a1daeaba80
While we are C99 in general, the Ruby build system for building C extensions enables several flags that throw warnings for C89/C90 variable ordering rules. To avoid spewing a million warnings (or trying to specifically override these warnings with command-line flags, which would be tricky and possibly fragile) we conform to Ruby's world of C89/C90. Change-Id: I0e03e62d95068dfdfde112df0fb16a248a2f32a0
864 lines
29 KiB
C
864 lines
29 KiB
C
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2014 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "protobuf.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include <ruby/encoding.h>
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Ruby <-> native slot management.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#define DEREF(memory, type) *(type*)(memory)
|
|
|
|
size_t native_slot_size(upb_fieldtype_t type) {
|
|
switch (type) {
|
|
case UPB_TYPE_FLOAT: return 4;
|
|
case UPB_TYPE_DOUBLE: return 8;
|
|
case UPB_TYPE_BOOL: return 1;
|
|
case UPB_TYPE_STRING: return sizeof(VALUE);
|
|
case UPB_TYPE_BYTES: return sizeof(VALUE);
|
|
case UPB_TYPE_MESSAGE: return sizeof(VALUE);
|
|
case UPB_TYPE_ENUM: return 4;
|
|
case UPB_TYPE_INT32: return 4;
|
|
case UPB_TYPE_INT64: return 8;
|
|
case UPB_TYPE_UINT32: return 4;
|
|
case UPB_TYPE_UINT64: return 8;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
static bool is_ruby_num(VALUE value) {
|
|
return (TYPE(value) == T_FLOAT ||
|
|
TYPE(value) == T_FIXNUM ||
|
|
TYPE(value) == T_BIGNUM);
|
|
}
|
|
|
|
void native_slot_check_int_range_precision(upb_fieldtype_t type, VALUE val) {
|
|
if (!is_ruby_num(val)) {
|
|
rb_raise(rb_eTypeError, "Expected number type for integral field.");
|
|
}
|
|
|
|
// NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
|
|
// bound; we just need to do precision checks (i.e., disallow rounding) and
|
|
// check for < 0 on unsigned types.
|
|
if (TYPE(val) == T_FLOAT) {
|
|
double dbl_val = NUM2DBL(val);
|
|
if (floor(dbl_val) != dbl_val) {
|
|
rb_raise(rb_eRangeError,
|
|
"Non-integral floating point value assigned to integer field.");
|
|
}
|
|
}
|
|
if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
|
|
if (NUM2DBL(val) < 0) {
|
|
rb_raise(rb_eRangeError,
|
|
"Assigning negative value to unsigned integer field.");
|
|
}
|
|
}
|
|
}
|
|
|
|
void native_slot_validate_string_encoding(upb_fieldtype_t type, VALUE value) {
|
|
bool bad_encoding = false;
|
|
rb_encoding* string_encoding = rb_enc_from_index(ENCODING_GET(value));
|
|
if (type == UPB_TYPE_STRING) {
|
|
bad_encoding =
|
|
string_encoding != kRubyStringUtf8Encoding &&
|
|
string_encoding != kRubyStringASCIIEncoding;
|
|
} else {
|
|
bad_encoding =
|
|
string_encoding != kRubyString8bitEncoding;
|
|
}
|
|
// Check that encoding is UTF-8 or ASCII (for string fields) or ASCII-8BIT
|
|
// (for bytes fields).
|
|
if (bad_encoding) {
|
|
rb_raise(rb_eTypeError, "Encoding for '%s' fields must be %s (was %s)",
|
|
(type == UPB_TYPE_STRING) ? "string" : "bytes",
|
|
(type == UPB_TYPE_STRING) ? "UTF-8 or ASCII" : "ASCII-8BIT",
|
|
rb_enc_name(string_encoding));
|
|
}
|
|
}
|
|
|
|
void native_slot_set(upb_fieldtype_t type, VALUE type_class,
|
|
void* memory, VALUE value) {
|
|
native_slot_set_value_and_case(type, type_class, memory, value, NULL, 0);
|
|
}
|
|
|
|
void native_slot_set_value_and_case(upb_fieldtype_t type, VALUE type_class,
|
|
void* memory, VALUE value,
|
|
uint32_t* case_memory,
|
|
uint32_t case_number) {
|
|
// Note that in order to atomically change the value in memory and the case
|
|
// value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
|
|
// all Ruby VM calls are complete. The case is then set at the bottom of this
|
|
// function.
