// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include "conformance.pb.h" #include "conformance_test.h" #include #include #include #include #include #include #include #include #include "third_party/jsoncpp/json.h" using conformance::ConformanceRequest; using conformance::ConformanceResponse; using conformance::TestAllTypes; using conformance::WireFormat; using google::protobuf::Descriptor; using google::protobuf::FieldDescriptor; using google::protobuf::internal::WireFormatLite; using google::protobuf::TextFormat; using google::protobuf::util::DefaultFieldComparator; using google::protobuf::util::JsonToBinaryString; using google::protobuf::util::MessageDifferencer; using google::protobuf::util::NewTypeResolverForDescriptorPool; using google::protobuf::util::Status; using std::string; namespace { static const char kTypeUrlPrefix[] = "type.googleapis.com"; static string GetTypeUrl(const Descriptor* message) { return string(kTypeUrlPrefix) + "/" + message->full_name(); } /* Routines for building arbitrary protos *************************************/ // We would use CodedOutputStream except that we want more freedom to build // arbitrary protos (even invalid ones). const string empty; string cat(const string& a, const string& b, const string& c = empty, const string& d = empty, const string& e = empty, const string& f = empty, const string& g = empty, const string& h = empty, const string& i = empty, const string& j = empty, const string& k = empty, const string& l = empty) { string ret; ret.reserve(a.size() + b.size() + c.size() + d.size() + e.size() + f.size() + g.size() + h.size() + i.size() + j.size() + k.size() + l.size()); ret.append(a); ret.append(b); ret.append(c); ret.append(d); ret.append(e); ret.append(f); ret.append(g); ret.append(h); ret.append(i); ret.append(j); ret.append(k); ret.append(l); return ret; } // The maximum number of bytes that it takes to encode a 64-bit varint. #define VARINT_MAX_LEN 10 size_t vencode64(uint64_t val, char *buf) { if (val == 0) { buf[0] = 0; return 1; } size_t i = 0; while (val) { uint8_t byte = val & 0x7fU; val >>= 7; if (val) byte |= 0x80U; buf[i++] = byte; } return i; } string varint(uint64_t x) { char buf[VARINT_MAX_LEN]; size_t len = vencode64(x, buf); return string(buf, len); } // TODO: proper byte-swapping for big-endian machines. string fixed32(void *data) { return string(static_cast(data), 4); } string fixed64(void *data) { return string(static_cast(data), 8); } string delim(const string& buf) { return cat(varint(buf.size()), buf); } string uint32(uint32_t u32) { return fixed32(&u32); } string uint64(uint64_t u64) { return fixed64(&u64); } string flt(float f) { return fixed32(&f); } string dbl(double d) { return fixed64(&d); } string zz32(int32_t x) { return varint(WireFormatLite::ZigZagEncode32(x)); } string zz64(int64_t x) { return varint(WireFormatLite::ZigZagEncode64(x)); } string tag(uint32_t fieldnum, char wire_type) { return varint((fieldnum << 3) | wire_type); } string submsg(uint32_t fn, const string& buf) { return cat( tag(fn, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), delim(buf) ); } #define UNKNOWN_FIELD 666 uint32_t GetFieldNumberForType(FieldDescriptor::Type type, bool repeated) { const Descriptor* d = TestAllTypes().GetDescriptor(); for (int i = 0; i < d->field_count(); i++) { const FieldDescriptor* f = d->field(i); if (f->type() == type && f->is_repeated() == repeated) { return f->number(); } } GOOGLE_LOG(FATAL) << "Couldn't find field with type " << (int)type; return 0; } string UpperCase(string str) { for (int i = 0; i < str.size(); i++) { str[i] = toupper(str[i]); } return str; } } // anonymous namespace namespace google { namespace protobuf { void ConformanceTestSuite::ReportSuccess(const string& test_name) { if (expected_to_fail_.erase(test_name) != 0) { StringAppendF(&output_, "ERROR: test %s is in the failure list, but test succeeded. " "Remove it from the failure list.\n", test_name.c_str()); unexpected_succeeding_tests_.insert(test_name); } successes_++; } void ConformanceTestSuite::ReportFailure(const string& test_name, const ConformanceRequest& request, const ConformanceResponse& response, const char* fmt, ...) { if (expected_to_fail_.erase(test_name) == 1) { expected_failures_++; if (!verbose_) return; } else { StringAppendF(&output_, "ERROR, test=%s: ", test_name.c_str()); unexpected_failing_tests_.insert(test_name); } va_list args; va_start(args, fmt); StringAppendV(&output_, fmt, args); va_end(args); StringAppendF(&output_, " request=%s, response=%s\n", request.ShortDebugString().c_str(), response.ShortDebugString().c_str()); } void ConformanceTestSuite::ReportSkip(const string& test_name, const ConformanceRequest& request, const ConformanceResponse& response) { if (verbose_) { StringAppendF(&output_, "SKIPPED, test=%s request=%s, response=%s\n", test_name.c_str(), request.ShortDebugString().c_str(), response.ShortDebugString().c_str()); } skipped_.insert(test_name); } void ConformanceTestSuite::RunTest(const string& test_name, const ConformanceRequest& request, ConformanceResponse* response) { if (test_names_.insert(test_name).second == false) { GOOGLE_LOG(FATAL) << "Duplicated test name: " << test_name; } string serialized_request; string serialized_response; request.SerializeToString(&serialized_request); runner_->RunTest(test_name, serialized_request, &serialized_response); if (!response->ParseFromString(serialized_response)) { response->Clear(); response->set_runtime_error("response proto could not be parsed."); } if (verbose_) { StringAppendF(&output_, "conformance test: name=%s, request=%s, response=%s\n", test_name.c_str(), request.ShortDebugString().c_str(), response->ShortDebugString().c_str()); } } void ConformanceTestSuite::RunValidInputTest( const string& test_name, const string& input, WireFormat input_format, const string& equivalent_text_format, WireFormat requested_output) { TestAllTypes reference_message; GOOGLE_CHECK( TextFormat::ParseFromString(equivalent_text_format, &reference_message)) << "Failed to parse data for test case: " << test_name << ", data: " << equivalent_text_format; ConformanceRequest request; ConformanceResponse response; switch (input_format) { case conformance::PROTOBUF: request.set_protobuf_payload(input); break; case conformance::JSON: request.set_json_payload(input); break; default: GOOGLE_LOG(FATAL) << "Unspecified input format"; } request.set_requested_output_format(requested_output); RunTest(test_name, request, &response); TestAllTypes test_message; switch (response.result_case()) { case ConformanceResponse::RESULT_NOT_SET: ReportFailure(test_name, request, response, "Response didn't have any field in the Response."); return; case ConformanceResponse::kParseError: case ConformanceResponse::kRuntimeError: case ConformanceResponse::kSerializeError: ReportFailure(test_name, request, response, "Failed to parse input or produce output."); return; case ConformanceResponse::kSkipped: ReportSkip(test_name, request, response); return; case ConformanceResponse::kJsonPayload: { if (requested_output != conformance::JSON) { ReportFailure( test_name, request, response, "Test was asked for protobuf output but