protobuf/ruby/ext/google/protobuf_c/message.c
Aaron Patterson 3b67455319
Convert Google::Protobuf.deep_copy to pure Ruby
In general, I think it will help us to debug issues if we have less C
code and more Ruby code.  This method can be implemented in pure Ruby,
so this commit converts it to pure Ruby.
2019-05-13 15:37:13 -07:00

833 lines
28 KiB
C

// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "protobuf.h"
// -----------------------------------------------------------------------------
// Class/module creation from msgdefs and enumdefs, respectively.
// -----------------------------------------------------------------------------
void* Message_data(void* msg) {
return ((uint8_t *)msg) + sizeof(MessageHeader);
}
void Message_mark(void* _self) {
MessageHeader* self = (MessageHeader *)_self;
layout_mark(self->descriptor->layout, Message_data(self));
}
void Message_free(void* self) {
stringsink* unknown = ((MessageHeader *)self)->unknown_fields;
if (unknown != NULL) {
stringsink_uninit(unknown);
free(unknown);
}
xfree(self);
}
rb_data_type_t Message_type = {
"Message",
{ Message_mark, Message_free, NULL },
};
VALUE Message_alloc(VALUE klass) {
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
Descriptor* desc = ruby_to_Descriptor(descriptor);
MessageHeader* msg = (MessageHeader*)ALLOC_N(
uint8_t, sizeof(MessageHeader) + desc->layout->size);
VALUE ret;
memset(Message_data(msg), 0, desc->layout->size);
// We wrap first so that everything in the message object is GC-rooted in case
// a collection happens during object creation in layout_init().
ret = TypedData_Wrap_Struct(klass, &Message_type, msg);
msg->descriptor = desc;
rb_ivar_set(ret, descriptor_instancevar_interned, descriptor);
msg->unknown_fields = NULL;
layout_init(desc->layout, Message_data(msg));
return ret;
}
static const upb_fielddef* which_oneof_field(MessageHeader* self, const upb_oneofdef* o) {
upb_oneof_iter it;
size_t case_ofs;
uint32_t oneof_case;
const upb_fielddef* first_field;
const upb_fielddef* f;
// If no fields in the oneof, always nil.
if (upb_oneofdef_numfields(o) == 0) {
return NULL;
}
// Grab the first field in the oneof so we can get its layout info to find the
// oneof_case field.
upb_oneof_begin(&it, o);
assert(!upb_oneof_done(&it));
first_field = upb_oneof_iter_field(&it);
assert(upb_fielddef_containingoneof(first_field) != NULL);
case_ofs =
self->descriptor->layout->
fields[upb_fielddef_index(first_field)].case_offset;
oneof_case = *((uint32_t*)((char*)Message_data(self) + case_ofs));
if (oneof_case == ONEOF_CASE_NONE) {
return NULL;
}
// oneof_case is a field index, so find that field.
f = upb_oneofdef_itof(o, oneof_case);
assert(f != NULL);
return f;
}
enum {
METHOD_UNKNOWN = 0,
METHOD_GETTER = 1,
METHOD_SETTER = 2,
METHOD_CLEAR = 3,
METHOD_PRESENCE = 4,
METHOD_ENUM_GETTER = 5,
METHOD_WRAPPER_GETTER = 6,
METHOD_WRAPPER_SETTER = 7
};
// Check if the field is a well known wrapper type
static bool is_wrapper_type_field(const upb_fielddef* field) {
char* field_type_name = rb_class2name(field_type_class(field));
return strcmp(field_type_name, "Google::Protobuf::DoubleValue") == 0 ||
strcmp(field_type_name, "Google::Protobuf::FloatValue") == 0 ||
strcmp(field_type_name, "Google::Protobuf::Int32Value") == 0 ||
strcmp(field_type_name, "Google::Protobuf::Int64Value") == 0 ||
strcmp(field_type_name, "Google::Protobuf::UInt32Value") == 0 ||
strcmp(field_type_name, "Google::Protobuf::UInt64Value") == 0 ||
strcmp(field_type_name, "Google::Protobuf::BoolValue") == 0 ||
strcmp(field_type_name, "Google::Protobuf::StringValue") == 0 ||
strcmp(field_type_name, "Google::Protobuf::BytesValue") == 0;
}
// Get a new Ruby wrapper type and set the initial value
static VALUE ruby_wrapper_type(const upb_fielddef* field, const VALUE* value) {
if (is_wrapper_type_field(field) && value != Qnil) {
VALUE hash = rb_hash_new();
rb_hash_aset(hash, rb_str_new2("value"), value);
VALUE args[1] = { hash };
return rb_class_new_instance(1, args, field_type_class(field));
}
return Qnil;
}
static int extract_method_call(VALUE method_name, MessageHeader* self,
const upb_fielddef **f, const upb_oneofdef **o) {
Check_Type(method_name, T_SYMBOL);
VALUE method_str = rb_id2str(SYM2ID(method_name));
char* name = RSTRING_PTR(method_str);
size_t name_len = RSTRING_LEN(method_str);
int accessor_type;
const upb_oneofdef* test_o;
const upb_fielddef* test_f;
if (name[name_len - 1] == '=') {
accessor_type = METHOD_SETTER;
name_len--;
// We want to ensure if the proto has something named clear_foo or has_foo?,
// we don't strip the prefix.