|
|
switch (type) {
|
|
case UPB_TYPE_FLOAT:
|
|
if (!is_ruby_num(value)) {
|
|
rb_raise(rb_eTypeError, "Expected number type for float field.");
|
|
}
|
|
DEREF(memory, float) = NUM2DBL(value);
|
|
break;
|
|
case UPB_TYPE_DOUBLE:
|
|
if (!is_ruby_num(value)) {
|
|
rb_raise(rb_eTypeError, "Expected number type for double field.");
|
|
}
|
|
DEREF(memory, double) = NUM2DBL(value);
|
|
break;
|
|
case UPB_TYPE_BOOL: {
|
|
int8_t val = -1;
|
|
if (value == Qtrue) {
|
|
val = 1;
|
|
} else if (value == Qfalse) {
|
|
val = 0;
|
|
} else {
|
|
rb_raise(rb_eTypeError, "Invalid argument for boolean field.");
|
|
}
|
|
DEREF(memory, int8_t) = val;
|
|
break;
|
|
}
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES: {
|
|
if (CLASS_OF(value) != rb_cString) {
|
|
rb_raise(rb_eTypeError, "Invalid argument for string field.");
|
|
}
|
|
native_slot_validate_string_encoding(type, value);
|
|
DEREF(memory, VALUE) = value;
|
|
break;
|
|
}
|
|
case UPB_TYPE_MESSAGE: {
|
|
if (CLASS_OF(value) == CLASS_OF(Qnil)) {
|
|
value = Qnil;
|
|
} else if (CLASS_OF(value) != type_class) {
|
|
rb_raise(rb_eTypeError,
|
|
"Invalid type %s to assign to submessage field.",
|
|
rb_class2name(CLASS_OF(value)));
|
|
}
|
|
DEREF(memory, VALUE) = value;
|
|
break;
|
|
}
|
|
case UPB_TYPE_ENUM: {
|
|
int32_t int_val = 0;
|
|
if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
|
|
rb_raise(rb_eTypeError,
|
|
"Expected number or symbol type for enum field.");
|
|
}
|
|
if (TYPE(value) == T_SYMBOL) {
|
|
// Ensure that the given symbol exists in the enum module.
|
|
VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
|
|
if (lookup == Qnil) {
|
|
rb_raise(rb_eRangeError, "Unknown symbol value for enum field.");
|
|
} else {
|
|
int_val = NUM2INT(lookup);
|
|
}
|
|
} else {
|
|
native_slot_check_int_range_precision(UPB_TYPE_INT32, value);
|
|
int_val = NUM2INT(value);
|
|
}
|
|
DEREF(memory, int32_t) = int_val;
|
|
break;
|
|
}
|
|
case UPB_TYPE_INT32:
|
|
case UPB_TYPE_INT64:
|
|
case UPB_TYPE_UINT32:
|
|
case UPB_TYPE_UINT64:
|
|
native_slot_check_int_range_precision(type, value);
|
|
switch (type) {
|
|
case UPB_TYPE_INT32:
|
|
DEREF(memory, int32_t) = NUM2INT(value);
|
|
break;
|
|
case UPB_TYPE_INT64:
|
|
DEREF(memory, int64_t) = NUM2LL(value);
|
|
break;
|
|
case UPB_TYPE_UINT32:
|
|
DEREF(memory, uint32_t) = NUM2UINT(value);
|
|
break;
|
|
case UPB_TYPE_UINT64:
|
|
DEREF(memory, uint64_t) = NUM2ULL(value);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (case_memory != NULL) {
|
|
*case_memory = case_number;
|
|
}
|
|
}
|
|
|
|
VALUE native_slot_get(upb_fieldtype_t type,
|
|
VALUE type_class,
|
|
const void* memory) {
|
|
switch (type) {
|
|
case UPB_TYPE_FLOAT:
|
|
return DBL2NUM(DEREF(memory, float));
|
|
case UPB_TYPE_DOUBLE:
|
|
return DBL2NUM(DEREF(memory, double));
|
|
case UPB_TYPE_BOOL:
|
|
return DEREF(memory, int8_t) ? Qtrue : Qfalse;
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
case UPB_TYPE_MESSAGE:
|
|
return DEREF(memory, VALUE);
|
|
case UPB_TYPE_ENUM: {
|
|
int32_t val = DEREF(memory, int32_t);
|
|
VALUE symbol = enum_lookup(type_class, INT2NUM(val));
|
|
if (symbol == Qnil) {
|
|
return INT2NUM(val);
|
|
} else {
|
|
return symbol;
|
|
}
|
|
}
|
|
case UPB_TYPE_INT32:
|
|
return INT2NUM(DEREF(memory, int32_t));
|
|
case UPB_TYPE_INT64:
|
|
return LL2NUM(DEREF(memory, int64_t));
|
|
case UPB_TYPE_UINT32:
|
|
return UINT2NUM(DEREF(memory, uint32_t));
|
|
case UPB_TYPE_UINT64:
|
|
return ULL2NUM(DEREF(memory, uint64_t));
|
|
default:
|
|
return Qnil;
|
|
}
|
|
}
|
|
|
|
void native_slot_init(upb_fieldtype_t type, void* memory) {
|
|
switch (type) {
|
|
case UPB_TYPE_FLOAT:
|
|
DEREF(memory, float) = 0.0;