provided JSON instead."); return; } string binary_protobuf; Status status = JsonToBinaryString(type_resolver_.get(), type_url_, response.json_payload(), &binary_protobuf); if (!status.ok()) { ReportFailure(test_name, request, response, "JSON output we received from test was unparseable."); return; } if (!test_message.ParseFromString(binary_protobuf)) { ReportFailure(test_name, request, response, "INTERNAL ERROR: internal JSON->protobuf transcode " "yielded unparseable proto."); return; } break; } case ConformanceResponse::kProtobufPayload: { if (requested_output != conformance::PROTOBUF) { ReportFailure( test_name, request, response, "Test was asked for JSON output but provided protobuf instead."); return; } if (!test_message.ParseFromString(response.protobuf_payload())) { ReportFailure(test_name, request, response, "Protobuf output we received from test was unparseable."); return; } break; } default: GOOGLE_LOG(FATAL) << test_name << ": unknown payload type: " << response.result_case(); } MessageDifferencer differencer; DefaultFieldComparator field_comparator; field_comparator.set_treat_nan_as_equal(true); differencer.set_field_comparator(&field_comparator); string differences; differencer.ReportDifferencesToString(&differences); if (differencer.Compare(reference_message, test_message)) { ReportSuccess(test_name); } else { ReportFailure(test_name, request, response, "Output was not equivalent to reference message: %s.", differences.c_str()); } } // Expect that this precise protobuf will cause a parse error. void ConformanceTestSuite::ExpectParseFailureForProto( const string& proto, const string& test_name) { ConformanceRequest request; ConformanceResponse response; request.set_protobuf_payload(proto); string effective_test_name = "ProtobufInput." + test_name; // We don't expect output, but if the program erroneously accepts the protobuf // we let it send its response as this. We must not leave it unspecified. request.set_requested_output_format(conformance::PROTOBUF); RunTest(effective_test_name, request, &response); if (response.result_case() == ConformanceResponse::kParseError) { ReportSuccess(effective_test_name); } else if (response.result_case() == ConformanceResponse::kSkipped) { ReportSkip(effective_test_name, request, response); } else { ReportFailure(effective_test_name, request, response, "Should have failed to parse, but didn't."); } } // Expect that this protobuf will cause a parse error, even if it is followed // by valid protobuf data. We can try running this twice: once with this // data verbatim and once with this data followed by some valid data. // // TODO(haberman): implement the second of these. void ConformanceTestSuite::ExpectHardParseFailureForProto( const string& proto, const string& test_name) { return ExpectParseFailureForProto(proto, test_name); } void ConformanceTestSuite::RunValidJsonTest( const string& test_name, const string& input_json, const string& equivalent_text_format) { RunValidInputTest("JsonInput." + test_name + ".ProtobufOutput", input_json, conformance::JSON, equivalent_text_format, conformance::PROTOBUF); RunValidInputTest("JsonInput." + test_name + ".JsonOutput", input_json, conformance::JSON, equivalent_text_format, conformance::JSON); } void ConformanceTestSuite::RunValidJsonTestWithProtobufInput( const string& test_name, const TestAllTypes& input, const string& equivalent_text_format) { RunValidInputTest("ProtobufInput." + test_name + ".JsonOutput", input.SerializeAsString(), conformance::PROTOBUF, equivalent_text_format, conformance::JSON); } void ConformanceTestSuite::RunValidProtobufTest( const string& test_name, const TestAllTypes& input, const string& equivalent_text_format) { RunValidInputTest("ProtobufInput." + test_name + ".ProtobufOutput", input.SerializeAsString(), conformance::PROTOBUF, equivalent_text_format, conformance::PROTOBUF); RunValidInputTest("ProtobufInput." + test_name + ".JsonOutput", input.SerializeAsString(), conformance::PROTOBUF, equivalent_text_format, conformance::JSON); } // According to proto3 JSON specification, JSON serializers follow more strict // rules than parsers (e.g., a serializer must serialize int32 values as JSON // numbers while the parser is allowed to accept them as JSON strings). This // method allows strict checking on a proto3 JSON serializer by inspecting // the JSON output directly. void ConformanceTestSuite::RunValidJsonTestWithValidator( const string& test_name, const string& input_json, const Validator& validator) { ConformanceRequest request; ConformanceResponse response; request.set_json_payload(input_json); request.set_requested_output_format(conformance::JSON); string effective_test_name = "JsonInput." + test_name + ".Validator"; RunTest(effective_test_name, request, &response); if (response.result_case() == ConformanceResponse::kSkipped) { ReportSkip(effective_test_name, request, response); return; } if (response.result_case() != ConformanceResponse::kJsonPayload) { ReportFailure(effective_test_name, request, response, "Expected JSON payload but got type %d.", response.result_case()); return; } Json::Reader reader; Json::Value value; if (!reader.parse(response.json_payload(), value)) { ReportFailure(effective_test_name, request, response, "JSON payload cannot be parsed as valid JSON: %s", reader.getFormattedErrorMessages().c_str()); return; } if (!validator(value)) { ReportFailure(effective_test_name, request, response, "JSON payload validation failed."); return; } ReportSuccess(effective_test_name); } void ConformanceTestSuite::ExpectParseFailureForJson( const string& test_name, const string& input_json) { ConformanceRequest request; ConformanceResponse response; request.set_json_payload(input_json); string effective_test_name = "JsonInput." + test_name; // We don't expect output, but if the program erroneously accepts the protobuf // we let it send its response as this. We must not leave it unspecified. request.set_requested_output_format(conformance::JSON); RunTest(effective_test_name, request, &response); if (response.result_case() == ConformanceResponse::kParseError) { ReportSuccess(effective_test_name); } else if (response.result_case() == ConformanceResponse::kSkipped) { ReportSkip(effective_test_name, request, response); } else { ReportFailure(effective_test_name, request, response, "Should have failed to parse, but didn't."); } } void ConformanceTestSuite::ExpectSerializeFailureForJson( const string& test_name, const string& text_format) { TestAllTypes payload_message; GOOGLE_CHECK( TextFormat::ParseFromString(text_format, &payload_message)) << "Failed to parse: " << text_format; ConformanceRequest request; ConformanceResponse response; request.set_protobuf_payload(payload_message.SerializeAsString()); string effective_test_name = test_name + ".JsonOutput"; request.set_requested_output_format(conformance::JSON); RunTest(effective_test_name, request, &response); if (response.result_case() == ConformanceResponse::kSerializeError) { ReportSuccess(effective_test_name); } else if (response.result_case() == ConformanceResponse::kSkipped) { ReportSkip(effective_test_name, request, response); } else { ReportFailure(effective_test_name, request, response, "Should