7ecf43f0ce
* Updated Ruby to the latest upb. * Updated to newer upb.
481 lines
16 KiB
C
481 lines
16 KiB
C
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2014 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "protobuf.h"
|
|
|
|
#include <ruby/version.h>
|
|
|
|
#include "defs.h"
|
|
#include "map.h"
|
|
#include "message.h"
|
|
#include "repeated_field.h"
|
|
|
|
VALUE cParseError;
|
|
VALUE cTypeError;
|
|
|
|
const upb_FieldDef *map_field_key(const upb_FieldDef *field) {
|
|
const upb_MessageDef *entry = upb_FieldDef_MessageSubDef(field);
|
|
return upb_MessageDef_FindFieldByNumber(entry, 1);
|
|
}
|
|
|
|
const upb_FieldDef *map_field_value(const upb_FieldDef *field) {
|
|
const upb_MessageDef *entry = upb_FieldDef_MessageSubDef(field);
|
|
return upb_MessageDef_FindFieldByNumber(entry, 2);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// StringBuilder, for inspect
|
|
// -----------------------------------------------------------------------------
|
|
|
|
struct StringBuilder {
|
|
size_t size;
|
|
size_t cap;
|
|
char *data;
|
|
};
|
|
|
|
typedef struct StringBuilder StringBuilder;
|
|
|
|
static size_t StringBuilder_SizeOf(size_t cap) {
|
|
return sizeof(StringBuilder) + cap;
|
|
}
|
|
|
|
StringBuilder *StringBuilder_New() {
|
|
const size_t cap = 128;
|
|
StringBuilder *builder = malloc(sizeof(*builder));
|
|
builder->size = 0;
|
|
builder->cap = cap;
|
|
builder->data = malloc(builder->cap);
|
|
return builder;
|
|
}
|
|
|
|
void StringBuilder_Free(StringBuilder *b) {
|
|
free(b->data);
|
|
free(b);
|
|
}
|
|
|
|
void StringBuilder_Printf(StringBuilder *b, const char *fmt, ...) {
|
|
size_t have = b->cap - b->size;
|
|
size_t n;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
n = vsnprintf(&b->data[b->size], have, fmt, args);
|
|
va_end(args);
|
|
|
|
if (have <= n) {
|
|
while (have <= n) {
|
|
b->cap *= 2;
|
|
have = b->cap - b->size;
|
|
}
|
|
b->data = realloc(b->data, StringBuilder_SizeOf(b->cap));
|
|
va_start(args, fmt);
|
|
n = vsnprintf(&b->data[b->size], have, fmt, args);
|
|
va_end(args);
|
|
PBRUBY_ASSERT(n < have);
|
|
}
|
|
|
|
b->size += n;
|
|
}
|
|
|
|
VALUE StringBuilder_ToRubyString(StringBuilder *b) {
|
|
VALUE ret = rb_str_new(b->data, b->size);
|
|
rb_enc_associate(ret, rb_utf8_encoding());
|
|
return ret;
|
|
}
|
|
|
|
static void StringBuilder_PrintEnum(StringBuilder *b, int32_t val,
|
|
const upb_EnumDef *e) {
|
|
const upb_EnumValueDef *ev = upb_EnumDef_FindValueByNumber(e, val);
|
|
if (ev) {
|
|
StringBuilder_Printf(b, ":%s", upb_EnumValueDef_Name(ev));
|
|
} else {
|
|
StringBuilder_Printf(b, "%" PRId32, val);
|
|
}
|
|
}
|
|
|
|
void StringBuilder_PrintMsgval(StringBuilder *b, upb_MessageValue val,
|
|
TypeInfo info) {
|
|
switch (info.type) {
|
|
case kUpb_CType_Bool:
|
|
StringBuilder_Printf(b, "%s", val.bool_val ? "true" : "false");
|
|
break;
|
|
case kUpb_CType_Float: {
|
|
VALUE str = rb_inspect(DBL2NUM(val.float_val));
|
|
StringBuilder_Printf(b, "%s", RSTRING_PTR(str));