|
|
break;
|
|
case UPB_TYPE_DOUBLE:
|
|
DEREF(memory, double) = 0.0;
|
|
break;
|
|
case UPB_TYPE_BOOL:
|
|
DEREF(memory, int8_t) = 0;
|
|
break;
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
DEREF(memory, VALUE) = rb_str_new2("");
|
|
rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
|
|
kRubyString8bitEncoding : kRubyStringUtf8Encoding);
|
|
break;
|
|
case UPB_TYPE_MESSAGE:
|
|
DEREF(memory, VALUE) = Qnil;
|
|
break;
|
|
case UPB_TYPE_ENUM:
|
|
case UPB_TYPE_INT32:
|
|
DEREF(memory, int32_t) = 0;
|
|
break;
|
|
case UPB_TYPE_INT64:
|
|
DEREF(memory, int64_t) = 0;
|
|
break;
|
|
case UPB_TYPE_UINT32:
|
|
DEREF(memory, uint32_t) = 0;
|
|
break;
|
|
case UPB_TYPE_UINT64:
|
|
DEREF(memory, uint64_t) = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void native_slot_mark(upb_fieldtype_t type, void* memory) {
|
|
switch (type) {
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
case UPB_TYPE_MESSAGE:
|
|
rb_gc_mark(DEREF(memory, VALUE));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
|
|
memcpy(to, from, native_slot_size(type));
|
|
}
|
|
|
|
void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) {
|
|
switch (type) {
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES: {
|
|
VALUE from_val = DEREF(from, VALUE);
|
|
DEREF(to, VALUE) = (from_val != Qnil) ?
|
|
rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
|
|
break;
|
|
}
|
|
case UPB_TYPE_MESSAGE: {
|
|
VALUE from_val = DEREF(from, VALUE);
|
|
DEREF(to, VALUE) = (from_val != Qnil) ?
|
|
Message_deep_copy(from_val) : Qnil;
|
|
break;
|
|
}
|
|
default:
|
|
memcpy(to, from, native_slot_size(type));
|
|
}
|
|
}
|
|
|
|
bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) {
|
|
switch (type) {
|
|
case UPB_TYPE_STRING:
|
|
case UPB_TYPE_BYTES:
|
|
case UPB_TYPE_MESSAGE: {
|
|
VALUE val1 = DEREF(mem1, VALUE);
|
|
VALUE val2 = DEREF(mem2, VALUE);
|
|
VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
|
|
return ret == Qtrue;
|
|
}
|
|
default:
|
|
return !memcmp(mem1, mem2, native_slot_size(type));
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Map field utilities.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
|
|
const upb_msgdef* subdef;
|
|
if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
|
|
upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
|
|
return NULL;
|
|
}
|
|
subdef = upb_fielddef_msgsubdef(field);
|
|
return upb_msgdef_mapentry(subdef) ? subdef : NULL;
|
|
}
|
|
|
|
const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
|
|
const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
|
|
assert(subdef);
|
|
return subdef;
|
|
}
|
|
|
|
bool is_map_field(const upb_fielddef *field) {
|
|
return tryget_map_entry_msgdef(field) != NULL;
|
|
}
|
|
|
|
const upb_fielddef* map_field_key(const upb_fielddef* field) {
|
|
const upb_msgdef* subdef = map_entry_msgdef(field);
|
|
return map_entry_key(subdef);
|
|
}
|
|
|
|
const upb_fielddef* map_field_value(const upb_fielddef* field) {
|
|
const upb_msgdef* subdef = map_entry_msgdef(field);
|
|
return map_entry_value(subdef);
|
|
}
|
|
|
|
const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
|
|
const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
|
|
assert(key_field != NULL);
|
|
return key_field;
|
|
}
|
|
|
|
const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
|
|
const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
|
|
assert(value_field != NULL);
|
|
return value_field;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Memory layout management.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
static size_t align_up_to(size_t offset, size_t granularity) {
|
|
// Granularity must be a power of two.