} else if (strncmp("clear_", name, 6) == 0 &&
!upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len,
&test_f, &test_o)) {
accessor_type = METHOD_CLEAR;
name = name + 6;
name_len = name_len - 6;
} else if (strncmp("has_", name, 4) == 0 && name[name_len - 1] == '?' &&
!upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len,
&test_f, &test_o)) {
accessor_type = METHOD_PRESENCE;
name = name + 4;
name_len = name_len - 5;
} else {
accessor_type = METHOD_GETTER;
}
bool has_field = upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len,
&test_f, &test_o);
// Look for wrapper type accessor of the form <field_name>_as_value
if (!has_field &&
(accessor_type == METHOD_GETTER || accessor_type == METHOD_SETTER) &&
name_len > 9 && strncmp(name + name_len - 9, "_as_value", 9) == 0) {
// Find the field name
char wrapper_field_name[name_len - 8];
strncpy(wrapper_field_name, name, name_len - 9);
wrapper_field_name[name_len - 7] = '\0';
// Check if field exists and is a wrapper type
const upb_oneofdef* test_o_wrapper;
const upb_fielddef* test_f_wrapper;
if (upb_msgdef_lookupname(self->descriptor->msgdef, wrapper_field_name, name_len - 9,
&test_f_wrapper, &test_o_wrapper) &&
upb_fielddef_type(test_f_wrapper) == UPB_TYPE_MESSAGE &&
is_wrapper_type_field(test_f_wrapper)) {
// It does exist!
has_field = true;
if (accessor_type == METHOD_SETTER) {
accessor_type = METHOD_WRAPPER_SETTER;
} else {
accessor_type = METHOD_WRAPPER_GETTER;
}
test_o = test_o_wrapper;
test_f = test_f_wrapper;
}
}
// Look for enum accessor of the form <enum_name>_const
if (!has_field && accessor_type == METHOD_GETTER &&
name_len > 6 && strncmp(name + name_len - 6, "_const", 6) == 0) {
// Find enum field name
char enum_name[name_len - 5];
strncpy(enum_name, name, name_len - 6);
enum_name[name_len - 4] = '\0';
// Check if enum field exists
const upb_oneofdef* test_o_enum;
const upb_fielddef* test_f_enum;
if (upb_msgdef_lookupname(self->descriptor->msgdef, enum_name, name_len - 6,
&test_f_enum, &test_o_enum) &&
upb_fielddef_type(test_f_enum) == UPB_TYPE_ENUM) {
// It does exist!
has_field = true;
accessor_type = METHOD_ENUM_GETTER;
test_o = test_o_enum;
test_f = test_f_enum;
}
}
// Verify the name corresponds to a oneof or field in this message.
if (!has_field) {
return METHOD_UNKNOWN;
}
// Method calls like 'has_foo?' are not allowed if field "foo" does not have
// a hasbit (e.g. repeated fields or non-message type fields for proto3
// syntax).
if (accessor_type == METHOD_PRESENCE && test_f != NULL &&
!upb_fielddef_haspresence(test_f)) {
return METHOD_UNKNOWN;
}
*o = test_o;
*f = test_f;
return accessor_type;
}
/*
* call-seq:
* Message.method_missing(*args)
*
* Provides accessors and setters and methods to clear and check for presence of
* message fields according to their field names.
*
* For any field whose name does not conflict with a built-in method, an
* accessor is provided with the same name as the field, and a setter is
* provided with the name of the field plus the '=' suffix. Thus, given a
* message instance 'msg' with field 'foo', the following code is valid:
*
* msg.foo = 42
* puts msg.foo
*
* This method also provides read-only accessors for oneofs. If a oneof exists
* with name 'my_oneof', then msg.my_oneof will return a Ruby symbol equal to
* the name of the field in that oneof that is currently set, or nil if none.