|
|
break;
|
|
}
|
|
case kUpb_CType_Double: {
|
|
VALUE str = rb_inspect(DBL2NUM(val.double_val));
|
|
StringBuilder_Printf(b, "%s", RSTRING_PTR(str));
|
|
break;
|
|
}
|
|
case kUpb_CType_Int32:
|
|
StringBuilder_Printf(b, "%" PRId32, val.int32_val);
|
|
break;
|
|
case kUpb_CType_UInt32:
|
|
StringBuilder_Printf(b, "%" PRIu32, val.uint32_val);
|
|
break;
|
|
case kUpb_CType_Int64:
|
|
StringBuilder_Printf(b, "%" PRId64, val.int64_val);
|
|
break;
|
|
case kUpb_CType_UInt64:
|
|
StringBuilder_Printf(b, "%" PRIu64, val.uint64_val);
|
|
break;
|
|
case kUpb_CType_String:
|
|
StringBuilder_Printf(b, "\"%.*s\"", (int)val.str_val.size,
|
|
val.str_val.data);
|
|
break;
|
|
case kUpb_CType_Bytes:
|
|
StringBuilder_Printf(b, "\"%.*s\"", (int)val.str_val.size,
|
|
val.str_val.data);
|
|
break;
|
|
case kUpb_CType_Enum:
|
|
StringBuilder_PrintEnum(b, val.int32_val, info.def.enumdef);
|
|
break;
|
|
case kUpb_CType_Message:
|
|
Message_PrintMessage(b, val.msg_val, info.def.msgdef);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Arena
|
|
// -----------------------------------------------------------------------------
|
|
|
|
typedef struct {
|
|
upb_Arena *arena;
|
|
VALUE pinned_objs;
|
|
} Arena;
|
|
|
|
static void Arena_mark(void *data) {
|
|
Arena *arena = data;
|
|
rb_gc_mark(arena->pinned_objs);
|
|
}
|
|
|
|
static void Arena_free(void *data) {
|
|
Arena *arena = data;
|
|
upb_Arena_Free(arena->arena);
|
|
xfree(arena);
|
|
}
|
|
|
|
static VALUE cArena;
|
|
|
|
const rb_data_type_t Arena_type = {
|
|
"Google::Protobuf::Internal::Arena",
|
|
{Arena_mark, Arena_free, NULL},
|
|
.flags = RUBY_TYPED_FREE_IMMEDIATELY,
|
|
};
|
|
|
|
static void* ruby_upb_allocfunc(upb_alloc* alloc, void* ptr, size_t oldsize, size_t size) {
|
|
if (size == 0) {
|
|
xfree(ptr);
|
|
return NULL;
|
|
} else {
|
|
return xrealloc(ptr, size);
|
|
}
|
|
}
|
|
|
|
upb_alloc ruby_upb_alloc = {&ruby_upb_allocfunc};
|
|
|
|
static VALUE Arena_alloc(VALUE klass) {
|
|
Arena *arena = ALLOC(Arena);
|
|
arena->arena = upb_Arena_Init(NULL, 0, &ruby_upb_alloc);
|
|
arena->pinned_objs = Qnil;
|
|
return TypedData_Wrap_Struct(klass, &Arena_type, arena);
|
|
}
|
|
|
|
upb_Arena *Arena_get(VALUE _arena) {
|
|
Arena *arena;
|
|
TypedData_Get_Struct(_arena, Arena, &Arena_type, arena);
|
|
return arena->arena;
|
|
}
|
|
|
|
void Arena_fuse(VALUE _arena, upb_Arena *other) {
|
|
Arena *arena;
|
|
TypedData_Get_Struct(_arena, Arena, &Arena_type, arena);
|
|
if (!upb_Arena_Fuse(arena->arena, other)) {
|
|
rb_raise(rb_eRuntimeError,
|
|
"Unable to fuse arenas. This should never happen since Ruby does "
|
|
"not use initial blocks");
|
|
}
|
|
}
|
|
|
|
VALUE Arena_new() { return Arena_alloc(cArena); }
|
|
|
|
void Arena_Pin(VALUE _arena, VALUE obj) {
|
|
Arena *arena;
|
|
TypedData_Get_Struct(_arena, Arena, &Arena_type, arena);
|
|
if (arena->pinned_objs == Qnil) {
|
|
arena->pinned_objs = rb_ary_new();
|
|
}
|
|
rb_ary_push(arena->pinned_objs, obj);
|
|
}
|
|
|
|