have failed to serialize, but didn't."); } } void ConformanceTestSuite::TestPrematureEOFForType(FieldDescriptor::Type type) { // Incomplete values for each wire type. static const string incompletes[6] = { string("\x80"), // VARINT string("abcdefg"), // 64BIT string("\x80"), // DELIMITED (partial length) string(), // START_GROUP (no value required) string(), // END_GROUP (no value required) string("abc") // 32BIT }; uint32_t fieldnum = GetFieldNumberForType(type, false); uint32_t rep_fieldnum = GetFieldNumberForType(type, true); WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType( static_cast(type)); const string& incomplete = incompletes[wire_type]; const string type_name = UpperCase(string(".") + FieldDescriptor::TypeName(type)); ExpectParseFailureForProto( tag(fieldnum, wire_type), "PrematureEofBeforeKnownNonRepeatedValue" + type_name); ExpectParseFailureForProto( tag(rep_fieldnum, wire_type), "PrematureEofBeforeKnownRepeatedValue" + type_name); ExpectParseFailureForProto( tag(UNKNOWN_FIELD, wire_type), "PrematureEofBeforeUnknownValue" + type_name); ExpectParseFailureForProto( cat( tag(fieldnum, wire_type), incomplete ), "PrematureEofInsideKnownNonRepeatedValue" + type_name); ExpectParseFailureForProto( cat( tag(rep_fieldnum, wire_type), incomplete ), "PrematureEofInsideKnownRepeatedValue" + type_name); ExpectParseFailureForProto( cat( tag(UNKNOWN_FIELD, wire_type), incomplete ), "PrematureEofInsideUnknownValue" + type_name); if (wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { ExpectParseFailureForProto( cat( tag(fieldnum, wire_type), varint(1) ), "PrematureEofInDelimitedDataForKnownNonRepeatedValue" + type_name); ExpectParseFailureForProto( cat( tag(rep_fieldnum, wire_type), varint(1) ), "PrematureEofInDelimitedDataForKnownRepeatedValue" + type_name); // EOF in the middle of delimited data for unknown value. ExpectParseFailureForProto( cat( tag(UNKNOWN_FIELD, wire_type), varint(1) ), "PrematureEofInDelimitedDataForUnknownValue" + type_name); if (type == FieldDescriptor::TYPE_MESSAGE) { // Submessage ends in the middle of a value. string incomplete_submsg = cat( tag(WireFormatLite::TYPE_INT32, WireFormatLite::WIRETYPE_VARINT), incompletes[WireFormatLite::WIRETYPE_VARINT] ); ExpectHardParseFailureForProto( cat( tag(fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), varint(incomplete_submsg.size()), incomplete_submsg ), "PrematureEofInSubmessageValue" + type_name); } } else if (type != FieldDescriptor::TYPE_GROUP) { // Non-delimited, non-group: eligible for packing. // Packed region ends in the middle of a value. ExpectHardParseFailureForProto( cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), varint(incomplete.size()), incomplete ), "PrematureEofInPackedFieldValue" + type_name); // EOF in the middle of packed region. ExpectParseFailureForProto( cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), varint(1) ), "PrematureEofInPackedField" + type_name); } } void ConformanceTestSuite::SetFailureList(const string& filename, const vector& failure_list) { failure_list_filename_ = filename; expected_to_fail_.clear(); std::copy(failure_list.begin(), failure_list.end(), std::inserter(expected_to_fail_, expected_to_fail_.end())); } bool ConformanceTestSuite::CheckSetEmpty(const set& set_to_check, const std::string& write_to_file, const std::string& msg) { if (set_to_check.empty()) { return true; } else { StringAppendF(&output_, "\n"); StringAppendF(&output_, "%s\n\n", msg.c_str()); for (set::const_iterator iter = set_to_check.begin(); iter != set_to_check.end(); ++iter) { StringAppendF(&output_, " %s\n", iter->c_str()); } StringAppendF(&output_, "\n"); if (!write_to_file.empty()) { std::ofstream os(write_to_file); if (os) { for (set::const_iterator iter = set_to_check.begin(); iter != set_to_check.end(); ++iter) { os << *iter << "\n"; } } else { StringAppendF(&output_, "Failed to open file: %s\n", write_to_file.c_str()); } } return false; } } bool ConformanceTestSuite::RunSuite(ConformanceTestRunner* runner, std::string* output) { runner_ = runner; successes_ = 0; expected_failures_ = 0; skipped_.clear(); test_names_.clear(); unexpected_failing_tests_.clear(); unexpected_succeeding_tests_.clear(); type_resolver_.reset(NewTypeResolverForDescriptorPool( kTypeUrlPrefix, DescriptorPool::generated_pool())); type_url_ = GetTypeUrl(TestAllTypes::descriptor()); output_ = "\nCONFORMANCE TEST BEGIN ====================================\n\n"; for (int i = 1; i <= FieldDescriptor::MAX_TYPE; i++) { if (i == FieldDescriptor::TYPE_GROUP) continue; TestPrematureEOFForType(static_cast(i)); } RunValidJsonTest("HelloWorld", "{\"optionalString\":\"Hello, World!\"}", "optional_string: 'Hello, World!'"); // Test field name conventions. RunValidJsonTest( "FieldNameInSnakeCase", R"({ "fieldname1": 1, "fieldName2": 2, "FieldName3": 3, "FieldName4": 4 })", R"( fieldname1: 1 field_name2: 2 _field_name3: 3 field__name4_: 4 )"); RunValidJsonTest( "FieldNameWithNumbers", R"({ "field0name5": 5, "field0Name6": 6 })", R"( field0name5: 5 field_0_name6: 6 )"); RunValidJsonTest( "FieldNameWithMixedCases", R"({ "fieldName7": 7, "fieldName8": 8, "fieldName9": 9, "fieldName10": 10, "fIELDNAME11": 11, "fIELDName12": 12 })", R"( fieldName7: 7 FieldName8: 8 field_Name9: 9 Field_Name10: 10 FIELD_NAME11: 11 FIELD_name12: 12 )"); RunValidJsonTest( "FieldNameWithDoubleUnderscores", R"({ "fieldName13": 13, "fieldName14": 14, "fieldName15": 15, "fieldName16": 16, "fieldName17": 17, "fieldName18": 18 })", R"( __field_name13: 13 __Field_name14: 14 field__name15: 15 field__Name16: 16 field_name17__: 17 Field_name18__: 18 )"); // Using the original proto field name in JSON is also allowed. RunValidJsonTest( "OriginalProtoFieldName", R"({ "fieldname1": 1, "field_name2": 2, "_field_name3": 3, "field__name4_": 4, "field0name5": 5, "field_0_name6": 6, "fieldName7": 7, "FieldName8": 8, "field_Name9": 9, "Field_Name10": 10, "FIELD_NAME11": 11, "FIELD_name12": 12, "__field_name13": 13, "__Field_name14": 14, "field__name15": 15, "field__Name16": 16, "field_name17__": 17, "Field_name18__": 18 })", R"( fieldname1: 1 field_name2: 2 _field_name3: 3 field__name4_: 4 field0name5: 5 field_0_name6: 6 fieldName7: 7 FieldName8: 8 field_Name9: 9 Field_Name10: 10 FIELD_NAME11: 11 FIELD_name12: 12 __field_name13: 13 __Field_name14: 14 field__name15: 15 field__Name16: 16 field_name17__: 17 Field_name18__: 18 )"); // Field names can be escaped. RunValidJsonTest( "FieldNameEscaped", R"({"fieldn\u0061me1": 1})", "fieldname1: 1"); // Field names must be quoted (or it's not valid JSON). ExpectParseFailureForJson( "FieldNameNotQuoted", "{fieldname1: 1}"); // Trailing comma is not allowed (not valid JSON). ExpectParseFailureForJson( "TrailingCommaInAnObject", R"({"fieldname1":1,})"); // JSON doesn't support comments. ExpectParseFailureForJson( "JsonWithComments", R"({ // This is a comment. "fieldname1": 1 })"); // Duplicated field names are not allowed. ExpectParseFailureForJson( "FieldNameDuplicate", R"({ "optionalNestedMessage": {a: 1}, "optionalNestedMessage": {} })"); ExpectParseFailureForJson( "FieldNameDuplicateDifferentCasing1", R"({ "optional_nested_message": {a: 