*
* It also provides methods of the form 'clear_fieldname' to clear the value
* of the field 'fieldname'. For basic data types, this will set the default
* value of the field.
*
* Additionally, it provides methods of the form 'has_fieldname?', which returns
* true if the field 'fieldname' is set in the message object, else false. For
* 'proto3' syntax, calling this for a basic type field will result in an error.
*/
VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self) {
MessageHeader* self;
const upb_oneofdef* o;
const upb_fielddef* f;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
if (argc < 1) {
rb_raise(rb_eArgError, "Expected method name as first argument.");
}
int accessor_type = extract_method_call(argv[0], self, &f, &o);
if (accessor_type == METHOD_UNKNOWN || (o == NULL && f == NULL) ) {
return rb_call_super(argc, argv);
} else if (accessor_type == METHOD_SETTER || accessor_type == METHOD_WRAPPER_SETTER) {
if (argc != 2) {
rb_raise(rb_eArgError, "Expected 2 arguments, received %d", argc);
}
rb_check_frozen(_self);
} else if (argc != 1) {
rb_raise(rb_eArgError, "Expected 1 argument, received %d", argc);
}
// Return which of the oneof fields are set
if (o != NULL) {
if (accessor_type == METHOD_SETTER) {
rb_raise(rb_eRuntimeError, "Oneof accessors are read-only.");
}
const upb_fielddef* oneof_field = which_oneof_field(self, o);
if (accessor_type == METHOD_PRESENCE) {
return oneof_field == NULL ? Qfalse : Qtrue;
} else if (accessor_type == METHOD_CLEAR) {
if (oneof_field != NULL) {
layout_clear(self->descriptor->layout, Message_data(self), oneof_field);
}
return Qnil;
} else {
// METHOD_ACCESSOR
return oneof_field == NULL ? Qnil :
ID2SYM(rb_intern(upb_fielddef_name(oneof_field)));
}
// Otherwise we're operating on a single proto field
} else if (accessor_type == METHOD_SETTER) {
layout_set(self->descriptor->layout, Message_data(self), f, argv[1]);
return Qnil;
} else if (accessor_type == METHOD_CLEAR) {
layout_clear(self->descriptor->layout, Message_data(self), f);
return Qnil;
} else if (accessor_type == METHOD_PRESENCE) {
return layout_has(self->descriptor->layout, Message_data(self), f);
} else if (accessor_type == METHOD_WRAPPER_GETTER) {
VALUE value = layout_get(self->descriptor->layout, Message_data(self), f);
if (value != Qnil) {
value = rb_funcall(value, rb_intern("value"), 0);
}
return value;
} else if (accessor_type == METHOD_WRAPPER_SETTER) {
VALUE wrapper = ruby_wrapper_type(f, argv[1]);
layout_set(self->descriptor->layout, Message_data(self), f, wrapper);
return Qnil;
} else if (accessor_type == METHOD_ENUM_GETTER) {
VALUE enum_type = field_type_class(f);
VALUE method = rb_intern("const_get");
VALUE raw_value = layout_get(self->descriptor->layout, Message_data(self), f);
// Map repeated fields to a new type with ints
if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) {
int array_size = FIX2INT(rb_funcall(raw_value, rb_intern("length"), 0));
VALUE array_args[1] = { ID2SYM(rb_intern("int64")) };
VALUE array = rb_class_new_instance(1, array_args, CLASS_OF(raw_value));
for (int i = 0; i < array_size; i++) {
VALUE entry = rb_funcall(enum_type, method, 1, rb_funcall(raw_value,
rb_intern("at"), 1, INT2NUM(i)));
rb_funcall(array, rb_intern("push"), 1, entry);
}
return array;
}
// Convert the value for singular fields
return rb_funcall(enum_type, method, 1, raw_value);
} else {
return layout_get(self->descriptor->layout, Message_data(self), f);
}
}
VALUE Message_respond_to_missing(int argc, VALUE* argv, VALUE _self) {
MessageHeader* self;
const upb_oneofdef* o;
const upb_fielddef* f;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
if (argc < 1) {
rb_raise(rb_eArgError, "Expected method name as first argument.");
}
int accessor_type = extract_method_call(argv[0], self, &f, &o);
if (accessor_type == METHOD_UNKNOWN) {
return rb_call_super(argc, argv);
} else if (o != NULL) {
return accessor_type == METHOD_SETTER ? Qfalse : Qtrue;