void Arena_register(VALUE module) {
|
|
VALUE internal = rb_define_module_under(module, "Internal");
|
|
VALUE klass = rb_define_class_under(internal, "Arena", rb_cObject);
|
|
rb_define_alloc_func(klass, Arena_alloc);
|
|
rb_gc_register_address(&cArena);
|
|
cArena = klass;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Object Cache
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// A pointer -> Ruby Object cache that keeps references to Ruby wrapper
|
|
// objects. This allows us to look up any Ruby wrapper object by the address
|
|
// of the object it is wrapping. That way we can avoid ever creating two
|
|
// different wrapper objects for the same C object, which saves memory and
|
|
// preserves object identity.
|
|
//
|
|
// We use WeakMap for the cache. For Ruby <2.7 we also need a secondary Hash
|
|
// to store WeakMap keys because Ruby <2.7 WeakMap doesn't allow non-finalizable
|
|
// keys.
|
|
//
|
|
// We also need the secondary Hash if sizeof(long) < sizeof(VALUE), because this
|
|
// means it may not be possible to fit a pointer into a Fixnum. Keys are
|
|
// pointers, and if they fit into a Fixnum, Ruby doesn't collect them, but if
|
|
// they overflow and require allocating a Bignum, they could get collected
|
|
// prematurely, thus removing the cache entry. This happens on 64-bit Windows,
|
|
// on which pointers are 64 bits but longs are 32 bits. In this case, we enable
|
|
// the secondary Hash to hold the keys and prevent them from being collected.
|
|
|
|
#if RUBY_API_VERSION_CODE >= 20700 && SIZEOF_LONG >= SIZEOF_VALUE
|
|
#define USE_SECONDARY_MAP 0
|
|
#else
|
|
#define USE_SECONDARY_MAP 1
|
|
#endif
|
|
|
|
#if USE_SECONDARY_MAP
|
|
|
|
// Maps Numeric -> Object. The object is then used as a key into the WeakMap.
|
|
// This is needed for Ruby <2.7 where a number cannot be a key to WeakMap.
|
|
// The object is used only for its identity; it does not contain any data.
|
|
VALUE secondary_map = Qnil;
|
|
|
|
// Mutations to the map are under a mutex, because SeconaryMap_MaybeGC()
|
|
// iterates over the map which cannot happen in parallel with insertions, or
|
|
// Ruby will throw:
|
|
// can't add a new key into hash during iteration (RuntimeError)
|
|
VALUE secondary_map_mutex = Qnil;
|
|
|
|
// Lambda that will GC entries from the secondary map that are no longer present
|
|
// in the primary map.
|
|
VALUE gc_secondary_map_lambda = Qnil;
|
|
ID length;
|
|
|
|
extern VALUE weak_obj_cache;
|
|
|
|
static void SecondaryMap_Init() {
|
|
rb_gc_register_address(&secondary_map);
|
|
rb_gc_register_address(&gc_secondary_map_lambda);
|
|
rb_gc_register_address(&secondary_map_mutex);
|
|
secondary_map = rb_hash_new();
|
|
gc_secondary_map_lambda = rb_eval_string(
|
|
"->(secondary, weak) {\n"
|
|
" secondary.delete_if { |k, v| !weak.key?(v) }\n"
|
|
"}\n");
|
|
secondary_map_mutex = rb_mutex_new();
|
|
length = rb_intern("length");
|
|
}
|
|
|
|
// The secondary map is a regular Hash, and will never shrink on its own.