|
|
return (offset + granularity - 1) & ~(granularity - 1);
|
|
}
|
|
|
|
MessageLayout* create_layout(const upb_msgdef* msgdef) {
|
|
MessageLayout* layout = ALLOC(MessageLayout);
|
|
int nfields = upb_msgdef_numfields(msgdef);
|
|
upb_msg_field_iter it;
|
|
upb_msg_oneof_iter oit;
|
|
size_t off = 0;
|
|
|
|
layout->fields = ALLOC_N(MessageField, nfields);
|
|
|
|
for (upb_msg_field_begin(&it, msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
size_t field_size;
|
|
|
|
if (upb_fielddef_containingoneof(field)) {
|
|
// Oneofs are handled separately below.
|
|
continue;
|
|
}
|
|
|
|
// Allocate |field_size| bytes for this field in the layout.
|
|
field_size = 0;
|
|
if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
field_size = sizeof(VALUE);
|
|
} else {
|
|
field_size = native_slot_size(upb_fielddef_type(field));
|
|
}
|
|
// Align current offset up to |size| granularity.
|
|
off = align_up_to(off, field_size);
|
|
layout->fields[upb_fielddef_index(field)].offset = off;
|
|
layout->fields[upb_fielddef_index(field)].case_offset =
|
|
MESSAGE_FIELD_NO_CASE;
|
|
off += field_size;
|
|
}
|
|
|
|
// Handle oneofs now -- we iterate over oneofs specifically and allocate only
|
|
// one slot per oneof.
|
|
//
|
|
// We assign all value slots first, then pack the 'case' fields at the end,
|
|
// since in the common case (modern 64-bit platform) these are 8 bytes and 4
|
|
// bytes respectively and we want to avoid alignment overhead.
|
|
//
|
|
// Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
|
|
// space for oneof cases is conceptually as wide as field tag numbers. In
|
|
// practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
|
|
// members (8 or 16 bits respectively), so conceivably we could assign
|
|
// consecutive case numbers and then pick a smaller oneof case slot size, but
|
|
// the complexity to implement this indirection is probably not worthwhile.
|
|
for (upb_msg_oneof_begin(&oit, msgdef);
|
|
!upb_msg_oneof_done(&oit);
|
|
upb_msg_oneof_next(&oit)) {
|
|
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
|
|
upb_oneof_iter fit;
|
|
|
|
// Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
|
|
// all fields.
|
|
size_t field_size = NATIVE_SLOT_MAX_SIZE;
|
|
// Align the offset.
|
|
off = align_up_to(off, field_size);
|
|
// Assign all fields in the oneof this same offset.
|
|
for (upb_oneof_begin(&fit, oneof);
|
|
!upb_oneof_done(&fit);
|
|
upb_oneof_next(&fit)) {
|
|
const upb_fielddef* field = upb_oneof_iter_field(&fit);
|
|
layout->fields[upb_fielddef_index(field)].offset = off;
|
|
}
|
|
off += field_size;
|
|
}
|
|
|
|
// Now the case fields.
|
|
for (upb_msg_oneof_begin(&oit, msgdef);
|
|
!upb_msg_oneof_done(&oit);
|
|
upb_msg_oneof_next(&oit)) {
|
|
const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
|
|
upb_oneof_iter fit;
|
|
|
|
size_t field_size = sizeof(uint32_t);
|
|
// Align the offset.
|
|
off = (off + field_size - 1) & ~(field_size - 1);
|
|
// Assign all fields in the oneof this same offset.