} else {
return Qtrue;
}
}
VALUE create_submsg_from_hash(const upb_fielddef *f, VALUE hash) {
const upb_def *d = upb_fielddef_subdef(f);
assert(d != NULL);
VALUE descriptor = get_def_obj(d);
VALUE msgclass = rb_funcall(descriptor, rb_intern("msgclass"), 0, NULL);
VALUE args[1] = { hash };
return rb_class_new_instance(1, args, msgclass);
}
int Message_initialize_kwarg(VALUE key, VALUE val, VALUE _self) {
MessageHeader* self;
char *name;
const upb_fielddef* f;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
if (TYPE(key) == T_STRING) {
name = RSTRING_PTR(key);
} else if (TYPE(key) == T_SYMBOL) {
name = RSTRING_PTR(rb_id2str(SYM2ID(key)));
} else {
rb_raise(rb_eArgError,
"Expected string or symbols as hash keys when initializing proto from hash.");
}
f = upb_msgdef_ntofz(self->descriptor->msgdef, name);
if (f == NULL) {
rb_raise(rb_eArgError,
"Unknown field name '%s' in initialization map entry.", name);
}
if (TYPE(val) == T_NIL) {
return 0;
}
if (is_map_field(f)) {
VALUE map;
if (TYPE(val) != T_HASH) {
rb_raise(rb_eArgError,
"Expected Hash object as initializer value for map field '%s' (given %s).",
name, rb_class2name(CLASS_OF(val)));
}
map = layout_get(self->descriptor->layout, Message_data(self), f);
Map_merge_into_self(map, val);
} else if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) {
VALUE ary;
if (TYPE(val) != T_ARRAY) {
rb_raise(rb_eArgError,
"Expected array as initializer value for repeated field '%s' (given %s).",
name, rb_class2name(CLASS_OF(val)));
}
ary = layout_get(self->descriptor->layout, Message_data(self), f);
for (int i = 0; i < RARRAY_LEN(val); i++) {
VALUE entry = rb_ary_entry(val, i);
if (TYPE(entry) == T_HASH && upb_fielddef_issubmsg(f)) {
entry = create_submsg_from_hash(f, entry);
}
RepeatedField_push(ary, entry);
}
} else {
if (TYPE(val) == T_HASH && upb_fielddef_issubmsg(f)) {
val = create_submsg_from_hash(f, val);
}
layout_set(self->descriptor->layout, Message_data(self), f, val);
}
return 0;
}
/*
* call-seq:
* Message.new(kwargs) => new_message
*
* Creates a new instance of the given message class. Keyword arguments may be
* provided with keywords corresponding to field names.
*
* Note that no literal Message class exists. Only concrete classes per message
* type exist, as provided by the #msgclass method on Descriptors after they
* have been added to a pool. The method definitions described here on the
* Message class are provided on each concrete message class.
*/
VALUE Message_initialize(int argc, VALUE* argv, VALUE _self) {
VALUE hash_args;
if (argc == 0) {
return Qnil;
}
if (argc != 1) {
rb_raise(rb_eArgError, "Expected 0 or 1 arguments.");
}
hash_args = argv[0];
if (TYPE(hash_args) != T_HASH) {
rb_raise(rb_eArgError, "Expected hash arguments.");
}
rb_hash_foreach(hash_args, Message_initialize_kwarg, _self);
return Qnil;
}
/*
* call-seq:
* Message.dup => new_message
*
* Performs a shallow copy of this message and returns the new copy.
*/
VALUE Message_dup(VALUE _self) {
MessageHeader* self;
VALUE new_msg;
MessageHeader* new_msg_self;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self));
TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self);
layout_dup(self->descriptor->layout,
Message_data(new_msg_self),
Message_data(self));
return new_msg;
}
/* :nodoc: */
static VALUE Message_deep_copy(VALUE _self) {
MessageHeader* self;
MessageHeader* new_msg_self;
VALUE new_msg;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self));
TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self);
layout_deep_copy(self->descriptor->layout,
Message_data(new_msg_self),
Message_data(self));
return new_msg;
}
/*
* call-seq:
* Message.==(other) => boolean
*
* Performs a deep comparison of this message with another. Messages are equal
* if they have the same type and if each field is equal according to the :==
* method's semantics (a more efficient comparison may actually be done if the
* field is of a primitive type).
