
RunValidJsonTestWithValidator(
"DurationHas9FractionalDigits", RECOMMENDED,
R"({"optionalDuration": "1.000000010s"})",
[](const Json::Value& value) {
return value["optionalDuration"].asString() == "1.000000010s";
});
// Timestamp
RunValidJsonTest(
"TimestampMinValue", REQUIRED,
R"({"optionalTimestamp": "0001-01-01T00:00:00Z"})",
"optional_timestamp: {seconds: -62135596800}");
RunValidJsonTest(
"TimestampMaxValue", REQUIRED,
R"({"optionalTimestamp": "9999-12-31T23:59:59.999999999Z"})",
"optional_timestamp: {seconds: 253402300799 nanos: 999999999}");
RunValidJsonTest(
"TimestampRepeatedValue", REQUIRED,
R"({
"repeatedTimestamp": [
"0001-01-01T00:00:00Z",
"9999-12-31T23:59:59.999999999Z"
]
})",
"repeated_timestamp: {seconds: -62135596800}"
"repeated_timestamp: {seconds: 253402300799 nanos: 999999999}");
2019-06-26 18:01:34 +00:00
RunValidJsonTest("TimestampWithPositiveOffset", REQUIRED,
R"({"optionalTimestamp": "1970-01-01T08:00:01+08:00"})",
"optional_timestamp: {seconds: 1}");
RunValidJsonTest("TimestampWithNegativeOffset", REQUIRED,
R"({"optionalTimestamp": "1969-12-31T16:00:01-08:00"})",
"optional_timestamp: {seconds: 1}");
2018-08-09 00:00:41 +00:00
RunValidJsonTest(
"TimestampNull", REQUIRED,
R"({"optionalTimestamp": null})",
"");
ExpectParseFailureForJson(
"TimestampJsonInputTooSmall", REQUIRED,
R"({"optionalTimestamp": "0000-01-01T00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputTooLarge", REQUIRED,
R"({"optionalTimestamp": "10000-01-01T00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputMissingZ", REQUIRED,
R"({"optionalTimestamp": "0001-01-01T00:00:00"})");
ExpectParseFailureForJson(
"TimestampJsonInputMissingT", REQUIRED,
R"({"optionalTimestamp": "0001-01-01 00:00:00Z"})");
ExpectParseFailureForJson(
"TimestampJsonInputLowercaseZ", REQUIRED,
R"({"optionalTimestamp": "0001-01-01T00:00:00z"})");
ExpectParseFailureForJson(
"TimestampJsonInputLowercaseT", REQUIRED,
R"({"optionalTimestamp": "0001-01-01t00:00:00Z"})");
ExpectSerializeFailureForJson(
"TimestampProtoInputTooSmall", REQUIRED,
"optional_timestamp: {seconds: -62135596801}");
ExpectSerializeFailureForJson(
"TimestampProtoInputTooLarge", REQUIRED,
"optional_timestamp: {seconds: 253402300800}");
RunValidJsonTestWithValidator(
"TimestampZeroNormalized", RECOMMENDED,
R"({"optionalTimestamp": "1969-12-31T16:00:00-08:00"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00Z";
});
RunValidJsonTestWithValidator(
"TimestampHasZeroFractionalDigit", RECOMMENDED,
R"({"optionalTimestamp": "1970-01-01T00:00:00.000000000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00Z";
});
RunValidJsonTestWithValidator(
"TimestampHas3FractionalDigits", RECOMMENDED,
R"({"optionalTimestamp": "1970-01-01T00:00:00.010000000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.010Z";
});
RunValidJsonTestWithValidator(
"TimestampHas6FractionalDigits", RECOMMENDED,
R"({"optionalTimestamp": "1970-01-01T00:00:00.000010000Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.000010Z";
});
RunValidJsonTestWithValidator(
"TimestampHas9FractionalDigits", RECOMMENDED,
R"({"optionalTimestamp": "1970-01-01T00:00:00.000000010Z"})",
[](const Json::Value& value) {
return value["optionalTimestamp"].asString() ==
"1970-01-01T00:00:00.000000010Z";
});
// FieldMask
RunValidJsonTest(
"FieldMask", REQUIRED,
R"({"optionalFieldMask": "foo,barBaz"})",
R"(optional_field_mask: {paths: "foo" paths: "bar_baz"})");
RunValidJsonTest(
"EmptyFieldMask", REQUIRED,
R"({"optionalFieldMask": ""})",
R"(optional_field_mask: {})");