1}, "optionalNestedMessage": {} })"); ExpectParseFailureForJson( "FieldNameDuplicateDifferentCasing2", R"({ "optionalNestedMessage": {a: 1}, "optional_nested_message": {} })"); // Serializers should use lowerCamelCase by default. RunValidJsonTestWithValidator( "FieldNameInLowerCamelCase", R"({ "fieldname1": 1, "fieldName2": 2, "FieldName3": 3 })", [](const Json::Value& value) { return value.isMember("fieldname1") && value.isMember("fieldName2") && value.isMember("FieldName3"); }); RunValidJsonTestWithValidator( "FieldNameWithNumbers", R"({ "field0name5": 5, "field0Name6": 6 })", [](const Json::Value& value) { return value.isMember("field0name5") && value.isMember("field0Name6"); }); RunValidJsonTestWithValidator( "FieldNameWithMixedCases", R"({ "fieldName7": 7, "fieldName8": 8, "fieldName9": 9, "fieldName10": 10, "fIELDNAME11": 11, "fIELDName12": 12 })", [](const Json::Value& value) { return value.isMember("fieldName7") && value.isMember("fieldName8") && value.isMember("fieldName9") && value.isMember("fieldName10") && value.isMember("fIELDNAME11") && value.isMember("fIELDName12"); }); // Integer fields. RunValidJsonTest( "Int32FieldMaxValue", R"({"optionalInt32": 2147483647})", "optional_int32: 2147483647"); RunValidJsonTest( "Int32FieldMinValue", R"({"optionalInt32": -2147483648})", "optional_int32: -2147483648"); RunValidJsonTest( "Uint32FieldMaxValue", R"({"optionalUint32": 4294967295})", "optional_uint32: 4294967295"); RunValidJsonTest( "Int64FieldMaxValue", R"({"optionalInt64": "9223372036854775807"})", "optional_int64: 9223372036854775807"); RunValidJsonTest( "Int64FieldMinValue", R"({"optionalInt64": "-9223372036854775808"})", "optional_int64: -9223372036854775808"); RunValidJsonTest( "Uint64FieldMaxValue", R"({"optionalUint64": "18446744073709551615"})", "optional_uint64: 18446744073709551615"); // While not the largest Int64, this is the largest // Int64 which can be exactly represented within an // IEEE-754 64-bit float, which is the expected level // of interoperability guarantee. Larger values may // work in some implementations, but should not be // relied upon. RunValidJsonTest( "Int64FieldMaxValueNotQuoted", R"({"optionalInt64": 9223372036854774784})", "optional_int64: 9223372036854774784"); RunValidJsonTest( "Int64FieldMinValueNotQuoted", R"({"optionalInt64": -9223372036854775808})", "optional_int64: -9223372036854775808"); // Largest interoperable Uint64; see comment above // for Int64FieldMaxValueNotQuoted. RunValidJsonTest( "Uint64FieldMaxValueNotQuoted", R"({"optionalUint64": 18446744073709549568})", "optional_uint64: 18446744073709549568"); // Values can be represented as JSON strings. RunValidJsonTest( "Int32FieldStringValue", R"({"optionalInt32": "2147483647"})", "optional_int32: 2147483647"); RunValidJsonTest( "Int32FieldStringValueEscaped", R"({"optionalInt32": "2\u003147483647"})", "optional_int32: 2147483647"); // Parsers reject out-of-bound integer values. ExpectParseFailureForJson( "Int32FieldTooLarge", R"({"optionalInt32": 2147483648})"); ExpectParseFailureForJson( "Int32FieldTooSmall", R"({"optionalInt32": -2147483649})"); ExpectParseFailureForJson( "Uint32FieldTooLarge", R"({"optionalUint32": 4294967296})"); ExpectParseFailureForJson( "Int64FieldTooLarge", R"({"optionalInt64": "9223372036854775808"})"); ExpectParseFailureForJson( "Int64FieldTooSmall", R"({"optionalInt64": "-9223372036854775809"})"); ExpectParseFailureForJson( "Uint64FieldTooLarge", R"({"optionalUint64": "18446744073709551616"})"); // Parser reject non-integer numeric values as well. ExpectParseFailureForJson( "Int32FieldNotInteger", R"({"optionalInt32": 0.5})"); ExpectParseFailureForJson( "Uint32FieldNotInteger", R"({"optionalUint32": 0.5})"); ExpectParseFailureForJson( "Int64FieldNotInteger", R"({"optionalInt64": "0.5"})"); ExpectParseFailureForJson( "Uint64FieldNotInteger", R"({"optionalUint64": "0.5"})"); // Integers but represented as float values are accepted. RunValidJsonTest( "Int32FieldFloatTrailingZero", R"({"optionalInt32": 100000.000})", "optional_int32: 100000"); RunValidJsonTest( "Int32FieldExponentialFormat", R"({"optionalInt32": 1e5})", "optional_int32: 100000"); RunValidJsonTest( "Int32FieldMaxFloatValue", R"({"optionalInt32": 2.147483647e9})", "optional_int32: 2147483647"); RunValidJsonTest( "Int32FieldMinFloatValue", R"({"optionalInt32": -2.147483648e9})", "optional_int32: -2147483648"); RunValidJsonTest( "Uint32FieldMaxFloatValue", R"({"optionalUint32": 4.294967295e9})", "optional_uint32: 4294967295"); // Parser reject non-numeric values. ExpectParseFailureForJson( "Int32FieldNotNumber", R"({"optionalInt32": "3x3"})"); ExpectParseFailureForJson( "Uint32FieldNotNumber", R"({"optionalUint32": "3x3"})"); ExpectParseFailureForJson( "Int64FieldNotNumber", R"({"optionalInt64": "3x3"})"); ExpectParseFailureForJson( "Uint64FieldNotNumber", R"({"optionalUint64": "3x3"})"); // JSON does not allow "+" on numric values. ExpectParseFailureForJson( "Int32FieldPlusSign", R"({"optionalInt32": +1})"); // JSON doesn't allow leading 0s. ExpectParseFailureForJson( "Int32FieldLeadingZero", R"({"optionalInt32": 01})"); ExpectParseFailureForJson( "Int32FieldNegativeWithLeadingZero", R"({"optionalInt32": -01})"); // String values must follow the same syntax rule. Specifically leading // or traling spaces are not allowed. ExpectParseFailureForJson( "Int32FieldLeadingSpace", R"({"optionalInt32": " 1"})"); ExpectParseFailureForJson( "Int32FieldTrailingSpace", R"({"optionalInt32": "1 "})"); // 64-bit values are serialized as strings. RunValidJsonTestWithValidator( "Int64FieldBeString", R"({"optionalInt64": 1})", [](const Json::Value& value) { return value["optionalInt64"].type() == Json::stringValue && value["optionalInt64"].asString() == "1"; }); RunValidJsonTestWithValidator( "Uint64FieldBeString", R"({"optionalUint64": 1})", [](const Json::Value& value) { return value["optionalUint64"].type() == Json::stringValue && value["optionalUint64"].asString() == "1"; }); // Bool fields. RunValidJsonTest( "BoolFieldTrue", R"({"optionalBool":true})", "optional_bool: true"); RunValidJsonTest( "BoolFieldFalse", R"({"optionalBool":false})", "optional_bool: false"); // Other forms are not allowed. ExpectParseFailureForJson( "BoolFieldIntegerZero", R"({"optionalBool":0})"); ExpectParseFailureForJson( "BoolFieldIntegerOne", R"({"optionalBool":1})"); ExpectParseFailureForJson( "BoolFieldCamelCaseTrue", R"({"optionalBool":True})"); ExpectParseFailureForJson( "BoolFieldCamelCaseFalse", R"({"optionalBool":False})"); ExpectParseFailureForJson( "BoolFieldAllCapitalTrue", R"({"optionalBool":TRUE})"); ExpectParseFailureForJson( "BoolFieldAllCapitalFalse", R"({"optionalBool":FALSE})"); ExpectParseFailureForJson( "BoolFieldDoubleQuotedTrue", R"({"optionalBool":"true"})"); ExpectParseFailureForJson( "BoolFieldDoubleQuotedFalse", R"({"optionalBool":"false"})"); // Float fields. RunValidJsonTest( "FloatFieldMinPositiveValue", R"({"optionalFloat": 1.175494e-38})", "optional_float: 1.175494e-38"); RunValidJsonTest( "FloatFieldMaxNegativeValue", R"({"optionalFloat": -1.175494e-38})", "optional_float: -1.175494e-38"); RunValidJsonTest( "FloatFieldMaxPositiveValue", R"({"optionalFloat": 