|
|
// The main object cache is a WeakMap that will automatically remove entries
|
|
// when the target object is no longer reachable, but unless we manually
|
|
// remove the corresponding entries from the secondary map, it will grow
|
|
// without bound.
|
|
//
|
|
// To avoid this unbounded growth we periodically remove entries from the
|
|
// secondary map that are no longer present in the WeakMap. The logic of
|
|
// how often to perform this GC is an artbirary tuning parameter that
|
|
// represents a straightforward CPU/memory tradeoff.
|
|
//
|
|
// Requires: secondary_map_mutex is held.
|
|
static void SecondaryMap_MaybeGC() {
|
|
PBRUBY_ASSERT(rb_mutex_locked_p(secondary_map_mutex) == Qtrue);
|
|
size_t weak_len = NUM2ULL(rb_funcall(weak_obj_cache, length, 0));
|
|
size_t secondary_len = RHASH_SIZE(secondary_map);
|
|
if (secondary_len < weak_len) {
|
|
// Logically this case should not be possible: a valid entry cannot exist in
|
|
// the weak table unless there is a corresponding entry in the secondary
|
|
// table. It should *always* be the case that secondary_len >= weak_len.
|
|
//
|
|
// However ObjectSpace::WeakMap#length (and therefore weak_len) is
|
|
// unreliable: it overreports its true length by including non-live objects.
|
|
// However these non-live objects are not yielded in iteration, so we may
|
|
// have previously deleted them from the secondary map in a previous
|
|
// invocation of SecondaryMap_MaybeGC().
|
|
//
|
|
// In this case, we can't measure any waste, so we just return.
|
|
return;
|
|
}
|
|
size_t waste = secondary_len - weak_len;
|
|
// GC if we could remove at least 2000 entries or 20% of the table size
|
|
// (whichever is greater). Since the cost of the GC pass is O(N), we
|
|
// want to make sure that we condition this on overall table size, to
|
|
// avoid O(N^2) CPU costs.
|
|
size_t threshold = PBRUBY_MAX(secondary_len * 0.2, 2000);
|
|
if (waste > threshold) {
|
|
rb_funcall(gc_secondary_map_lambda, rb_intern("call"), 2, secondary_map,
|
|
weak_obj_cache);
|
|
}
|
|
}
|
|
|
|
// Requires: secondary_map_mutex is held by this thread iff create == true.
|
|
static VALUE SecondaryMap_Get(VALUE key, bool create) {
|
|
PBRUBY_ASSERT(!create || rb_mutex_locked_p(secondary_map_mutex) == Qtrue);
|
|
VALUE ret = rb_hash_lookup(secondary_map, key);
|
|
if (ret == Qnil && create) {
|
|
SecondaryMap_MaybeGC();
|
|
ret = rb_class_new_instance(0, NULL, rb_cObject);
|
|
rb_hash_aset(secondary_map, key, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Requires: secondary_map_mutex is held by this thread iff create == true.
|
|
static VALUE ObjectCache_GetKey(const void *key, bool create) {
|
|
VALUE key_val = (VALUE)key;
|
|
PBRUBY_ASSERT((key_val & 3) == 0);
|
|
VALUE ret = LL2NUM(key_val >> 2);
|
|
#if USE_SECONDARY_MAP
|
|
ret = SecondaryMap_Get(ret, create);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
// Public ObjectCache API.