2018-08-09 00:00:41 +00:00
ExpectParseFailureForJson(
"FieldMaskInvalidCharacter", RECOMMENDED,
R"({"optionalFieldMask": "foo,bar_bar"})");
ExpectSerializeFailureForJson(
"FieldMaskPathsDontRoundTrip", RECOMMENDED,
R"(optional_field_mask: {paths: "fooBar"})");
ExpectSerializeFailureForJson(
"FieldMaskNumbersDontRoundTrip", RECOMMENDED,
R"(optional_field_mask: {paths: "foo_3_bar"})");
ExpectSerializeFailureForJson(
"FieldMaskTooManyUnderscore", RECOMMENDED,
R"(optional_field_mask: {paths: "foo__bar"})");
// Struct
RunValidJsonTest(
"Struct", REQUIRED,
R"({
"optionalStruct": {
"nullValue": null,
"intValue": 1234,
"boolValue": true,
"doubleValue": 1234.5678,
"stringValue": "Hello world!",
"listValue": [1234, "5678"],
"objectValue": {
"value": 0
}
}
})",
R"(
optional_struct: {
fields: {
key: "nullValue"
value: {null_value: NULL_VALUE}
}
fields: {
key: "intValue"
value: {number_value: 1234}
}
fields: {
key: "boolValue"
value: {bool_value: true}
}
fields: {
key: "doubleValue"
value: {number_value: 1234.5678}
}
fields: {
key: "stringValue"
value: {string_value: "Hello world!"}
}
fields: {
key: "listValue"
value: {
list_value: {
values: {
number_value: 1234
}
values: {
string_value: "5678"
}
}
}
}
fields: {
key: "objectValue"
value: {
struct_value: {
fields: {
key: "value"
value: {
number_value: 0
}
}
}
}
}
}
)");
RunValidJsonTest(
"StructWithEmptyListValue", REQUIRED,
R"({
"optionalStruct": {
"listValue": []
}
})",
R"(
optional_struct: {
fields: {
key: "listValue"
value: {
list_value: {
}
}
}
}
)");
2018-08-09 00:00:41 +00:00
// Value
RunValidJsonTest(
"ValueAcceptInteger", REQUIRED,
R"({"optionalValue": 1})",
"optional_value: { number_value: 1}");
RunValidJsonTest(
"ValueAcceptFloat", REQUIRED,
R"({"optionalValue": 1.5})",
"optional_value: { number_value: 1.5}");
RunValidJsonTest(
"ValueAcceptBool", REQUIRED,
R"({"optionalValue": false})",
"optional_value: { bool_value: false}");
RunValidJsonTest(
"ValueAcceptNull", REQUIRED,
R"({"optionalValue": null})",
"optional_value: { null_value: NULL_VALUE}");
RunValidJsonTest(
"ValueAcceptString", REQUIRED,
R"({"optionalValue": "hello"})",
R"(optional_value: { string_value: "hello"})");
RunValidJsonTest(
"ValueAcceptList", REQUIRED,
R"({"optionalValue": [0, "hello"]})",
R"(
optional_value: {
list_value: {
values: {
number_value: 0
}
values: {
string_value: "hello"
}
}
}
)");
RunValidJsonTest(
"ValueAcceptObject", REQUIRED,
R"({"optionalValue": {"value": 1}})",
R"(
optional_value: {
struct_value: {
fields: {
key: "value"
value: {
number_value: 1
}
}
}
}
)");
RunValidJsonTest(
"RepeatedValue", REQUIRED,
R"({
"repeatedValue": [["a"]]
})",
R"(
repeated_value: [
{
list_value: {
values: [
{ string_value: "a"}
]
}
}
]
)");
RunValidJsonTest(
"RepeatedListValue", REQUIRED,
R"({
"repeatedListValue": [["a"]]
})",
R"(
repeated_list_value: [
{
values: [
{ string_value: "a"}
]
}
]
)");
2018-08-09 00:00:41 +00:00
// Any
RunValidJsonTest(
"Any", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3",
"optionalInt32": 12345
}
})",
R"(
optional_any: {
[type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3] {
optional_int32: 12345
}
}
)");
RunValidJsonTest(
"AnyNested", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Any",
"value": {
"@type": "type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3",
"optionalInt32": 12345
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Any] {
[type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3] {
optional_int32: 12345
}
}
}
)");
// The special "@type" tag is not required to appear first.