|
|
for (upb_oneof_begin(&fit, oneof);
|
|
!upb_oneof_done(&fit);
|
|
upb_oneof_next(&fit)) {
|
|
const upb_fielddef* field = upb_oneof_iter_field(&fit);
|
|
layout->fields[upb_fielddef_index(field)].case_offset = off;
|
|
}
|
|
off += field_size;
|
|
}
|
|
|
|
layout->size = off;
|
|
|
|
layout->msgdef = msgdef;
|
|
upb_msgdef_ref(layout->msgdef, &layout->msgdef);
|
|
|
|
return layout;
|
|
}
|
|
|
|
void free_layout(MessageLayout* layout) {
|
|
xfree(layout->fields);
|
|
upb_msgdef_unref(layout->msgdef, &layout->msgdef);
|
|
xfree(layout);
|
|
}
|
|
|
|
VALUE field_type_class(const upb_fielddef* field) {
|
|
VALUE type_class = Qnil;
|
|
if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
|
|
VALUE submsgdesc =
|
|
get_def_obj(upb_fielddef_subdef(field));
|
|
type_class = Descriptor_msgclass(submsgdesc);
|
|
} else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
|
|
VALUE subenumdesc =
|
|
get_def_obj(upb_fielddef_subdef(field));
|
|
type_class = EnumDescriptor_enummodule(subenumdesc);
|
|
}
|
|
return type_class;
|
|
}
|
|
|
|
static void* slot_memory(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
return ((uint8_t *)storage) +
|
|
layout->fields[upb_fielddef_index(field)].offset;
|
|
}
|
|
|
|
static uint32_t* slot_oneof_case(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
return (uint32_t *)(((uint8_t *)storage) +
|
|
layout->fields[upb_fielddef_index(field)].case_offset);
|
|
}
|
|
|
|
|
|
VALUE layout_get(MessageLayout* layout,
|
|
const void* storage,
|
|
const upb_fielddef* field) {
|
|
void* memory = slot_memory(layout, storage, field);
|
|
uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
|
|
|
|
if (upb_fielddef_containingoneof(field)) {
|
|
if (*oneof_case != upb_fielddef_number(field)) {
|
|
return Qnil;
|
|
}
|
|
return native_slot_get(upb_fielddef_type(field),
|
|
field_type_class(field),
|
|
memory);
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
return *((VALUE *)memory);
|
|
} else {
|
|
return native_slot_get(upb_fielddef_type(field),
|
|
field_type_class(field),
|
|
memory);
|
|
}
|
|
}
|
|
|
|
static void check_repeated_field_type(VALUE val, const upb_fielddef* field) {
|
|
RepeatedField* self;
|
|
assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
|
|
|
|
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
|
|
RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
|
|
rb_raise(rb_eTypeError, "Expected repeated field array");
|
|
}
|
|
|
|
self = ruby_to_RepeatedField(val);
|
|
if (self->field_type != upb_fielddef_type(field)) {
|
|
rb_raise(rb_eTypeError, "Repeated field array has wrong element type");
|
|
}
|
|
|
|
if (self->field_type == UPB_TYPE_MESSAGE ||
|
|
self->field_type == UPB_TYPE_ENUM) {
|
|
if (self->field_type_class !=
|
|
get_def_obj(upb_fielddef_subdef(field))) {
|
|
rb_raise(rb_eTypeError,
|
|
"Repeated field array has wrong message/enum class");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void check_map_field_type(VALUE val, const upb_fielddef* field) {
|
|
const upb_fielddef* key_field = map_field_key(field);
|
|
const upb_fielddef* value_field = map_field_value(field);
|
|
Map* self;
|
|
|
|
if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
|
|
RTYPEDDATA_TYPE(val) != &Map_type) {
|
|
rb_raise(rb_eTypeError, "Expected Map instance");
|
|
}
|
|
|
|
self = ruby_to_Map(val);
|
|
if (self->key_type != upb_fielddef_type(key_field)) {
|
|
rb_raise(rb_eTypeError, "Map key type does not match field's key type");
|
|
}
|
|
if (self->value_type != upb_fielddef_type(value_field)) {
|
|
rb_raise(rb_eTypeError, "Map value type does not match field's value type");
|
|
}
|
|
if (upb_fielddef_type(value_field) == UPB_TYPE_MESSAGE ||
|
|
upb_fielddef_type(value_field) == UPB_TYPE_ENUM) {
|
|
if (self->value_type_class !=
|
|
get_def_obj(upb_fielddef_subdef(value_field))) {
|
|
rb_raise(rb_eTypeError,
|
|
"Map value type has wrong message/enum class");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void layout_set(MessageLayout* layout,
|
|
void* storage,
|
|
const upb_fielddef* field,
|
|
VALUE val) {
|
|
void* memory = slot_memory(layout, storage, field);
|
|
uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
|
|
|
|
if (upb_fielddef_containingoneof(field)) {
|
|
if (val == Qnil) {
|
|
// Assigning nil to a oneof field clears the oneof completely.