*/
VALUE Message_eq(VALUE _self, VALUE _other) {
MessageHeader* self;
MessageHeader* other;
if (TYPE(_self) != TYPE(_other)) {
return Qfalse;
}
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
TypedData_Get_Struct(_other, MessageHeader, &Message_type, other);
if (self->descriptor != other->descriptor) {
return Qfalse;
}
return layout_eq(self->descriptor->layout,
Message_data(self),
Message_data(other));
}
/*
* call-seq:
* Message.hash => hash_value
*
* Returns a hash value that represents this message's field values.
*/
VALUE Message_hash(VALUE _self) {
MessageHeader* self;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
return layout_hash(self->descriptor->layout, Message_data(self));
}
/*
* call-seq:
* Message.inspect => string
*
* Returns a human-readable string representing this message. It will be
* formatted as "<MessageType: field1: value1, field2: value2, ...>". Each
* field's value is represented according to its own #inspect method.
*/
VALUE Message_inspect(VALUE _self) {
MessageHeader* self;
VALUE str;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
str = rb_str_new2("<");
str = rb_str_append(str, rb_str_new2(rb_class2name(CLASS_OF(_self))));
str = rb_str_cat2(str, ": ");
str = rb_str_append(str, layout_inspect(
self->descriptor->layout, Message_data(self)));
str = rb_str_cat2(str, ">");
return str;
}
/*
* call-seq:
* Message.to_h => {}
*
* Returns the message as a Ruby Hash object, with keys as symbols.
*/
VALUE Message_to_h(VALUE _self) {
MessageHeader* self;
VALUE hash;
upb_msg_field_iter it;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
hash = rb_hash_new();
for (upb_msg_field_begin(&it, self->descriptor->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* field = upb_msg_iter_field(&it);
// For proto2, do not include fields which are not set.
if (upb_msgdef_syntax(self->descriptor->msgdef) == UPB_SYNTAX_PROTO2 &&
field_contains_hasbit(self->descriptor->layout, field) &&
!layout_has(self->descriptor->layout, Message_data(self), field)) {
continue;
}
VALUE msg_value = layout_get(self->descriptor->layout, Message_data(self),
field);
VALUE msg_key = ID2SYM(rb_intern(upb_fielddef_name(field)));
if (is_map_field(field)) {
msg_value = Map_to_h(msg_value);
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
msg_value = RepeatedField_to_ary(msg_value);
if (upb_msgdef_syntax(self->descriptor->msgdef) == UPB_SYNTAX_PROTO2 &&
RARRAY_LEN(msg_value) == 0) {
continue;
}
if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
for (int i = 0; i < RARRAY_LEN(msg_value); i++) {
VALUE elem = rb_ary_entry(msg_value, i);
rb_ary_store(msg_value, i, Message_to_h(elem));
}
}
} else if (msg_value != Qnil &&
upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
msg_value = Message_to_h(msg_value);
}
rb_hash_aset(hash, msg_key, msg_value);
}
return hash;
}
/*
* call-seq:
* Message.[](index) => value
*
* Accesses a field's value by field name. The provided field name should be a
* string.
*/
VALUE Message_index(VALUE _self, VALUE field_name) {
MessageHeader* self;
const upb_fielddef* field;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
Check_Type(field_name, T_STRING);
field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name));
if (field == NULL) {
return Qnil;
}
return layout_get(self->descriptor->layout, Message_data(self), field);
}
/*
* call-seq:
* Message.[]=(index, value)
*
* Sets a field's value by field name. The provided field name should be a
* string.
*/
VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value) {
MessageHeader* self;
const upb_fielddef* field;
TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
Check_Type(field_name, T_STRING);
field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name));
if (field == NULL) {
rb_raise(rb_eArgError, "Unknown field: %s", RSTRING_PTR(field_name));
}
layout_set(self->descriptor->layout, Message_data(self), field, value);
return Qnil;
}
/*
* call-seq:
* Message.descriptor => descriptor
*
* Class method that returns the Descriptor instance corresponding to this
* message class's type.