3.402823e+38})", "optional_float: 3.402823e+38"); RunValidJsonTest( "FloatFieldMinNegativeValue", R"({"optionalFloat": 3.402823e+38})", "optional_float: 3.402823e+38"); // Values can be quoted. RunValidJsonTest( "FloatFieldQuotedValue", R"({"optionalFloat": "1"})", "optional_float: 1"); // Special values. RunValidJsonTest( "FloatFieldNan", R"({"optionalFloat": "NaN"})", "optional_float: nan"); RunValidJsonTest( "FloatFieldInfinity", R"({"optionalFloat": "Infinity"})", "optional_float: inf"); RunValidJsonTest( "FloatFieldNegativeInfinity", R"({"optionalFloat": "-Infinity"})", "optional_float: -inf"); // Non-cannonical Nan will be correctly normalized. { TestAllTypes message; // IEEE floating-point standard 32-bit quiet NaN: // 0111 1111 1xxx xxxx xxxx xxxx xxxx xxxx message.set_optional_float( WireFormatLite::DecodeFloat(0x7FA12345)); RunValidJsonTestWithProtobufInput( "FloatFieldNormalizeQuietNan", message, "optional_float: nan"); // IEEE floating-point standard 64-bit signaling NaN: // 1111 1111 1xxx xxxx xxxx xxxx xxxx xxxx message.set_optional_float( WireFormatLite::DecodeFloat(0xFFB54321)); RunValidJsonTestWithProtobufInput( "FloatFieldNormalizeSignalingNan", message, "optional_float: nan"); } // Special values must be quoted. ExpectParseFailureForJson( "FloatFieldNanNotQuoted", R"({"optionalFloat": NaN})"); ExpectParseFailureForJson( "FloatFieldInfinityNotQuoted", R"({"optionalFloat": Infinity})"); ExpectParseFailureForJson( "FloatFieldNegativeInfinityNotQuoted", R"({"optionalFloat": -Infinity})"); // Parsers should reject out-of-bound values. ExpectParseFailureForJson( "FloatFieldTooSmall", R"({"optionalFloat": -3.502823e+38})"); ExpectParseFailureForJson( "FloatFieldTooLarge", R"({"optionalFloat": 3.502823e+38})"); // Double fields. RunValidJsonTest( "DoubleFieldMinPositiveValue", R"({"optionalDouble": 2.22507e-308})", "optional_double: 2.22507e-308"); RunValidJsonTest( "DoubleFieldMaxNegativeValue", R"({"optionalDouble": -2.22507e-308})", "optional_double: -2.22507e-308"); RunValidJsonTest( "DoubleFieldMaxPositiveValue", R"({"optionalDouble": 1.79769e+308})", "optional_double: 1.79769e+308"); RunValidJsonTest( "DoubleFieldMinNegativeValue", R"({"optionalDouble": -1.79769e+308})", "optional_double: -1.79769e+308"); // Values can be quoted. RunValidJsonTest( "DoubleFieldQuotedValue", R"({"optionalDouble": "1"})", "optional_double: 1"); // Speical values. RunValidJsonTest( "DoubleFieldNan", R"({"optionalDouble": "NaN"})", "optional_double: nan"); RunValidJsonTest( "DoubleFieldInfinity", R"({"optionalDouble": "Infinity"})", "optional_double: inf"); RunValidJsonTest( "DoubleFieldNegativeInfinity", R"({"optionalDouble": "-Infinity"})", "optional_double: -inf"); // Non-cannonical Nan will be correctly normalized. { TestAllTypes message; message.set_optional_double( WireFormatLite::DecodeDouble(0x7FFA123456789ABCLL)); RunValidJsonTestWithProtobufInput( "DoubleFieldNormalizeQuietNan", message, "optional_double: nan"); message.set_optional_double( WireFormatLite::DecodeDouble(0xFFFBCBA987654321LL)); RunValidJsonTestWithProtobufInput( "DoubleFieldNormalizeSignalingNan", message, "optional_double: nan"); } // Special values must be quoted. ExpectParseFailureForJson( "DoubleFieldNanNotQuoted", R"({"optionalDouble": NaN})"); ExpectParseFailureForJson( "DoubleFieldInfinityNotQuoted", R"({"optionalDouble": Infinity})"); ExpectParseFailureForJson( "DoubleFieldNegativeInfinityNotQuoted", R"({"optionalDouble": -Infinity})"); // Parsers should reject out-of-bound values. ExpectParseFailureForJson( "DoubleFieldTooSmall", R"({"optionalDouble": -1.89769e+308})"); ExpectParseFailureForJson( "DoubleFieldTooLarge", R"({"optionalDouble": +1.89769e+308})"); // Enum fields. RunValidJsonTest( "EnumField", R"({"optionalNestedEnum": "FOO"})", "optional_nested_enum: FOO"); // Enum values must be represented as strings. ExpectParseFailureForJson( "EnumFieldNotQuoted", R"({"optionalNestedEnum": FOO})"); // Numeric values are allowed. RunValidJsonTest( "EnumFieldNumericValueZero", R"({"optionalNestedEnum": 0})", "optional_nested_enum: FOO"); RunValidJsonTest( "EnumFieldNumericValueNonZero", R"({"optionalNestedEnum": 1})", "optional_nested_enum: BAR"); // Unknown enum values are represented as numeric values. RunValidJsonTestWithValidator( "EnumFieldUnknownValue", R"({"optionalNestedEnum": 123})", [](const Json::Value& value) { return value["optionalNestedEnum"].type() == Json::intValue && value["optionalNestedEnum"].asInt() == 123; }); // String fields. RunValidJsonTest( "StringField", R"({"optionalString": "Hello world!"})", "optional_string: \"Hello world!\""); RunValidJsonTest( "StringFieldUnicode", // Google in Chinese. R"({"optionalString": "谷歌"})", R"(optional_string: "谷歌")"); RunValidJsonTest( "StringFieldEscape", R"({"optionalString": "\"\\\/\b\f\n\r\t"})", R"(optional_string: "\"\\/\b\f\n\r\t")"); RunValidJsonTest( "StringFieldUnicodeEscape", R"({"optionalString": "\u8C37\u6B4C"})", R"(optional_string: "谷歌")"); RunValidJsonTest( "StringFieldUnicodeEscapeWithLowercaseHexLetters", R"({"optionalString": "\u8c37\u6b4c"})", R"(optional_string: "谷歌")"); RunValidJsonTest( "StringFieldSurrogatePair", // The character is an emoji: grinning face with smiling eyes. 😁 R"({"optionalString": "\uD83D\uDE01"})", R"(optional_string: "\xF0\x9F\x98\x81")"); // Unicode escapes must start with "\u" (lowercase u). ExpectParseFailureForJson( "StringFieldUppercaseEscapeLetter", R"({"optionalString": "\U8C37\U6b4C"})"); ExpectParseFailureForJson( "StringFieldInvalidEscape", R"({"optionalString": "\uXXXX\u6B4C"})"); ExpectParseFailureForJson( "StringFieldUnterminatedEscape", R"({"optionalString": "\u8C3"})"); ExpectParseFailureForJson( "StringFieldUnpairedHighSurrogate", R"({"optionalString": "\uD800"})"); ExpectParseFailureForJson( "StringFieldUnpairedLowSurrogate", R"({"optionalString": "\uDC00"})"); ExpectParseFailureForJson( "StringFieldSurrogateInWrongOrder", R"({"optionalString": "\uDE01\uD83D"})"); ExpectParseFailureForJson( "StringFieldNotAString", R"({"optionalString": 12345})"); // Bytes fields. RunValidJsonTest( "BytesField", R"({"optionalBytes": "AQI="})", R"(optional_bytes: "\x01\x02")"); ExpectParseFailureForJson( "BytesFieldNoPadding", R"({"optionalBytes": "AQI"})"); ExpectParseFailureForJson( "BytesFieldInvalidBase64Characters", R"({"optionalBytes": "-_=="})"); // Message fields. RunValidJsonTest( "MessageField", R"({"optionalNestedMessage": {"a": 1234}})", "optional_nested_message: {a: 1234}"); // Oneof fields. ExpectParseFailureForJson( "OneofFieldDuplicate", R"({"oneofUint32": 1, "oneofString": "test"})"); // Ensure zero values for oneof make it out/backs. { TestAllTypes message; message.set_oneof_uint32(0); RunValidProtobufTest( "OneofZeroUint32", message, "oneof_uint32: 0"); message.mutable_oneof_nested_message()->set_a(0); RunValidProtobufTest( "OneofZeroMessage", message, "oneof_nested_message: {}"); message.set_oneof_string(""); RunValidProtobufTest( "OneofZeroString", message, "oneof_string: \"\""); message.set_oneof_bytes(""); RunValidProtobufTest( "OneofZeroBytes", message, "oneof_bytes: \"\""); message.set_oneof_bool(false); RunValidProtobufTest( "OneofZeroBool", message, "oneof_bool: false"); message.set_oneof_uint64(0); RunValidProtobufTest( "OneofZeroUint64", message, "oneof_uint64: 0"); message.set_oneof_float(0.0f); RunValidProtobufTest( "OneofZeroFloat", message, "oneof_float: 0"); message.set_oneof_double(0.0); RunValidProtobufTest( "OneofZeroDouble", message, "oneof_double: 0"); message.set_oneof_enum(TestAllTypes::FOO); RunValidProtobufTest( "OneofZeroEnum", message, "oneof_enum: FOO"); } RunValidJsonTest( "OneofZeroUint32", R"({"oneofUint32": 0})", "oneof_uint32: 0"); RunValidJsonTest( "OneofZeroMessage", R"({"oneofNestedMessage": {}})", "oneof_nested_message: {}"); RunValidJsonTest( "OneofZeroString", R"({"oneofString": ""})", "oneof_string: \"\""); RunValidJsonTest( "OneofZeroBytes", R"({"oneofBytes": ""})", "oneof_bytes: \"\""); RunValidJsonTest( "OneofZeroBool", R"({"oneofBool": false})", "oneof_bool: false"); RunValidJsonTest( "OneofZeroUint64", R"({"oneofUint64": 0})", "oneof_uint64: 0"); RunValidJsonTest( "OneofZeroFloat", R"({"oneofFloat": 0.0})", "oneof_float: 0"); RunValidJsonTest( "OneofZeroDouble", R"({"oneofDouble": 0.0})", "oneof_double: 0"); RunValidJsonTest( "OneofZeroEnum", R"({"oneofEnum":"FOO"})", "oneof_enum: FOO"); // Repeated fields. RunValidJsonTest( "PrimitiveRepeatedField", R"({"repeatedInt32": [1, 2, 3, 4]})", "repeated_int32: [1, 2, 3, 4]"); RunValidJsonTest( "EnumRepeatedField", R"({"repeatedNestedEnum": ["FOO", "BAR", "BAZ"]})", "repeated_nested_enum: [FOO, BAR, BAZ]"); RunValidJsonTest( "StringRepeatedField", R"({"repeatedString": ["Hello", "world"]})", R"(repeated_string: ["Hello", "world"])"); RunValidJsonTest( "BytesRepeatedField", R"({"repeatedBytes": ["AAEC", "AQI="]})", R"(repeated_bytes: ["\x00\x01\x02", "\x01\x02"])"); RunValidJsonTest( "MessageRepeatedField", R"({"repeatedNestedMessage": [{"a": 1234}, {"a": 5678}]})", "repeated_nested_message: {a: 1234}" "repeated_nested_message: {a: 5678}"); // Repeated field elements are of incorrect type. ExpectParseFailureForJson( "RepeatedFieldWrongElementTypeExpectingIntegersGotBool", R"({"repeatedInt32": [1, false, 3, 4]})"); ExpectParseFailureForJson( "RepeatedFieldWrongElementTypeExpectingIntegersGotString", R"({"repeatedInt32": [1, 2, "name", 4]})"); ExpectParseFailureForJson( "RepeatedFieldWrongElementTypeExpectingIntegersGotMessage", R"({"repeatedInt32": [1, 2, 3, {"a": 4}]})"); ExpectParseFailureForJson( "RepeatedFieldWrongElementTypeExpectingStringsGotInt", R"({"repeatedString": ["1", 2, "3", "4"]})"); ExpectParseFailureForJson( "RepeatedFieldWrongElementTypeExpectingStringsGotBool", R"({"repeatedString": ["1", "2", false, "4"]})"); ExpectParseFailureForJson( "RepeatedFieldWrongElementTypeExpectingStringsGotMessage", R"({"repeatedString": ["1", 2, "3", {"a": 4}]})"); ExpectParseFailureForJson( "RepeatedFieldWrongElementTypeExpectingMessagesGotInt", R"({"repeatedNestedMessage": [{"a": 1}, 2]})"); ExpectParseFailureForJson( "RepeatedFieldWrongElementTypeExpectingMessagesGotBool", R"({"repeatedNestedMessage": [{"a": 1}, false]})"); ExpectParseFailureForJson( "RepeatedFieldWrongElementTypeExpectingMessagesGotString", R"({"repeatedNestedMessage": [{"a": 1}, "2"]})"); // Trailing comma in the repeated field is not allowed. ExpectParseFailureForJson( "RepeatedFieldTrailingComma", R"({"repeatedInt32": [1, 2, 3, 4,]})"); // Map fields. RunValidJsonTest( "Int32MapField", R"({"mapInt32Int32": {"1": 2, "3": 4}})", "map_int32_int32: {key: 1 value: 2}" "map_int32_int32: {key: 3 value: 4}"); ExpectParseFailureForJson( "Int32MapFieldKeyNotQuoted", R"({"mapInt32Int32": {1: 2, 3: 4}})"); RunValidJsonTest( "Uint32MapField", R"({"mapUint32Uint32": {"1": 2, "3": 4}})", "map_uint32_uint32: {key: 1 value: 2}" "map_uint32_uint32: {key: 3 value: 4}"); ExpectParseFailureForJson( "Uint32MapFieldKeyNotQuoted", R"({"mapUint32Uint32": {1: 2, 3: 4}})"); RunValidJsonTest( "Int64MapField", R"({"mapInt64Int64": {"1": 2, "3": 4}})", "map_int64_int64: {key: 1 value: 2}" "map_int64_int64: {key: 3 value: 4}"); ExpectParseFailureForJson( "Int64MapFieldKeyNotQuoted", R"({"mapInt64Int64": {1: 2, 3: 4}})"); RunValidJsonTest( "Uint64MapField", R"({"mapUint64Uint64": {"1": 2, "3": 4}})", "map_uint64_uint64: {key: 1 value: 2}" "map_uint64_uint64: {key: 3 value: 4}"); ExpectParseFailureForJson( "Uint64MapFieldKeyNotQuoted", R"({"mapUint64Uint64": {1: 2, 3: 4}})"); RunValidJsonTest( "BoolMapField", R"({"mapBoolBool": {"true": true, "false": false}})", "map_bool_bool: {key: true value: true}" "map_bool_bool: {key: false value: false}"); ExpectParseFailureForJson( "BoolMapFieldKeyNotQuoted", R"({"mapBoolBool": {true: true, false: false}})"); RunValidJsonTest( "MessageMapField", R"({ "mapStringNestedMessage": { "hello": {"a": 1234}, "world": {"a": 5678} } })", R"( map_string_nested_message: { key: "hello" value: {a: 1234} } map_string_nested_message: { key: "world" value: {a: 5678} } )"); // Since Map keys are represented as JSON strings, escaping should be allowed. RunValidJsonTest( "Int32MapEscapedKey", R"({"mapInt32Int32": {"\u0031": 2}})", "map_int32_int32: {key: 1 value: 2}"); RunValidJsonTest( "Int64MapEscapedKey", R"({"mapInt64Int64": {"\u0031": 2}})", "map_int64_int64: {key: 1 value: 2}"); RunValidJsonTest( "BoolMapEscapedKey", R"({"mapBoolBool": {"tr\u0075e": true}})", "map_bool_bool: {key: true value: true}"); // "null" is accepted for all fields types. RunValidJsonTest( "AllFieldAcceptNull", R"({ "optionalInt32": null, "optionalInt64": null, "optionalUint32": null, "optionalUint64": null, "optionalBool": null, "optionalString": null, "optionalBytes": null, "optionalNestedEnum": null, "optionalNestedMessage": null, "repeatedInt32": null, "repeatedInt64": null, "repeatedUint32": null, "repeatedUint64": null, "repeatedBool": null, "repeatedString": null, "repeatedBytes": null, "repeatedNestedEnum": null, "repeatedNestedMessage": null, "mapInt32Int32": null, "mapBoolBool": null, "mapStringNestedMessage": null })", ""); // Repeated field elements cannot be null. ExpectParseFailureForJson( "RepeatedFieldPrimitiveElementIsNull", R"({"repeatedInt32": [1, null, 2]})"); ExpectParseFailureForJson( "RepeatedFieldMessageElementIsNull", R"({"repeatedNestedMessage": [{"a":1}, null, {"a":2}]})"); // Map field keys cannot be null. ExpectParseFailureForJson( "MapFieldKeyIsNull", R"({"mapInt32Int32": {null: 1}})"); // Map field values cannot be null. ExpectParseFailureForJson( "MapFieldValueIsNull", R"({"mapInt32Int32": {"0": null}})"); // Wrapper types. RunValidJsonTest( "OptionalBoolWrapper", R"({"optionalBoolWrapper": false})", "optional_bool_wrapper: {value: false}"); RunValidJsonTest( "OptionalInt32Wrapper", R"({"optionalInt32Wrapper": 0})", "optional_int32_wrapper: {value: 0}"); RunValidJsonTest( "OptionalUint32Wrapper", R"({"optionalUint32Wrapper": 0})", "optional_uint32_wrapper: {value: 0}"); RunValidJsonTest( "OptionalInt64Wrapper", R"({"optionalInt64Wrapper": 0})", "optional_int64_wrapper: {value: 0}"); RunValidJsonTest( "OptionalUint64Wrapper", R"({"optionalUint64Wrapper": 0})", "optional_uint64_wrapper: {value: 0}"); RunValidJsonTest( "OptionalFloatWrapper", R"({"optionalFloatWrapper": 0})", "optional_float_wrapper: {value: 