|
|
*oneof_case = ONEOF_CASE_NONE;
|
|
memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
|
|
} else {
|
|
// The transition between field types for a single oneof (union) slot is
|
|
// somewhat complex because we need to ensure that a GC triggered at any
|
|
// point by a call into the Ruby VM sees a valid state for this field and
|
|
// does not either go off into the weeds (following what it thinks is a
|
|
// VALUE but is actually a different field type) or miss an object (seeing
|
|
// what it thinks is a primitive field but is actually a VALUE for the new
|
|
// field type).
|
|
//
|
|
// In order for the transition to be safe, the oneof case slot must be in
|
|
// sync with the value slot whenever the Ruby VM has been called. Thus, we
|
|
// use native_slot_set_value_and_case(), which ensures that both the value
|
|
// and case number are altered atomically (w.r.t. the Ruby VM).
|
|
native_slot_set_value_and_case(
|
|
upb_fielddef_type(field), field_type_class(field),
|
|
memory, val,
|
|
oneof_case, upb_fielddef_number(field));
|
|
}
|
|
} else if (is_map_field(field)) {
|
|
check_map_field_type(val, field);
|
|
DEREF(memory, VALUE) = val;
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
check_repeated_field_type(val, field);
|
|
DEREF(memory, VALUE) = val;
|
|
} else {
|
|
native_slot_set(upb_fielddef_type(field), field_type_class(field),
|
|
memory, val);
|
|
}
|
|
}
|
|
|
|
void layout_init(MessageLayout* layout,
|
|
void* storage) {
|
|
upb_msg_field_iter it;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
void* memory = slot_memory(layout, storage, field);
|
|
uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
|
|
|
|
if (upb_fielddef_containingoneof(field)) {
|
|
memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
|
|
*oneof_case = ONEOF_CASE_NONE;
|
|
} else if (is_map_field(field)) {
|
|
VALUE map = Qnil;
|
|
|
|
const upb_fielddef* key_field = map_field_key(field);
|
|
const upb_fielddef* value_field = map_field_value(field);
|
|
VALUE type_class = field_type_class(value_field);
|
|
|
|
if (type_class != Qnil) {
|
|
VALUE args[3] = {
|
|
fieldtype_to_ruby(upb_fielddef_type(key_field)),
|
|
fieldtype_to_ruby(upb_fielddef_type(value_field)),
|
|
type_class,
|
|
};
|
|
map = rb_class_new_instance(3, args, cMap);
|
|
} else {
|
|
VALUE args[2] = {
|
|
fieldtype_to_ruby(upb_fielddef_type(key_field)),
|
|
fieldtype_to_ruby(upb_fielddef_type(value_field)),
|
|
};
|
|
map = rb_class_new_instance(2, args, cMap);
|
|
}
|
|
|
|
DEREF(memory, VALUE) = map;
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
VALUE ary = Qnil;
|
|
|
|
VALUE type_class = field_type_class(field);
|
|
|
|
if (type_class != Qnil) {
|
|
VALUE args[2] = {
|
|
fieldtype_to_ruby(upb_fielddef_type(field)),
|
|
type_class,
|
|
};
|
|
ary = rb_class_new_instance(2, args, cRepeatedField);
|
|
} else {
|
|
VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
|
|
ary = rb_class_new_instance(1, args, cRepeatedField);
|
|
}
|
|
|
|
DEREF(memory, VALUE) = ary;
|
|
} else {
|
|
native_slot_init(upb_fielddef_type(field), memory);
|
|
}
|
|
}
|
|
}
|
|
|
|
void layout_mark(MessageLayout* layout, void* storage) {
|
|
upb_msg_field_iter it;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
void* memory = slot_memory(layout, storage, field);
|
|
uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
|
|
|
|
if (upb_fielddef_containingoneof(field)) {
|
|
if (*oneof_case == upb_fielddef_number(field)) {
|
|
native_slot_mark(upb_fielddef_type(field), memory);
|
|
}
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
rb_gc_mark(DEREF(memory, VALUE));
|
|
} else {
|
|
native_slot_mark(upb_fielddef_type(field), memory);
|
|
}
|
|
}
|
|
}
|
|
|
|
void layout_dup(MessageLayout* layout, void* to, void* from) {
|
|