RunValidJsonTest(
"AnyUnorderedTypeTag", REQUIRED,
R"({
"optionalAny": {
"optionalInt32": 12345,
"@type": "type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3"
}
})",
R"(
optional_any: {
[type.googleapis.com/protobuf_test_messages.proto3.TestAllTypesProto3] {
optional_int32: 12345
}
}
)");
// Well-known types in Any.
RunValidJsonTest(
"AnyWithInt32ValueWrapper", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Int32Value",
"value": 12345
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Int32Value] {
value: 12345
}
}
)");
RunValidJsonTest(
"AnyWithDuration", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Duration",
"value": "1.5s"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Duration] {
seconds: 1
nanos: 500000000
}
}
)");
RunValidJsonTest(
"AnyWithTimestamp", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Timestamp",
"value": "1970-01-01T00:00:00Z"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Timestamp] {
seconds: 0
nanos: 0
}
}
)");
RunValidJsonTest(
"AnyWithFieldMask", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.FieldMask",
"value": "foo,barBaz"
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.FieldMask] {
paths: ["foo", "bar_baz"]
}
}
)");
RunValidJsonTest(
"AnyWithStruct", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Struct",
"value": {
"foo": 1
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Struct] {
fields: {
key: "foo"
value: {
number_value: 1
}
}
}
}
)");
RunValidJsonTest(
"AnyWithValueForJsonObject", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Value",
"value": {
"foo": 1
}
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Value] {
struct_value: {
fields: {
key: "foo"
value: {
number_value: 1
}
}
}
}
}
)");
RunValidJsonTest(
"AnyWithValueForInteger", REQUIRED,
R"({
"optionalAny": {
"@type": "type.googleapis.com/google.protobuf.Value",
"value": 1
}
})",
R"(
optional_any: {
[type.googleapis.com/google.protobuf.Value] {
number_value: 1
}
}
)");
RunValidJsonIgnoreUnknownTest(
"IgnoreUnknownJsonNumber", REQUIRED,
R"({
"unknown": 1
})",
"");
RunValidJsonIgnoreUnknownTest(
"IgnoreUnknownJsonString", REQUIRED,
R"({
"unknown": "a"
})",
"");
RunValidJsonIgnoreUnknownTest(
"IgnoreUnknownJsonTrue", REQUIRED,
R"({
"unknown": true
})",
"");
RunValidJsonIgnoreUnknownTest(
"IgnoreUnknownJsonFalse", REQUIRED,
R"({
"unknown": false
})",
"");
RunValidJsonIgnoreUnknownTest(
"IgnoreUnknownJsonNull", REQUIRED,
R"({
"unknown": null
})",
"");
RunValidJsonIgnoreUnknownTest(
"IgnoreUnknownJsonObject", REQUIRED,
R"({
"unknown": {"a": 1}
})",
"");
ExpectParseFailureForJson("RejectTopLevelNull", REQUIRED, "null");
2018-08-09 00:00:41 +00:00
}
} // namespace protobuf
} // namespace google