0}"); RunValidJsonTest( "OptionalDoubleWrapper", R"({"optionalDoubleWrapper": 0})", "optional_double_wrapper: {value: 0}"); RunValidJsonTest( "OptionalStringWrapper", R"({"optionalStringWrapper": ""})", R"(optional_string_wrapper: {value: ""})"); RunValidJsonTest( "OptionalBytesWrapper", R"({"optionalBytesWrapper": ""})", R"(optional_bytes_wrapper: {value: ""})"); RunValidJsonTest( "OptionalWrapperTypesWithNonDefaultValue", R"({ "optionalBoolWrapper": true, "optionalInt32Wrapper": 1, "optionalUint32Wrapper": 1, "optionalInt64Wrapper": "1", "optionalUint64Wrapper": "1", "optionalFloatWrapper": 1, "optionalDoubleWrapper": 1, "optionalStringWrapper": "1", "optionalBytesWrapper": "AQI=" })", R"( optional_bool_wrapper: {value: true} optional_int32_wrapper: {value: 1} optional_uint32_wrapper: {value: 1} optional_int64_wrapper: {value: 1} optional_uint64_wrapper: {value: 1} optional_float_wrapper: {value: 1} optional_double_wrapper: {value: 1} optional_string_wrapper: {value: "1"} optional_bytes_wrapper: {value: "\x01\x02"} )"); RunValidJsonTest( "RepeatedBoolWrapper", R"({"repeatedBoolWrapper": [true, false]})", "repeated_bool_wrapper: {value: true}" "repeated_bool_wrapper: {value: false}"); RunValidJsonTest( "RepeatedInt32Wrapper", R"({"repeatedInt32Wrapper": [0, 1]})", "repeated_int32_wrapper: {value: 0}" "repeated_int32_wrapper: {value: 1}"); RunValidJsonTest( "RepeatedUint32Wrapper", R"({"repeatedUint32Wrapper": [0, 1]})", "repeated_uint32_wrapper: {value: 0}" "repeated_uint32_wrapper: {value: 1}"); RunValidJsonTest( "RepeatedInt64Wrapper", R"({"repeatedInt64Wrapper": [0, 1]})", "repeated_int64_wrapper: {value: 0}" "repeated_int64_wrapper: {value: 1}"); RunValidJsonTest( "RepeatedUint64Wrapper", R"({"repeatedUint64Wrapper": [0, 1]})", "repeated_uint64_wrapper: {value: 0}" "repeated_uint64_wrapper: {value: 1}"); RunValidJsonTest( "RepeatedFloatWrapper", R"({"repeatedFloatWrapper": [0, 1]})", "repeated_float_wrapper: {value: 0}" "repeated_float_wrapper: {value: 1}"); RunValidJsonTest( "RepeatedDoubleWrapper", R"({"repeatedDoubleWrapper": [0, 1]})", "repeated_double_wrapper: {value: 0}" "repeated_double_wrapper: {value: 1}"); RunValidJsonTest( "RepeatedStringWrapper", R"({"repeatedStringWrapper": ["", "AQI="]})", R"( repeated_string_wrapper: {value: ""} repeated_string_wrapper: {value: "AQI="} )"); RunValidJsonTest( "RepeatedBytesWrapper", R"({"repeatedBytesWrapper": ["", "AQI="]})", R"( repeated_bytes_wrapper: {value: ""} repeated_bytes_wrapper: {value: "\x01\x02"} )"); RunValidJsonTest( "WrapperTypesWithNullValue", R"({ "optionalBoolWrapper": null, "optionalInt32Wrapper": null, "optionalUint32Wrapper": null, "optionalInt64Wrapper": null, "optionalUint64Wrapper": null, "optionalFloatWrapper": null, "optionalDoubleWrapper": null, "optionalStringWrapper": null, "optionalBytesWrapper": null, "repeatedBoolWrapper": null, "repeatedInt32Wrapper": null, "repeatedUint32Wrapper": null, "repeatedInt64Wrapper": null, "repeatedUint64Wrapper": null, "repeatedFloatWrapper": null, "repeatedDoubleWrapper": null, "repeatedStringWrapper": null, "repeatedBytesWrapper": null })", ""); // Duration RunValidJsonTest( "DurationMinValue", R"({"optionalDuration": "-315576000000.999999999s"})", "optional_duration: {seconds: -315576000000 nanos: -999999999}"); RunValidJsonTest( "DurationMaxValue", R"({"optionalDuration": "315576000000.999999999s"})", "optional_duration: {seconds: 315576000000 nanos: 999999999}"); RunValidJsonTest( "DurationRepeatedValue", R"({"repeatedDuration": ["1.5s", "-1.5s"]})", "repeated_duration: {seconds: 1 nanos: 500000000}" "repeated_duration: {seconds: -1 nanos: -500000000}"); ExpectParseFailureForJson( "DurationMissingS", R"({"optionalDuration": "1"})"); ExpectParseFailureForJson( "DurationJsonInputTooSmall", R"({"optionalDuration": "-315576000001.000000000s"})"); ExpectParseFailureForJson( "DurationJsonInputTooLarge", R"({"optionalDuration": "315576000001.000000000s"})"); ExpectSerializeFailureForJson( "DurationProtoInputTooSmall", "optional_duration: {seconds: -315576000001 nanos: 0}"); ExpectSerializeFailureForJson( "DurationProtoInputTooLarge", "optional_duration: {seconds: 315576000001 nanos: 0}"); RunValidJsonTestWithValidator( "DurationHasZeroFractionalDigit", R"({"optionalDuration": "1.000000000s"})", [](const Json::Value& value) { return value["optionalDuration"].asString() == "1s"; }); RunValidJsonTestWithValidator( "DurationHas3FractionalDigits", R"({"optionalDuration": "1.010000000s"})", [](const Json::Value& value) { return value["optionalDuration"].asString() == "1.010s"; }); RunValidJsonTestWithValidator( "DurationHas6FractionalDigits", R"({"optionalDuration": "1.000010000s"})", [](const Json::Value& value) { return value["optionalDuration"].asString() == "1.000010s"; }); RunValidJsonTestWithValidator( "DurationHas9FractionalDigits", R"({"optionalDuration": "1.000000010s"})", [](const Json::Value& value) { return value["optionalDuration"].asString() == "1.000000010s"; }); // Timestamp RunValidJsonTest( "TimestampMinValue", R"({"optionalTimestamp": "0001-01-01T00:00:00Z"})", "optional_timestamp: {seconds: -62135596800}"); RunValidJsonTest( "TimestampMaxValue", R"({"optionalTimestamp": "9999-12-31T23:59:59.999999999Z"})", "optional_timestamp: {seconds: 253402300799 nanos: 999999999}"); RunValidJsonTest( "TimestampRepeatedValue", R"({ "repeatedTimestamp": [ "0001-01-01T00:00:00Z", "9999-12-31T23:59:59.999999999Z" ] })", "repeated_timestamp: {seconds: -62135596800}" "repeated_timestamp: {seconds: 253402300799 nanos: 999999999}"); RunValidJsonTest( "TimestampWithPositiveOffset", R"({"optionalTimestamp": "1970-01-01T08:00:00+08:00"})", "optional_timestamp: {seconds: 0}"); RunValidJsonTest( "TimestampWithNegativeOffset", R"({"optionalTimestamp": "1969-12-31T16:00:00-08:00"})", "optional_timestamp: {seconds: 0}"); ExpectParseFailureForJson( "TimestampJsonInputTooSmall", R"({"optionalTimestamp": "0000-01-01T00:00:00Z"})"); ExpectParseFailureForJson( "TimestampJsonInputTooLarge", R"({"optionalTimestamp": "10000-01-01T00:00:00Z"})"); ExpectParseFailureForJson( "TimestampJsonInputMissingZ", R"({"optionalTimestamp": "0001-01-01T00:00:00"})"); ExpectParseFailureForJson( "TimestampJsonInputMissingT", R"({"optionalTimestamp": "0001-01-01 00:00:00Z"})"); ExpectParseFailureForJson( "TimestampJsonInputLowercaseZ", R"({"optionalTimestamp": "0001-01-01T00:00:00z"})"); ExpectParseFailureForJson( "TimestampJsonInputLowercaseT", R"({"optionalTimestamp": "0001-01-01t00:00:00Z"})"); ExpectSerializeFailureForJson( "TimestampProtoInputTooSmall", "optional_timestamp: {seconds: -62135596801}"); ExpectSerializeFailureForJson( "TimestampProtoInputTooLarge", "optional_timestamp: {seconds: 253402300800}"); RunValidJsonTestWithValidator( "TimestampZeroNormalized", R"({"optionalTimestamp": "1969-12-31T16:00:00-08:00"})", [](const Json::Value& value) { return value["optionalTimestamp"].asString() == "1970-01-01T00:00:00Z"; }); RunValidJsonTestWithValidator( "TimestampHasZeroFractionalDigit", R"({"optionalTimestamp": "1970-01-01T00:00:00.000000000Z"})", [](const Json::Value& value) { return