upb_msg_field_iter it;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
|
|
void* to_memory = slot_memory(layout, to, field);
|
|
uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
|
|
void* from_memory = slot_memory(layout, from, field);
|
|
uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
|
|
|
|
if (upb_fielddef_containingoneof(field)) {
|
|
if (*from_oneof_case == upb_fielddef_number(field)) {
|
|
*to_oneof_case = *from_oneof_case;
|
|
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
|
|
}
|
|
} else if (is_map_field(field)) {
|
|
DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
|
|
} else {
|
|
native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
|
|
}
|
|
}
|
|
}
|
|
|
|
void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
|
|
upb_msg_field_iter it;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
|
|
void* to_memory = slot_memory(layout, to, field);
|
|
uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
|
|
void* from_memory = slot_memory(layout, from, field);
|
|
uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
|
|
|
|
if (upb_fielddef_containingoneof(field)) {
|
|
if (*from_oneof_case == upb_fielddef_number(field)) {
|
|
*to_oneof_case = *from_oneof_case;
|
|
native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
|
|
}
|
|
} else if (is_map_field(field)) {
|
|
DEREF(to_memory, VALUE) =
|
|
Map_deep_copy(DEREF(from_memory, VALUE));
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
DEREF(to_memory, VALUE) =
|
|
RepeatedField_deep_copy(DEREF(from_memory, VALUE));
|
|
} else {
|
|
native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
|
|
}
|
|
}
|
|
}
|
|
|
|
VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
|
|
upb_msg_field_iter it;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
|
|
void* msg1_memory = slot_memory(layout, msg1, field);
|
|
uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field);
|
|
void* msg2_memory = slot_memory(layout, msg2, field);
|
|
uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field);
|
|
|
|
if (upb_fielddef_containingoneof(field)) {
|
|
if (*msg1_oneof_case != *msg2_oneof_case ||
|
|
(*msg1_oneof_case == upb_fielddef_number(field) &&
|
|
!native_slot_eq(upb_fielddef_type(field),
|
|
msg1_memory,
|
|
msg2_memory))) {
|
|
return Qfalse;
|
|
}
|
|
} else if (is_map_field(field)) {
|
|
if (!Map_eq(DEREF(msg1_memory, VALUE),
|
|
DEREF(msg2_memory, VALUE))) {
|
|
return Qfalse;
|
|
}
|
|
} else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
|
|
if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
|
|
DEREF(msg2_memory, VALUE))) {
|
|
return Qfalse;
|
|
}
|
|
} else {
|
|
if (!native_slot_eq(upb_fielddef_type(field),
|
|
msg1_memory, msg2_memory)) {
|
|
return Qfalse;
|
|
}
|
|
}
|
|
}
|
|
return Qtrue;
|
|
}
|
|
|
|
VALUE layout_hash(MessageLayout* layout, void* storage) {
|
|
upb_msg_field_iter it;
|
|
st_index_t h = rb_hash_start(0);
|
|
VALUE hash_sym = rb_intern("hash");
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
VALUE field_val = layout_get(layout, storage, field);
|
|
h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
|
|
}
|
|
h = rb_hash_end(h);
|
|
|
|
return INT2FIX(h);
|
|
}
|
|
|
|
VALUE layout_inspect(MessageLayout* layout, void* storage) {
|
|
VALUE str = rb_str_new2("");
|
|
|
|
upb_msg_field_iter it;
|
|
bool first = true;
|
|
for (upb_msg_field_begin(&it, layout->msgdef);
|
|
!upb_msg_field_done(&it);
|
|
upb_msg_field_next(&it)) {
|
|
const upb_fielddef* field = upb_msg_iter_field(&it);
|
|
VALUE field_val = layout_get(layout, storage, field);
|
|
|
|
if (!first) {
|
|
str = rb_str_cat2(str, ", ");
|
|
} else {
|
|
first = false;
|
|
}
|
|
str = rb_str_cat2(str, upb_fielddef_name(field));
|
|
str = rb_str_cat2(str, ": ");
|
|
|
|
str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
|
|
}
|
|
|
|
return str;
|
|
}
|