*/
VALUE Message_descriptor(VALUE klass) {
return rb_ivar_get(klass, descriptor_instancevar_interned);
}
VALUE build_class_from_descriptor(Descriptor* desc) {
const char *name;
VALUE klass;
if (desc->layout == NULL) {
desc->layout = create_layout(desc->msgdef);
}
if (desc->fill_method == NULL) {
desc->fill_method = new_fillmsg_decodermethod(desc, &desc->fill_method);
}
name = upb_msgdef_fullname(desc->msgdef);
if (name == NULL) {
rb_raise(rb_eRuntimeError, "Descriptor does not have assigned name.");
}
klass = rb_define_class_id(
// Docs say this parameter is ignored. User will assign return value to
// their own toplevel constant class name.
rb_intern("Message"),
rb_cObject);
rb_ivar_set(klass, descriptor_instancevar_interned,
get_def_obj(desc->msgdef));
rb_define_alloc_func(klass, Message_alloc);
rb_require("google/protobuf/message_exts");
rb_include_module(klass, rb_eval_string("::Google::Protobuf::MessageExts"));
rb_extend_object(
klass, rb_eval_string("::Google::Protobuf::MessageExts::ClassMethods"));
rb_define_method(klass, "method_missing",
Message_method_missing, -1);
rb_define_method(klass, "respond_to_missing?",
Message_respond_to_missing, -1);
rb_define_method(klass, "initialize", Message_initialize, -1);
rb_define_method(klass, "dup", Message_dup, 0);
// Also define #clone so that we don't inherit Object#clone.
rb_define_method(klass, "clone", Message_dup, 0);
rb_define_method(klass, "==", Message_eq, 1);
rb_define_method(klass, "eql?", Message_eq, 1);
rb_define_method(klass, "hash", Message_hash, 0);
rb_define_method(klass, "to_h", Message_to_h, 0);
rb_define_method(klass, "to_hash", Message_to_h, 0);
rb_define_method(klass, "inspect", Message_inspect, 0);
rb_define_method(klass, "to_s", Message_inspect, 0);
rb_define_method(klass, "[]", Message_index, 1);
rb_define_method(klass, "[]=", Message_index_set, 2);
rb_define_method(klass, "deep_copy", Message_deep_copy, 0);
rb_define_singleton_method(klass, "decode", Message_decode, 1);
rb_define_singleton_method(klass, "encode", Message_encode, 1);
rb_define_singleton_method(klass, "decode_json", Message_decode_json, -1);
rb_define_singleton_method(klass, "encode_json", Message_encode_json, -1);
rb_define_singleton_method(klass, "descriptor", Message_descriptor, 0);
return klass;
}
/*
* call-seq:
* Enum.lookup(number) => name
*
* This module method, provided on each generated enum module, looks up an enum
* value by number and returns its name as a Ruby symbol, or nil if not found.
*/
VALUE enum_lookup(VALUE self, VALUE number) {
int32_t num = NUM2INT(number);
VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc);
const char* name = upb_enumdef_iton(enumdesc->enumdef, num);
if (name == NULL) {
return Qnil;
} else {
return ID2SYM(rb_intern(name));
}
}
/*
* call-seq:
* Enum.resolve(name) => number
*
* This module method, provided on each generated enum module, looks up an enum
* value by name (as a Ruby symbol) and returns its name, or nil if not found.
*/
VALUE enum_resolve(VALUE self, VALUE sym) {
const char* name = rb_id2name(SYM2ID(sym));
VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc);
int32_t num = 0;
bool found = upb_enumdef_ntoiz(enumdesc->enumdef, name, &num);
if (!found) {
return Qnil;
} else {
return INT2NUM(num);
}
}
/*
* call-seq:
* Enum.descriptor
*
* This module method, provided on each generated enum module, returns the
* EnumDescriptor corresponding to this enum type.
*/
VALUE enum_descriptor(VALUE self) {
return rb_ivar_get(self, descriptor_instancevar_interned);
}
VALUE build_module_from_enumdesc(EnumDescriptor* enumdesc) {
VALUE mod = rb_define_module_id(
rb_intern(upb_enumdef_fullname(enumdesc->enumdef)));
upb_enum_iter it;
for (upb_enum_begin(&it, enumdesc->enumdef);
!upb_enum_done(&it);
upb_enum_next(&it)) {
const char* name = upb_enum_iter_name(&it);
int32_t value = upb_enum_iter_number(&it);
if (name[0] < 'A' || name[0] > 'Z') {
rb_warn("Enum value '%s' does not start with an uppercase letter "
"as is required for Ruby constants.",
name);
}
rb_define_const(mod, name, INT2NUM(value));
}
rb_define_singleton_method(mod, "lookup", enum_lookup, 1);
rb_define_singleton_method(mod, "resolve", enum_resolve, 1);
rb_define_singleton_method(mod, "descriptor", enum_descriptor, 0);
rb_ivar_set(mod, descriptor_instancevar_interned,
get_def_obj(enumdesc->enumdef));
return mod;
}