value["optionalTimestamp"].asString() == "1970-01-01T00:00:00Z"; }); RunValidJsonTestWithValidator( "TimestampHas3FractionalDigits", R"({"optionalTimestamp": "1970-01-01T00:00:00.010000000Z"})", [](const Json::Value& value) { return value["optionalTimestamp"].asString() == "1970-01-01T00:00:00.010Z"; }); RunValidJsonTestWithValidator( "TimestampHas6FractionalDigits", R"({"optionalTimestamp": "1970-01-01T00:00:00.000010000Z"})", [](const Json::Value& value) { return value["optionalTimestamp"].asString() == "1970-01-01T00:00:00.000010Z"; }); RunValidJsonTestWithValidator( "TimestampHas9FractionalDigits", R"({"optionalTimestamp": "1970-01-01T00:00:00.000000010Z"})", [](const Json::Value& value) { return value["optionalTimestamp"].asString() == "1970-01-01T00:00:00.000000010Z"; }); // FieldMask RunValidJsonTest( "FieldMask", R"({"optionalFieldMask": "foo,barBaz"})", R"(optional_field_mask: {paths: "foo" paths: "bar_baz"})"); ExpectParseFailureForJson( "FieldMaskInvalidCharacter", R"({"optionalFieldMask": "foo,bar_bar"})"); ExpectSerializeFailureForJson( "FieldMaskPathsDontRoundTrip", R"(optional_field_mask: {paths: "fooBar"})"); ExpectSerializeFailureForJson( "FieldMaskNumbersDontRoundTrip", R"(optional_field_mask: {paths: "foo_3_bar"})"); ExpectSerializeFailureForJson( "FieldMaskTooManyUnderscore", R"(optional_field_mask: {paths: "foo__bar"})"); // Struct RunValidJsonTest( "Struct", R"({ "optionalStruct": { "nullValue": null, "intValue": 1234, "boolValue": true, "doubleValue": 1234.5678, "stringValue": "Hello world!", "listValue": [1234, "5678"], "objectValue": { "value": 0 } } })", R"( optional_struct: { fields: { key: "nullValue" value: {null_value: NULL_VALUE} } fields: { key: "intValue" value: {number_value: 1234} } fields: { key: "boolValue" value: {bool_value: true} } fields: { key: "doubleValue" value: {number_value: 1234.5678} } fields: { key: "stringValue" value: {string_value: "Hello world!"} } fields: { key: "listValue" value: { list_value: { values: { number_value: 1234 } values: { string_value: "5678" } } } } fields: { key: "objectValue" value: { struct_value: { fields: { key: "value" value: { number_value: 0 } } } } } } )"); // Value RunValidJsonTest( "ValueAcceptInteger", R"({"optionalValue": 1})", "optional_value: { number_value: 1}"); RunValidJsonTest( "ValueAcceptFloat", R"({"optionalValue": 1.5})", "optional_value: { number_value: 1.5}"); RunValidJsonTest( "ValueAcceptBool", R"({"optionalValue": false})", "optional_value: { bool_value: false}"); RunValidJsonTest( "ValueAcceptNull", R"({"optionalValue": null})", "optional_value: { null_value: NULL_VALUE}"); RunValidJsonTest( "ValueAcceptString", R"({"optionalValue": "hello"})", R"(optional_value: { string_value: "hello"})"); RunValidJsonTest( "ValueAcceptList", R"({"optionalValue": [0, "hello"]})", R"( optional_value: { list_value: { values: { number_value: 0 } values: { string_value: "hello" } } } )"); RunValidJsonTest( "ValueAcceptObject", R"({"optionalValue": {"value": 1}})", R"( optional_value: { struct_value: { fields: { key: "value" value: { number_value: 1 } } } } )"); // Any RunValidJsonTest( "Any", R"({ "optionalAny": { "@type": "type.googleapis.com/conformance.TestAllTypes", "optionalInt32": 12345 } })", R"( optional_any: { [type.googleapis.com/conformance.TestAllTypes] { optional_int32: 12345 } } )"); RunValidJsonTest( "AnyNested", R"({ "optionalAny": { "@type": "type.googleapis.com/google.protobuf.Any", "value": { "@type": "type.googleapis.com/conformance.TestAllTypes", "optionalInt32": 12345 } } })", R"( optional_any: { [type.googleapis.com/google.protobuf.Any] { [type.googleapis.com/conformance.TestAllTypes] { optional_int32: 12345 } } } )"); // The special "@type" tag is not required to appear first. RunValidJsonTest( "AnyUnorderedTypeTag", R"({ "optionalAny": { "optionalInt32": 12345, "@type": "type.googleapis.com/conformance.TestAllTypes" } })", R"( optional_any: { [type.googleapis.com/conformance.TestAllTypes] { optional_int32: 12345 } } )"); // Well-known types in Any. RunValidJsonTest( "AnyWithInt32ValueWrapper", R"({ "optionalAny": { "@type": "type.googleapis.com/google.protobuf.Int32Value", "value": 12345 } })", R"( optional_any: { [type.googleapis.com/google.protobuf.Int32Value] { value: 12345 } } )"); RunValidJsonTest( "AnyWithDuration", R"({ "optionalAny": { "@type": "type.googleapis.com/google.protobuf.Duration", "value": "1.5s" } })", R"( optional_any: { [type.googleapis.com/google.protobuf.Duration] { seconds: 1 nanos: 500000000 } } )"); RunValidJsonTest( "AnyWithTimestamp", R"({ "optionalAny": { "@type": "type.googleapis.com/google.protobuf.Timestamp", "value": "1970-01-01T00:00:00Z" } })", R"( optional_any: { [type.googleapis.com/google.protobuf.Timestamp] { seconds: 0 nanos: 0 } } )"); RunValidJsonTest( "AnyWithFieldMask", R"({ "optionalAny": { "@type": "type.googleapis.com/google.protobuf.FieldMask", "value": "foo,barBaz" } })", R"( optional_any: { [type.googleapis.com/google.protobuf.FieldMask] { paths: ["foo", "bar_baz"] } } )"); RunValidJsonTest( "AnyWithStruct", R"({ "optionalAny": { "@type": "type.googleapis.com/google.protobuf.Struct", "value": { "foo": 1 } } })", R"( optional_any: { [type.googleapis.com/google.protobuf.Struct] { fields: { key: "foo" value: { number_value: 1 } } } } )"); RunValidJsonTest( "AnyWithValueForJsonObject", R"({ "optionalAny": { "@type": "type.googleapis.com/google.protobuf.Value", "value": { "foo": 1 } } })", R"( optional_any: { [type.googleapis.com/google.protobuf.Value] { struct_value: { fields: { key: "foo" value: { number_value: 1 } } } } } )"); RunValidJsonTest( "AnyWithValueForInteger", R"({ "optionalAny": { "@type": "type.googleapis.com/google.protobuf.Value", "value": 1 } })", R"( optional_any: { [type.googleapis.com/google.protobuf.Value] { number_value: 1 } } )"); bool ok = true; if (!CheckSetEmpty(expected_to_fail_, "nonexistent_tests.txt", "These tests were listed in the failure list, but they " "don't exist. Remove them from the failure list by " "running:\n" " ./update_failure_list.py " + failure_list_filename_ + " --remove nonexistent_tests.txt")) { ok = false; } if (!CheckSetEmpty(unexpected_failing_tests_, "failing_tests.txt", "These tests failed. If they can't be fixed right now, " "you can add them to the failure list so the overall " "suite can succeed. Add them to the failure list by " "running:\n" " ./update_failure_list.py " + failure_list_filename_ + " --add failing_tests.txt")) { ok = false; } if (!CheckSetEmpty(unexpected_succeeding_tests_, "succeeding_tests.txt", "These tests succeeded, even though they were listed in " "the failure list. Remove them from the failure list " "by running:\n" " ./update_failure_list.py " + failure_list_filename_ + " --remove succeeding_tests.txt")) { ok = false; } if (verbose_) { CheckSetEmpty(skipped_, "", "These tests were skipped (probably because support for some " "features is not implemented)"); } StringAppendF(&output_, "CONFORMANCE SUITE %s: %d successes, %d skipped, " "%d expected failures, %d unexpected failures.\n", ok ? "PASSED" : "FAILED", successes_, skipped_.size(), expected_failures_, unexpected_failing_tests_.size()); StringAppendF(&output_, "\n"); output->assign(output_); return ok; } } // namespace protobuf } // namespace google