|
|
|
|
VALUE weak_obj_cache = Qnil;
|
|
ID item_get;
|
|
ID item_set;
|
|
|
|
static void ObjectCache_Init() {
|
|
rb_gc_register_address(&weak_obj_cache);
|
|
VALUE klass = rb_eval_string("ObjectSpace::WeakMap");
|
|
weak_obj_cache = rb_class_new_instance(0, NULL, klass);
|
|
item_get = rb_intern("[]");
|
|
item_set = rb_intern("[]=");
|
|
#if USE_SECONDARY_MAP
|
|
SecondaryMap_Init();
|
|
#endif
|
|
}
|
|
|
|
void ObjectCache_Add(const void *key, VALUE val) {
|
|
PBRUBY_ASSERT(ObjectCache_Get(key) == Qnil);
|
|
#if USE_SECONDARY_MAP
|
|
rb_mutex_lock(secondary_map_mutex);
|
|
#endif
|
|
VALUE key_rb = ObjectCache_GetKey(key, true);
|
|
rb_funcall(weak_obj_cache, item_set, 2, key_rb, val);
|
|
#if USE_SECONDARY_MAP
|
|
rb_mutex_unlock(secondary_map_mutex);
|
|
#endif
|
|
PBRUBY_ASSERT(ObjectCache_Get(key) == val);
|
|
}
|
|
|
|
// Returns the cached object for this key, if any. Otherwise returns Qnil.
|
|
VALUE ObjectCache_Get(const void *key) {
|
|
VALUE key_rb = ObjectCache_GetKey(key, false);
|
|
return rb_funcall(weak_obj_cache, item_get, 1, key_rb);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Google::Protobuf.discard_unknown(msg)
|
|
*
|
|
* Discard unknown fields in the given message object and recursively discard
|
|
* unknown fields in submessages.
|
|
*/
|
|
static VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) {
|
|
const upb_MessageDef *m;
|
|
upb_Message *msg = Message_GetMutable(msg_rb, &m);
|
|
if (!upb_Message_DiscardUnknown(msg, m, 128)) {
|
|
rb_raise(rb_eRuntimeError, "Messages nested too deeply.");
|
|
}
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Google::Protobuf.deep_copy(obj) => copy_of_obj
|
|
*
|
|
* Performs a deep copy of a RepeatedField instance, a Map instance, or a
|
|
* message object, recursively copying its members.
|
|
*/
|
|
VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj) {
|
|
VALUE klass = CLASS_OF(obj);
|
|
if (klass == cRepeatedField) {
|
|
return RepeatedField_deep_copy(obj);
|
|
} else if (klass == cMap) {
|
|
return Map_deep_copy(obj);
|
|
} else {
|
|
VALUE new_arena_rb = Arena_new();
|
|
upb_Arena *new_arena = Arena_get(new_arena_rb);
|
|
const upb_MessageDef *m;
|
|
const upb_Message *msg = Message_Get(obj, &m);
|
|
upb_Message *new_msg = Message_deep_copy(msg, m, new_arena);
|
|
return Message_GetRubyWrapper(new_msg, m, new_arena_rb);
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Initialization/entry point.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// This must be named "Init_protobuf_c" because the Ruby module is named
|
|
// "protobuf_c" -- the VM looks for this symbol in our .so.
|
|
__attribute__((visibility("default"))) void Init_protobuf_c() {
|
|
ObjectCache_Init();
|
|
|
|
VALUE google = rb_define_module("Google");
|
|
VALUE protobuf = rb_define_module_under(google, "Protobuf");
|
|
|
|
Arena_register(protobuf);
|
|
Defs_register(protobuf);
|
|
RepeatedField_register(protobuf);
|
|
Map_register(protobuf);
|
|
Message_register(protobuf);
|
|
|
|
cParseError = rb_const_get(protobuf, rb_intern("ParseError"));
|
|
rb_gc_register_mark_object(cParseError);
|
|
cTypeError = rb_const_get(protobuf, rb_intern("TypeError"));
|
|
rb_gc_register_mark_object(cTypeError);
|
|
|
|
rb_define_singleton_method(protobuf, "discard_unknown",
|
|
Google_Protobuf_discard_unknown, 1);
|
|
rb_define_singleton_method(protobuf, "deep_copy", Google_Protobuf_deep_copy,
|
|
1);
|
|
}
|